You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/arch/m68k/kernel/traps.c

1197 lines
30 KiB

/*
* linux/arch/m68k/kernel/traps.c
*
* Copyright (C) 1993, 1994 by Hamish Macdonald
*
* 68040 fixes by Michael Rausch
* 68040 fixes by Martin Apel
* 68040 fixes and writeback by Richard Zidlicky
* 68060 fixes by Roman Hodek
* 68060 fixes by Jesper Skov
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
/*
* Sets up all exception vectors
*/
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/a.out.h>
#include <linux/user.h>
#include <linux/string.h>
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/ptrace.h>
#include <linux/kallsyms.h>
#include <asm/setup.h>
#include <asm/fpu.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/traps.h>
#include <asm/pgalloc.h>
#include <asm/machdep.h>
#include <asm/siginfo.h>
/* assembler routines */
asmlinkage void system_call(void);
asmlinkage void buserr(void);
asmlinkage void trap(void);
asmlinkage void nmihandler(void);
#ifdef CONFIG_M68KFPU_EMU
asmlinkage void fpu_emu(void);
#endif
e_vector vectors[256] = {
[VEC_BUSERR] = buserr,
[VEC_SYS] = system_call,
};
/* nmi handler for the Amiga */
asm(".text\n"
__ALIGN_STR "\n"
"nmihandler: rte");
/*
* this must be called very early as the kernel might
* use some instruction that are emulated on the 060
*/
void __init base_trap_init(void)
{
if(MACH_IS_SUN3X) {
extern e_vector *sun3x_prom_vbr;
__asm__ volatile ("movec %%vbr, %0" : "=r" (sun3x_prom_vbr));
}
/* setup the exception vector table */
__asm__ volatile ("movec %0,%%vbr" : : "r" ((void*)vectors));
if (CPU_IS_060) {
/* set up ISP entry points */
asmlinkage void unimp_vec(void) asm ("_060_isp_unimp");
vectors[VEC_UNIMPII] = unimp_vec;
}
}
void __init trap_init (void)
{
int i;
for (i = VEC_SPUR; i <= VEC_INT7; i++)
vectors[i] = bad_inthandler;
for (i = 0; i < VEC_USER; i++)
if (!vectors[i])
vectors[i] = trap;
for (i = VEC_USER; i < 256; i++)
vectors[i] = bad_inthandler;
#ifdef CONFIG_M68KFPU_EMU
if (FPU_IS_EMU)
vectors[VEC_LINE11] = fpu_emu;
#endif
if (CPU_IS_040 && !FPU_IS_EMU) {
/* set up FPSP entry points */
asmlinkage void dz_vec(void) asm ("dz");
asmlinkage void inex_vec(void) asm ("inex");
asmlinkage void ovfl_vec(void) asm ("ovfl");
asmlinkage void unfl_vec(void) asm ("unfl");
asmlinkage void snan_vec(void) asm ("snan");
asmlinkage void operr_vec(void) asm ("operr");
asmlinkage void bsun_vec(void) asm ("bsun");
asmlinkage void fline_vec(void) asm ("fline");
asmlinkage void unsupp_vec(void) asm ("unsupp");
vectors[VEC_FPDIVZ] = dz_vec;
vectors[VEC_FPIR] = inex_vec;
vectors[VEC_FPOVER] = ovfl_vec;
vectors[VEC_FPUNDER] = unfl_vec;
vectors[VEC_FPNAN] = snan_vec;
vectors[VEC_FPOE] = operr_vec;
vectors[VEC_FPBRUC] = bsun_vec;
vectors[VEC_LINE11] = fline_vec;
vectors[VEC_FPUNSUP] = unsupp_vec;
}
if (CPU_IS_060 && !FPU_IS_EMU) {
/* set up IFPSP entry points */
asmlinkage void snan_vec6(void) asm ("_060_fpsp_snan");
asmlinkage void operr_vec6(void) asm ("_060_fpsp_operr");
asmlinkage void ovfl_vec6(void) asm ("_060_fpsp_ovfl");
asmlinkage void unfl_vec6(void) asm ("_060_fpsp_unfl");
asmlinkage void dz_vec6(void) asm ("_060_fpsp_dz");
asmlinkage void inex_vec6(void) asm ("_060_fpsp_inex");
asmlinkage void fline_vec6(void) asm ("_060_fpsp_fline");
asmlinkage void unsupp_vec6(void) asm ("_060_fpsp_unsupp");
asmlinkage void effadd_vec6(void) asm ("_060_fpsp_effadd");
vectors[VEC_FPNAN] = snan_vec6;
vectors[VEC_FPOE] = operr_vec6;
vectors[VEC_FPOVER] = ovfl_vec6;
vectors[VEC_FPUNDER] = unfl_vec6;
vectors[VEC_FPDIVZ] = dz_vec6;
vectors[VEC_FPIR] = inex_vec6;
vectors[VEC_LINE11] = fline_vec6;
vectors[VEC_FPUNSUP] = unsupp_vec6;
vectors[VEC_UNIMPEA] = effadd_vec6;
}
/* if running on an amiga, make the NMI interrupt do nothing */
if (MACH_IS_AMIGA) {
vectors[VEC_INT7] = nmihandler;
}
}
static const char *vec_names[] = {
[VEC_RESETSP] = "RESET SP",
[VEC_RESETPC] = "RESET PC",
[VEC_BUSERR] = "BUS ERROR",
[VEC_ADDRERR] = "ADDRESS ERROR",
[VEC_ILLEGAL] = "ILLEGAL INSTRUCTION",
[VEC_ZERODIV] = "ZERO DIVIDE",
[VEC_CHK] = "CHK",
[VEC_TRAP] = "TRAPcc",
[VEC_PRIV] = "PRIVILEGE VIOLATION",
[VEC_TRACE] = "TRACE",
[VEC_LINE10] = "LINE 1010",
[VEC_LINE11] = "LINE 1111",
[VEC_RESV12] = "UNASSIGNED RESERVED 12",
[VEC_COPROC] = "COPROCESSOR PROTOCOL VIOLATION",
[VEC_FORMAT] = "FORMAT ERROR",
[VEC_UNINT] = "UNINITIALIZED INTERRUPT",
[VEC_RESV16] = "UNASSIGNED RESERVED 16",
[VEC_RESV17] = "UNASSIGNED RESERVED 17",
[VEC_RESV18] = "UNASSIGNED RESERVED 18",
[VEC_RESV19] = "UNASSIGNED RESERVED 19",
[VEC_RESV20] = "UNASSIGNED RESERVED 20",
[VEC_RESV21] = "UNASSIGNED RESERVED 21",
[VEC_RESV22] = "UNASSIGNED RESERVED 22",
[VEC_RESV23] = "UNASSIGNED RESERVED 23",
[VEC_SPUR] = "SPURIOUS INTERRUPT",
[VEC_INT1] = "LEVEL 1 INT",
[VEC_INT2] = "LEVEL 2 INT",
[VEC_INT3] = "LEVEL 3 INT",
[VEC_INT4] = "LEVEL 4 INT",
[VEC_INT5] = "LEVEL 5 INT",
[VEC_INT6] = "LEVEL 6 INT",
[VEC_INT7] = "LEVEL 7 INT",
[VEC_SYS] = "SYSCALL",
[VEC_TRAP1] = "TRAP #1",
[VEC_TRAP2] = "TRAP #2",
[VEC_TRAP3] = "TRAP #3",
[VEC_TRAP4] = "TRAP #4",
[VEC_TRAP5] = "TRAP #5",
[VEC_TRAP6] = "TRAP #6",
[VEC_TRAP7] = "TRAP #7",
[VEC_TRAP8] = "TRAP #8",
[VEC_TRAP9] = "TRAP #9",
[VEC_TRAP10] = "TRAP #10",
[VEC_TRAP11] = "TRAP #11",
[VEC_TRAP12] = "TRAP #12",
[VEC_TRAP13] = "TRAP #13",
[VEC_TRAP14] = "TRAP #14",
[VEC_TRAP15] = "TRAP #15",
[VEC_FPBRUC] = "FPCP BSUN",
[VEC_FPIR] = "FPCP INEXACT",
[VEC_FPDIVZ] = "FPCP DIV BY 0",
[VEC_FPUNDER] = "FPCP UNDERFLOW",
[VEC_FPOE] = "FPCP OPERAND ERROR",
[VEC_FPOVER] = "FPCP OVERFLOW",
[VEC_FPNAN] = "FPCP SNAN",
[VEC_FPUNSUP] = "FPCP UNSUPPORTED OPERATION",
[VEC_MMUCFG] = "MMU CONFIGURATION ERROR",
[VEC_MMUILL] = "MMU ILLEGAL OPERATION ERROR",
[VEC_MMUACC] = "MMU ACCESS LEVEL VIOLATION ERROR",
[VEC_RESV59] = "UNASSIGNED RESERVED 59",
[VEC_UNIMPEA] = "UNASSIGNED RESERVED 60",
[VEC_UNIMPII] = "UNASSIGNED RESERVED 61",
[VEC_RESV62] = "UNASSIGNED RESERVED 62",
[VEC_RESV63] = "UNASSIGNED RESERVED 63",
};
static const char *space_names[] = {
[0] = "Space 0",
[USER_DATA] = "User Data",
[USER_PROGRAM] = "User Program",
#ifndef CONFIG_SUN3
[3] = "Space 3",
#else
[FC_CONTROL] = "Control",
#endif
[4] = "Space 4",
[SUPER_DATA] = "Super Data",
[SUPER_PROGRAM] = "Super Program",
[CPU_SPACE] = "CPU"
};
void die_if_kernel(char *,struct pt_regs *,int);
asmlinkage int do_page_fault(struct pt_regs *regs, unsigned long address,
unsigned long error_code);
int send_fault_sig(struct pt_regs *regs);
asmlinkage void trap_c(struct frame *fp);
#if defined (CONFIG_M68060)
static inline void access_error060 (struct frame *fp)
{
unsigned long fslw = fp->un.fmt4.pc; /* is really FSLW for access error */
#ifdef DEBUG
printk("fslw=%#lx, fa=%#lx\n", fslw, fp->un.fmt4.effaddr);
#endif
if (fslw & MMU060_BPE) {
/* branch prediction error -> clear branch cache */
__asm__ __volatile__ ("movec %/cacr,%/d0\n\t"
"orl #0x00400000,%/d0\n\t"
"movec %/d0,%/cacr"
: : : "d0" );
/* return if there's no other error */
if (!(fslw & MMU060_ERR_BITS) && !(fslw & MMU060_SEE))
return;
}
if (fslw & (MMU060_DESC_ERR | MMU060_WP | MMU060_SP)) {
unsigned long errorcode;
unsigned long addr = fp->un.fmt4.effaddr;
if (fslw & MMU060_MA)
addr = (addr + PAGE_SIZE - 1) & PAGE_MASK;
errorcode = 1;
if (fslw & MMU060_DESC_ERR) {
__flush_tlb040_one(addr);
errorcode = 0;
}
if (fslw & MMU060_W)
errorcode |= 2;
#ifdef DEBUG
printk("errorcode = %d\n", errorcode );
#endif
do_page_fault(&fp->ptregs, addr, errorcode);
} else if (fslw & (MMU060_SEE)){
/* Software Emulation Error.
* fault during mem_read/mem_write in ifpsp060/os.S
*/
send_fault_sig(&fp->ptregs);
} else if (!(fslw & (MMU060_RE|MMU060_WE)) ||
send_fault_sig(&fp->ptregs) > 0) {
printk("pc=%#lx, fa=%#lx\n", fp->ptregs.pc, fp->un.fmt4.effaddr);
printk( "68060 access error, fslw=%lx\n", fslw );
trap_c( fp );
}
}
#endif /* CONFIG_M68060 */
#if defined (CONFIG_M68040)
static inline unsigned long probe040(int iswrite, unsigned long addr, int wbs)
{
unsigned long mmusr;
mm_segment_t old_fs = get_fs();
set_fs(MAKE_MM_SEG(wbs));
if (iswrite)
asm volatile (".chip 68040; ptestw (%0); .chip 68k" : : "a" (addr));
else
asm volatile (".chip 68040; ptestr (%0); .chip 68k" : : "a" (addr));
asm volatile (".chip 68040; movec %%mmusr,%0; .chip 68k" : "=r" (mmusr));
set_fs(old_fs);
return mmusr;
}
static inline int do_040writeback1(unsigned short wbs, unsigned long wba,
unsigned long wbd)
{
int res = 0;
mm_segment_t old_fs = get_fs();
/* set_fs can not be moved, otherwise put_user() may oops */
set_fs(MAKE_MM_SEG(wbs));
switch (wbs & WBSIZ_040) {
case BA_SIZE_BYTE:
res = put_user(wbd & 0xff, (char __user *)wba);
break;
case BA_SIZE_WORD:
res = put_user(wbd & 0xffff, (short __user *)wba);
break;
case BA_SIZE_LONG:
res = put_user(wbd, (int __user *)wba);
break;
}
/* set_fs can not be moved, otherwise put_user() may oops */
set_fs(old_fs);
#ifdef DEBUG
printk("do_040writeback1, res=%d\n",res);
#endif
return res;
}
/* after an exception in a writeback the stack frame corresponding
* to that exception is discarded, set a few bits in the old frame
* to simulate what it should look like
*/
static inline void fix_xframe040(struct frame *fp, unsigned long wba, unsigned short wbs)
{
fp->un.fmt7.faddr = wba;
fp->un.fmt7.ssw = wbs & 0xff;
if (wba != current->thread.faddr)
fp->un.fmt7.ssw |= MA_040;
}
static inline void do_040writebacks(struct frame *fp)
{
int res = 0;
#if 0
if (fp->un.fmt7.wb1s & WBV_040)
printk("access_error040: cannot handle 1st writeback. oops.\n");
#endif
if ((fp->un.fmt7.wb2s & WBV_040) &&
!(fp->un.fmt7.wb2s & WBTT_040)) {
res = do_040writeback1(fp->un.fmt7.wb2s, fp->un.fmt7.wb2a,
fp->un.fmt7.wb2d);
if (res)
fix_xframe040(fp, fp->un.fmt7.wb2a, fp->un.fmt7.wb2s);
else
fp->un.fmt7.wb2s = 0;
}
/* do the 2nd wb only if the first one was successful (except for a kernel wb) */
if (fp->un.fmt7.wb3s & WBV_040 && (!res || fp->un.fmt7.wb3s & 4)) {
res = do_040writeback1(fp->un.fmt7.wb3s, fp->un.fmt7.wb3a,
fp->un.fmt7.wb3d);
if (res)
{
fix_xframe040(fp, fp->un.fmt7.wb3a, fp->un.fmt7.wb3s);
fp->un.fmt7.wb2s = fp->un.fmt7.wb3s;
fp->un.fmt7.wb3s &= (~WBV_040);
fp->un.fmt7.wb2a = fp->un.fmt7.wb3a;
fp->un.fmt7.wb2d = fp->un.fmt7.wb3d;
}
else
fp->un.fmt7.wb3s = 0;
}
if (res)
send_fault_sig(&fp->ptregs);
}
/*
* called from sigreturn(), must ensure userspace code didn't
* manipulate exception frame to circumvent protection, then complete
* pending writebacks
* we just clear TM2 to turn it into an userspace access
*/
asmlinkage void berr_040cleanup(struct frame *fp)
{
fp->un.fmt7.wb2s &= ~4;
fp->un.fmt7.wb3s &= ~4;
do_040writebacks(fp);
}
static inline void access_error040(struct frame *fp)
{
unsigned short ssw = fp->un.fmt7.ssw;
unsigned long mmusr;
#ifdef DEBUG
printk("ssw=%#x, fa=%#lx\n", ssw, fp->un.fmt7.faddr);
printk("wb1s=%#x, wb2s=%#x, wb3s=%#x\n", fp->un.fmt7.wb1s,
fp->un.fmt7.wb2s, fp->un.fmt7.wb3s);
printk ("wb2a=%lx, wb3a=%lx, wb2d=%lx, wb3d=%lx\n",
fp->un.fmt7.wb2a, fp->un.fmt7.wb3a,
fp->un.fmt7.wb2d, fp->un.fmt7.wb3d);
#endif
if (ssw & ATC_040) {
unsigned long addr = fp->un.fmt7.faddr;
unsigned long errorcode;
/*
* The MMU status has to be determined AFTER the address
* has been corrected if there was a misaligned access (MA).
*/
if (ssw & MA_040)
addr = (addr + 7) & -8;
/* MMU error, get the MMUSR info for this access */
mmusr = probe040(!(ssw & RW_040), addr, ssw);
#ifdef DEBUG
printk("mmusr = %lx\n", mmusr);
#endif
errorcode = 1;
if (!(mmusr & MMU_R_040)) {
/* clear the invalid atc entry */
__flush_tlb040_one(addr);
errorcode = 0;
}
/* despite what documentation seems to say, RMW
* accesses have always both the LK and RW bits set */
if (!(ssw & RW_040) || (ssw & LK_040))
errorcode |= 2;
if (do_page_fault(&fp->ptregs, addr, errorcode)) {
#ifdef DEBUG
printk("do_page_fault() !=0 \n");
#endif
if (user_mode(&fp->ptregs)){
/* delay writebacks after signal delivery */
#ifdef DEBUG
printk(".. was usermode - return\n");
#endif
return;
}
/* disable writeback into user space from kernel
* (if do_page_fault didn't fix the mapping,
* the writeback won't do good)
*/
#ifdef DEBUG
printk(".. disabling wb2\n");
#endif
if (fp->un.fmt7.wb2a == fp->un.fmt7.faddr)
fp->un.fmt7.wb2s &= ~WBV_040;
}
} else if (send_fault_sig(&fp->ptregs) > 0) {
printk("68040 access error, ssw=%x\n", ssw);
trap_c(fp);
}
do_040writebacks(fp);
}
#endif /* CONFIG_M68040 */
#if defined(CONFIG_SUN3)
#include <asm/sun3mmu.h>
extern int mmu_emu_handle_fault (unsigned long, int, int);
/* sun3 version of bus_error030 */
static inline void bus_error030 (struct frame *fp)
{
unsigned char buserr_type = sun3_get_buserr ();
unsigned long addr, errorcode;
unsigned short ssw = fp->un.fmtb.ssw;
extern unsigned long _sun3_map_test_start, _sun3_map_test_end;
#ifdef DEBUG
if (ssw & (FC | FB))
printk ("Instruction fault at %#010lx\n",
ssw & FC ?
fp->ptregs.format == 0xa ? fp->ptregs.pc + 2 : fp->un.fmtb.baddr - 2
:
fp->ptregs.format == 0xa ? fp->ptregs.pc + 4 : fp->un.fmtb.baddr);
if (ssw & DF)
printk ("Data %s fault at %#010lx in %s (pc=%#lx)\n",
ssw & RW ? "read" : "write",
fp->un.fmtb.daddr,
space_names[ssw & DFC], fp->ptregs.pc);
#endif
/*
* Check if this page should be demand-mapped. This needs to go before
* the testing for a bad kernel-space access (demand-mapping applies
* to kernel accesses too).
*/
if ((ssw & DF)
&& (buserr_type & (SUN3_BUSERR_PROTERR | SUN3_BUSERR_INVALID))) {
if (mmu_emu_handle_fault (fp->un.fmtb.daddr, ssw & RW, 0))
return;
}
/* Check for kernel-space pagefault (BAD). */
if (fp->ptregs.sr & PS_S) {
/* kernel fault must be a data fault to user space */
if (! ((ssw & DF) && ((ssw & DFC) == USER_DATA))) {
// try checking the kernel mappings before surrender
if (mmu_emu_handle_fault (fp->un.fmtb.daddr, ssw & RW, 1))
return;
/* instruction fault or kernel data fault! */
if (ssw & (FC | FB))
printk ("Instruction fault at %#010lx\n",
fp->ptregs.pc);
if (ssw & DF) {
/* was this fault incurred testing bus mappings? */
if((fp->ptregs.pc >= (unsigned long)&_sun3_map_test_start) &&
(fp->ptregs.pc <= (unsigned long)&_sun3_map_test_end)) {
send_fault_sig(&fp->ptregs);
return;
}
printk ("Data %s fault at %#010lx in %s (pc=%#lx)\n",
ssw & RW ? "read" : "write",
fp->un.fmtb.daddr,
space_names[ssw & DFC], fp->ptregs.pc);
}
printk ("BAD KERNEL BUSERR\n");
die_if_kernel("Oops", &fp->ptregs,0);
force_sig(SIGKILL, current);
return;
}
} else {
/* user fault */
if (!(ssw & (FC | FB)) && !(ssw & DF))
/* not an instruction fault or data fault! BAD */
panic ("USER BUSERR w/o instruction or data fault");
}
/* First handle the data fault, if any. */
if (ssw & DF) {
addr = fp->un.fmtb.daddr;
// errorcode bit 0: 0 -> no page 1 -> protection fault
// errorcode bit 1: 0 -> read fault 1 -> write fault
// (buserr_type & SUN3_BUSERR_PROTERR) -> protection fault
// (buserr_type & SUN3_BUSERR_INVALID) -> invalid page fault
if (buserr_type & SUN3_BUSERR_PROTERR)
errorcode = 0x01;
else if (buserr_type & SUN3_BUSERR_INVALID)
errorcode = 0x00;
else {
#ifdef DEBUG
printk ("*** unexpected busfault type=%#04x\n", buserr_type);
printk ("invalid %s access at %#lx from pc %#lx\n",
!(ssw & RW) ? "write" : "read", addr,
fp->ptregs.pc);
#endif
die_if_kernel ("Oops", &fp->ptregs, buserr_type);
force_sig (SIGBUS, current);
return;
}
//todo: wtf is RM bit? --m
if (!(ssw & RW) || ssw & RM)
errorcode |= 0x02;
/* Handle page fault. */
do_page_fault (&fp->ptregs, addr, errorcode);
/* Retry the data fault now. */
return;
}
/* Now handle the instruction fault. */
/* Get the fault address. */
if (fp->ptregs.format == 0xA)
addr = fp->ptregs.pc + 4;
else
addr = fp->un.fmtb.baddr;
if (ssw & FC)
addr -= 2;
if (buserr_type & SUN3_BUSERR_INVALID) {
if (!mmu_emu_handle_fault (fp->un.fmtb.daddr, 1, 0))
do_page_fault (&fp->ptregs, addr, 0);
} else {
#ifdef DEBUG
printk ("protection fault on insn access (segv).\n");
#endif
force_sig (SIGSEGV, current);
}
}
#else
#if defined(CPU_M68020_OR_M68030)
static inline void bus_error030 (struct frame *fp)
{
volatile unsigned short temp;
unsigned short mmusr;
unsigned long addr, errorcode;
unsigned short ssw = fp->un.fmtb.ssw;
#ifdef DEBUG
unsigned long desc;
printk ("pid = %x ", current->pid);
printk ("SSW=%#06x ", ssw);
if (ssw & (FC | FB))
printk ("Instruction fault at %#010lx\n",
ssw & FC ?
fp->ptregs.format == 0xa ? fp->ptregs.pc + 2 : fp->un.fmtb.baddr - 2
:
fp->ptregs.format == 0xa ? fp->ptregs.pc + 4 : fp->un.fmtb.baddr);
if (ssw & DF)
printk ("Data %s fault at %#010lx in %s (pc=%#lx)\n",
ssw & RW ? "read" : "write",
fp->un.fmtb.daddr,
space_names[ssw & DFC], fp->ptregs.pc);
#endif
/* ++andreas: If a data fault and an instruction fault happen
at the same time map in both pages. */
/* First handle the data fault, if any. */
if (ssw & DF) {
addr = fp->un.fmtb.daddr;
#ifdef DEBUG
asm volatile ("ptestr %3,%2@,#7,%0\n\t"
"pmove %%psr,%1@"
: "=a&" (desc)
: "a" (&temp), "a" (addr), "d" (ssw));
#else
asm volatile ("ptestr %2,%1@,#7\n\t"
"pmove %%psr,%0@"
: : "a" (&temp), "a" (addr), "d" (ssw));
#endif
mmusr = temp;
#ifdef DEBUG
printk("mmusr is %#x for addr %#lx in task %p\n",
mmusr, addr, current);
printk("descriptor address is %#lx, contents %#lx\n",
__va(desc), *(unsigned long *)__va(desc));
#endif
errorcode = (mmusr & MMU_I) ? 0 : 1;
if (!(ssw & RW) || (ssw & RM))
errorcode |= 2;
if (mmusr & (MMU_I | MMU_WP)) {
if (ssw & 4) {
printk("Data %s fault at %#010lx in %s (pc=%#lx)\n",
ssw & RW ? "read" : "write",
fp->un.fmtb.daddr,
space_names[ssw & DFC], fp->ptregs.pc);
goto buserr;
}
/* Don't try to do anything further if an exception was
handled. */
if (do_page_fault (&fp->ptregs, addr, errorcode) < 0)
return;
} else if (!(mmusr & MMU_I)) {
/* probably a 020 cas fault */
if (!(ssw & RM) && send_fault_sig(&fp->ptregs) > 0)
printk("unexpected bus error (%#x,%#x)\n", ssw, mmusr);
} else if (mmusr & (MMU_B|MMU_L|MMU_S)) {
printk("invalid %s access at %#lx from pc %#lx\n",
!(ssw & RW) ? "write" : "read", addr,
fp->ptregs.pc);
die_if_kernel("Oops",&fp->ptregs,mmusr);
force_sig(SIGSEGV, current);
return;
} else {
#if 0
static volatile long tlong;
#endif
printk("weird %s access at %#lx from pc %#lx (ssw is %#x)\n",
!(ssw & RW) ? "write" : "read", addr,
fp->ptregs.pc, ssw);
asm volatile ("ptestr #1,%1@,#0\n\t"
"pmove %%psr,%0@"
: /* no outputs */
: "a" (&temp), "a" (addr));
mmusr = temp;
printk ("level 0 mmusr is %#x\n", mmusr);
#if 0
asm volatile ("pmove %%tt0,%0@"
: /* no outputs */
: "a" (&tlong));
printk("tt0 is %#lx, ", tlong);
asm volatile ("pmove %%tt1,%0@"
: /* no outputs */
: "a" (&tlong));
printk("tt1 is %#lx\n", tlong);
#endif
#ifdef DEBUG
printk("Unknown SIGSEGV - 1\n");
#endif
die_if_kernel("Oops",&fp->ptregs,mmusr);
force_sig(SIGSEGV, current);
return;
}
/* setup an ATC entry for the access about to be retried */
if (!(ssw & RW) || (ssw & RM))
asm volatile ("ploadw %1,%0@" : /* no outputs */
: "a" (addr), "d" (ssw));
else
asm volatile ("ploadr %1,%0@" : /* no outputs */
: "a" (addr), "d" (ssw));
}
/* Now handle the instruction fault. */
if (!(ssw & (FC|FB)))
return;
if (fp->ptregs.sr & PS_S) {
printk("Instruction fault at %#010lx\n",
fp->ptregs.pc);
buserr:
printk ("BAD KERNEL BUSERR\n");
die_if_kernel("Oops",&fp->ptregs,0);
force_sig(SIGKILL, current);
return;
}
/* get the fault address */
if (fp->ptregs.format == 10)
addr = fp->ptregs.pc + 4;
else
addr = fp->un.fmtb.baddr;
if (ssw & FC)
addr -= 2;
if ((ssw & DF) && ((addr ^ fp->un.fmtb.daddr) & PAGE_MASK) == 0)
/* Insn fault on same page as data fault. But we
should still create the ATC entry. */
goto create_atc_entry;
#ifdef DEBUG
asm volatile ("ptestr #1,%2@,#7,%0\n\t"
"pmove %%psr,%1@"
: "=a&" (desc)
: "a" (&temp), "a" (addr));
#else
asm volatile ("ptestr #1,%1@,#7\n\t"
"pmove %%psr,%0@"
: : "a" (&temp), "a" (addr));
#endif
mmusr = temp;
#ifdef DEBUG
printk ("mmusr is %#x for addr %#lx in task %p\n",
mmusr, addr, current);
printk ("descriptor address is %#lx, contents %#lx\n",
__va(desc), *(unsigned long *)__va(desc));
#endif
if (mmusr & MMU_I)
do_page_fault (&fp->ptregs, addr, 0);
else if (mmusr & (MMU_B|MMU_L|MMU_S)) {
printk ("invalid insn access at %#lx from pc %#lx\n",
addr, fp->ptregs.pc);
#ifdef DEBUG
printk("Unknown SIGSEGV - 2\n");
#endif
die_if_kernel("Oops",&fp->ptregs,mmusr);
force_sig(SIGSEGV, current);
return;
}
create_atc_entry:
/* setup an ATC entry for the access about to be retried */
asm volatile ("ploadr #2,%0@" : /* no outputs */
: "a" (addr));
}
#endif /* CPU_M68020_OR_M68030 */
#endif /* !CONFIG_SUN3 */
asmlinkage void buserr_c(struct frame *fp)
{
/* Only set esp0 if coming from user mode */
if (user_mode(&fp->ptregs))
current->thread.esp0 = (unsigned long) fp;
#ifdef DEBUG
printk ("*** Bus Error *** Format is %x\n", fp->ptregs.format);
#endif
switch (fp->ptregs.format) {
#if defined (CONFIG_M68060)
case 4: /* 68060 access error */
access_error060 (fp);
break;
#endif
#if defined (CONFIG_M68040)
case 0x7: /* 68040 access error */
access_error040 (fp);
break;
#endif
#if defined (CPU_M68020_OR_M68030)
case 0xa:
case 0xb:
bus_error030 (fp);
break;
#endif
default:
die_if_kernel("bad frame format",&fp->ptregs,0);
#ifdef DEBUG
printk("Unknown SIGSEGV - 4\n");
#endif
force_sig(SIGSEGV, current);
}
}
static int kstack_depth_to_print = 48;
void show_trace(unsigned long *stack)
{
unsigned long *endstack;
unsigned long addr;
int i;
printk("Call Trace:");
addr = (unsigned long)stack + THREAD_SIZE - 1;
endstack = (unsigned long *)(addr & -THREAD_SIZE);
i = 0;
while (stack + 1 <= endstack) {
addr = *stack++;
/*
* If the address is either in the text segment of the
* kernel, or in the region which contains vmalloc'ed
* memory, it *may* be the address of a calling
* routine; if so, print it so that someone tracing
* down the cause of the crash will be able to figure
* out the call path that was taken.
*/
if (__kernel_text_address(addr)) {
#ifndef CONFIG_KALLSYMS
if (i % 5 == 0)
printk("\n ");
#endif
printk(" [<%08lx>]", addr);
print_symbol(" %s\n", addr);
i++;
}
}
printk("\n");
}
void show_registers(struct pt_regs *regs)
{
struct frame *fp = (struct frame *)regs;
mm_segment_t old_fs = get_fs();
u16 c, *cp;
unsigned long addr;
int i;
print_modules();
printk("PC: [<%08lx>]",regs->pc);
print_symbol(" %s", regs->pc);
printk("\nSR: %04x SP: %p a2: %08lx\n",
regs->sr, regs, regs->a2);
printk("d0: %08lx d1: %08lx d2: %08lx d3: %08lx\n",
regs->d0, regs->d1, regs->d2, regs->d3);
printk("d4: %08lx d5: %08lx a0: %08lx a1: %08lx\n",
regs->d4, regs->d5, regs->a0, regs->a1);
printk("Process %s (pid: %d, task=%p)\n",
current->comm, current->pid, current);
addr = (unsigned long)&fp->un;
printk("Frame format=%X ", regs->format);
switch (regs->format) {
case 0x2:
printk("instr addr=%08lx\n", fp->un.fmt2.iaddr);
addr += sizeof(fp->un.fmt2);
break;
case 0x3:
printk("eff addr=%08lx\n", fp->un.fmt3.effaddr);
addr += sizeof(fp->un.fmt3);
break;
case 0x4:
printk((CPU_IS_060 ? "fault addr=%08lx fslw=%08lx\n"
: "eff addr=%08lx pc=%08lx\n"),
fp->un.fmt4.effaddr, fp->un.fmt4.pc);
addr += sizeof(fp->un.fmt4);
break;
case 0x7:
printk("eff addr=%08lx ssw=%04x faddr=%08lx\n",
fp->un.fmt7.effaddr, fp->un.fmt7.ssw, fp->un.fmt7.faddr);
printk("wb 1 stat/addr/data: %04x %08lx %08lx\n",
fp->un.fmt7.wb1s, fp->un.fmt7.wb1a, fp->un.fmt7.wb1dpd0);
printk("wb 2 stat/addr/data: %04x %08lx %08lx\n",
fp->un.fmt7.wb2s, fp->un.fmt7.wb2a, fp->un.fmt7.wb2d);
printk("wb 3 stat/addr/data: %04x %08lx %08lx\n",
fp->un.fmt7.wb3s, fp->un.fmt7.wb3a, fp->un.fmt7.wb3d);
printk("push data: %08lx %08lx %08lx %08lx\n",
fp->un.fmt7.wb1dpd0, fp->un.fmt7.pd1, fp->un.fmt7.pd2,
fp->un.fmt7.pd3);
addr += sizeof(fp->un.fmt7);
break;
case 0x9:
printk("instr addr=%08lx\n", fp->un.fmt9.iaddr);
addr += sizeof(fp->un.fmt9);
break;
case 0xa:
printk("ssw=%04x isc=%04x isb=%04x daddr=%08lx dobuf=%08lx\n",
fp->un.fmta.ssw, fp->un.fmta.isc, fp->un.fmta.isb,
fp->un.fmta.daddr, fp->un.fmta.dobuf);
addr += sizeof(fp->un.fmta);
break;
case 0xb:
printk("ssw=%04x isc=%04x isb=%04x daddr=%08lx dobuf=%08lx\n",
fp->un.fmtb.ssw, fp->un.fmtb.isc, fp->un.fmtb.isb,
fp->un.fmtb.daddr, fp->un.fmtb.dobuf);
printk("baddr=%08lx dibuf=%08lx ver=%x\n",
fp->un.fmtb.baddr, fp->un.fmtb.dibuf, fp->un.fmtb.ver);
addr += sizeof(fp->un.fmtb);
break;
default:
printk("\n");
}
show_stack(NULL, (unsigned long *)addr);
printk("Code:");
set_fs(KERNEL_DS);
cp = (u16 *)regs->pc;
for (i = -8; i < 16; i++) {
if (get_user(c, cp + i) && i >= 0) {
printk(" Bad PC value.");
break;
}
printk(i ? " %04x" : " <%04x>", c);
}
set_fs(old_fs);
printk ("\n");
}
void show_stack(struct task_struct *task, unsigned long *stack)
{
unsigned long *p;
unsigned long *endstack;
int i;
if (!stack) {
if (task)
stack = (unsigned long *)task->thread.esp0;
else
stack = (unsigned long *)&stack;
}
endstack = (unsigned long *)(((unsigned long)stack + THREAD_SIZE - 1) & -THREAD_SIZE);
printk("Stack from %08lx:", (unsigned long)stack);
p = stack;
for (i = 0; i < kstack_depth_to_print; i++) {
if (p + 1 > endstack)
break;
if (i % 8 == 0)
printk("\n ");
printk(" %08lx", *p++);
}
printk("\n");
show_trace(stack);
}
/*
* The architecture-independent backtrace generator
*/
void dump_stack(void)
{
unsigned long stack;
show_trace(&stack);
}
EXPORT_SYMBOL(dump_stack);
void bad_super_trap (struct frame *fp)
{
console_verbose();
if (fp->ptregs.vector < 4 * ARRAY_SIZE(vec_names))
printk ("*** %s *** FORMAT=%X\n",
vec_names[(fp->ptregs.vector) >> 2],
fp->ptregs.format);
else
printk ("*** Exception %d *** FORMAT=%X\n",
(fp->ptregs.vector) >> 2,
fp->ptregs.format);
if (fp->ptregs.vector >> 2 == VEC_ADDRERR && CPU_IS_020_OR_030) {
unsigned short ssw = fp->un.fmtb.ssw;
printk ("SSW=%#06x ", ssw);
if (ssw & RC)
printk ("Pipe stage C instruction fault at %#010lx\n",
(fp->ptregs.format) == 0xA ?
fp->ptregs.pc + 2 : fp->un.fmtb.baddr - 2);
if (ssw & RB)
printk ("Pipe stage B instruction fault at %#010lx\n",
(fp->ptregs.format) == 0xA ?
fp->ptregs.pc + 4 : fp->un.fmtb.baddr);
if (ssw & DF)
printk ("Data %s fault at %#010lx in %s (pc=%#lx)\n",
ssw & RW ? "read" : "write",
fp->un.fmtb.daddr, space_names[ssw & DFC],
fp->ptregs.pc);
}
printk ("Current process id is %d\n", current->pid);
die_if_kernel("BAD KERNEL TRAP", &fp->ptregs, 0);
}
asmlinkage void trap_c(struct frame *fp)
{
int sig;
siginfo_t info;
if (fp->ptregs.sr & PS_S) {
if ((fp->ptregs.vector >> 2) == VEC_TRACE) {
/* traced a trapping instruction */
current->ptrace |= PT_DTRACE;
} else
bad_super_trap(fp);
return;
}
/* send the appropriate signal to the user program */
switch ((fp->ptregs.vector) >> 2) {
case VEC_ADDRERR:
info.si_code = BUS_ADRALN;
sig = SIGBUS;
break;
case VEC_ILLEGAL:
case VEC_LINE10:
case VEC_LINE11:
info.si_code = ILL_ILLOPC;
sig = SIGILL;
break;
case VEC_PRIV:
info.si_code = ILL_PRVOPC;
sig = SIGILL;
break;
case VEC_COPROC:
info.si_code = ILL_COPROC;
sig = SIGILL;
break;
case VEC_TRAP1:
case VEC_TRAP2:
case VEC_TRAP3:
case VEC_TRAP4:
case VEC_TRAP5:
case VEC_TRAP6:
case VEC_TRAP7:
case VEC_TRAP8:
case VEC_TRAP9:
case VEC_TRAP10:
case VEC_TRAP11:
case VEC_TRAP12:
case VEC_TRAP13:
case VEC_TRAP14:
info.si_code = ILL_ILLTRP;
sig = SIGILL;
break;
case VEC_FPBRUC:
case VEC_FPOE:
case VEC_FPNAN:
info.si_code = FPE_FLTINV;
sig = SIGFPE;
break;
case VEC_FPIR:
info.si_code = FPE_FLTRES;
sig = SIGFPE;
break;
case VEC_FPDIVZ:
info.si_code = FPE_FLTDIV;
sig = SIGFPE;
break;
case VEC_FPUNDER:
info.si_code = FPE_FLTUND;
sig = SIGFPE;
break;
case VEC_FPOVER:
info.si_code = FPE_FLTOVF;
sig = SIGFPE;
break;
case VEC_ZERODIV:
info.si_code = FPE_INTDIV;
sig = SIGFPE;
break;
case VEC_CHK:
case VEC_TRAP:
info.si_code = FPE_INTOVF;
sig = SIGFPE;
break;
case VEC_TRACE: /* ptrace single step */
info.si_code = TRAP_TRACE;
sig = SIGTRAP;
break;
case VEC_TRAP15: /* breakpoint */
info.si_code = TRAP_BRKPT;
sig = SIGTRAP;
break;
default:
info.si_code = ILL_ILLOPC;
sig = SIGILL;
break;
}
info.si_signo = sig;
info.si_errno = 0;
switch (fp->ptregs.format) {
default:
info.si_addr = (void *) fp->ptregs.pc;
break;
case 2:
info.si_addr = (void *) fp->un.fmt2.iaddr;
break;
case 7:
info.si_addr = (void *) fp->un.fmt7.effaddr;
break;
case 9:
info.si_addr = (void *) fp->un.fmt9.iaddr;
break;
case 10:
info.si_addr = (void *) fp->un.fmta.daddr;
break;
case 11:
info.si_addr = (void *) fp->un.fmtb.daddr;
break;
}
force_sig_info (sig, &info, current);
}
void die_if_kernel (char *str, struct pt_regs *fp, int nr)
{
if (!(fp->sr & PS_S))
return;
console_verbose();
printk("%s: %08x\n",str,nr);
show_registers(fp);
do_exit(SIGSEGV);
}
/*
* This function is called if an error occur while accessing
* user-space from the fpsp040 code.
*/
asmlinkage void fpsp040_die(void)
{
do_exit(SIGSEGV);
}
#ifdef CONFIG_M68KFPU_EMU
asmlinkage void fpemu_signal(int signal, int code, void *addr)
{
siginfo_t info;
info.si_signo = signal;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
force_sig_info(signal, &info, current);
}
#endif