|
|
|
/*
|
|
|
|
* Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
|
|
|
|
* Licensed under the GPL
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __SYSDEP_I386_PTRACE_H
|
|
|
|
#define __SYSDEP_I386_PTRACE_H
|
|
|
|
|
|
|
|
#include "uml-config.h"
|
|
|
|
#include "user_constants.h"
|
|
|
|
#include "sysdep/faultinfo.h"
|
|
|
|
#include "choose-mode.h"
|
|
|
|
|
|
|
|
#define MAX_REG_NR (UM_FRAME_SIZE / sizeof(unsigned long))
|
|
|
|
#define MAX_REG_OFFSET (UM_FRAME_SIZE)
|
|
|
|
|
[PATCH] uml: clean arch_switch usage
Call arch_switch also in switch_to_skas, even if it's, for now, a no-op for
that case (and mark this in the comment); this will change soon.
Also, arch_switch for TT mode is actually useless when the PT proxy (a
complicate debugging instrumentation for TT mode) is not enabled. In fact, it
only calls update_debugregs, which checks debugregs_seq against seq (to check
if the registers are up-to-date - seq here means a "version number" of the
registers).
If the ptrace proxy is not enabled, debugregs_seq always stays 0 and
update_debugregs will be a no-op. So, optimize this out (the compiler can't
do it).
Also, I've been disappointed by the fact that it would make a lot of sense if,
after calling a successful
update_debugregs(current->thread.arch.debugregs_seq),
current->thread.arch.debugregs_seq were updated with the new debugregs_seq.
But this is not done. Is this a bug or a feature? For all purposes, it seems
a bug (otherwise the whole mechanism does not make sense, which is also a
possibility to check), which causes some performance only problems (not
correctness), since we write_debugregs when not needed.
Also, as suggested by Jeff, remove a redundant enabling of SIGVTALRM,
comprised in the subsequent local_irq_enable(). I'm just a bit dubious if
ordering matters there...
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Acked-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
#ifdef UML_CONFIG_PT_PROXY
|
|
|
|
extern void update_debugregs(int seq);
|
[PATCH] uml: clean arch_switch usage
Call arch_switch also in switch_to_skas, even if it's, for now, a no-op for
that case (and mark this in the comment); this will change soon.
Also, arch_switch for TT mode is actually useless when the PT proxy (a
complicate debugging instrumentation for TT mode) is not enabled. In fact, it
only calls update_debugregs, which checks debugregs_seq against seq (to check
if the registers are up-to-date - seq here means a "version number" of the
registers).
If the ptrace proxy is not enabled, debugregs_seq always stays 0 and
update_debugregs will be a no-op. So, optimize this out (the compiler can't
do it).
Also, I've been disappointed by the fact that it would make a lot of sense if,
after calling a successful
update_debugregs(current->thread.arch.debugregs_seq),
current->thread.arch.debugregs_seq were updated with the new debugregs_seq.
But this is not done. Is this a bug or a feature? For all purposes, it seems
a bug (otherwise the whole mechanism does not make sense, which is also a
possibility to check), which causes some performance only problems (not
correctness), since we write_debugregs when not needed.
Also, as suggested by Jeff, remove a redundant enabling of SIGVTALRM,
comprised in the subsequent local_irq_enable(). I'm just a bit dubious if
ordering matters there...
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Acked-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
#else
|
|
|
|
static inline void update_debugregs(int seq) {}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/* syscall emulation path in ptrace */
|
|
|
|
|
|
|
|
#ifndef PTRACE_SYSEMU
|
|
|
|
#define PTRACE_SYSEMU 31
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void set_using_sysemu(int value);
|
|
|
|
int get_using_sysemu(void);
|
|
|
|
extern int sysemu_supported;
|
|
|
|
|
|
|
|
#ifdef UML_CONFIG_MODE_TT
|
|
|
|
#include "sysdep/sc.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef UML_CONFIG_MODE_SKAS
|
|
|
|
|
|
|
|
#include "skas_ptregs.h"
|
|
|
|
|
|
|
|
#define REGS_IP(r) ((r)[HOST_IP])
|
|
|
|
#define REGS_SP(r) ((r)[HOST_SP])
|
|
|
|
#define REGS_EFLAGS(r) ((r)[HOST_EFLAGS])
|
|
|
|
#define REGS_EAX(r) ((r)[HOST_EAX])
|
|
|
|
#define REGS_EBX(r) ((r)[HOST_EBX])
|
|
|
|
#define REGS_ECX(r) ((r)[HOST_ECX])
|
|
|
|
#define REGS_EDX(r) ((r)[HOST_EDX])
|
|
|
|
#define REGS_ESI(r) ((r)[HOST_ESI])
|
|
|
|
#define REGS_EDI(r) ((r)[HOST_EDI])
|
|
|
|
#define REGS_EBP(r) ((r)[HOST_EBP])
|
|
|
|
#define REGS_CS(r) ((r)[HOST_CS])
|
|
|
|
#define REGS_SS(r) ((r)[HOST_SS])
|
|
|
|
#define REGS_DS(r) ((r)[HOST_DS])
|
|
|
|
#define REGS_ES(r) ((r)[HOST_ES])
|
|
|
|
#define REGS_FS(r) ((r)[HOST_FS])
|
|
|
|
#define REGS_GS(r) ((r)[HOST_GS])
|
|
|
|
|
|
|
|
#define REGS_SET_SYSCALL_RETURN(r, res) REGS_EAX(r) = (res)
|
|
|
|
|
|
|
|
#define REGS_RESTART_SYSCALL(r) IP_RESTART_SYSCALL(REGS_IP(r))
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#ifndef PTRACE_SYSEMU_SINGLESTEP
|
|
|
|
#define PTRACE_SYSEMU_SINGLESTEP 32
|
|
|
|
#endif
|
|
|
|
|
|
|
|
union uml_pt_regs {
|
|
|
|
#ifdef UML_CONFIG_MODE_TT
|
|
|
|
struct tt_regs {
|
|
|
|
long syscall;
|
|
|
|
void *sc;
|
[PATCH] uml: S390 preparation, abstract host page fault data
This patch removes the arch-specific fault/trap-infos from thread and
skas-regs.
It adds a new struct faultinfo, that is arch-specific defined in
sysdep/faultinfo.h.
The structure is inserted in thread.arch and thread.regs.skas and
thread.regs.tt
Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo
to thread.arch.faultinfo with one simple assignment.
Also, the number of macros necessary is reduced to
FAULT_ADDRESS(struct faultinfo)
extracts the faulting address from faultinfo
FAULT_WRITE(struct faultinfo)
extracts the "is_write" flag
SEGV_IS_FIXABLE(struct faultinfo)
is true for the fixable segvs, i.e. (TRAP == 14)
on i386
UPT_FAULTINFO(regs)
result is (struct faultinfo *) to the faultinfo
in regs->skas.faultinfo
GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *)
copies the relevant parts of the sigcontext to
struct faultinfo.
On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture
provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is
missing, because segv-stub will provide the info.
The benefit of the change is, that in case of a non-fixable SIGSEGV, we can
give user processes a SIGSEGV, instead of possibly looping on pagefault
handling.
Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(),
I changed segv() to call arch_fixup() only, if !is_user.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
struct faultinfo faultinfo;
|
|
|
|
} tt;
|
|
|
|
#endif
|
|
|
|
#ifdef UML_CONFIG_MODE_SKAS
|
|
|
|
struct skas_regs {
|
|
|
|
unsigned long regs[MAX_REG_NR];
|
|
|
|
unsigned long fp[HOST_FP_SIZE];
|
|
|
|
unsigned long xfp[HOST_XFP_SIZE];
|
[PATCH] uml: S390 preparation, abstract host page fault data
This patch removes the arch-specific fault/trap-infos from thread and
skas-regs.
It adds a new struct faultinfo, that is arch-specific defined in
sysdep/faultinfo.h.
The structure is inserted in thread.arch and thread.regs.skas and
thread.regs.tt
Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo
to thread.arch.faultinfo with one simple assignment.
Also, the number of macros necessary is reduced to
FAULT_ADDRESS(struct faultinfo)
extracts the faulting address from faultinfo
FAULT_WRITE(struct faultinfo)
extracts the "is_write" flag
SEGV_IS_FIXABLE(struct faultinfo)
is true for the fixable segvs, i.e. (TRAP == 14)
on i386
UPT_FAULTINFO(regs)
result is (struct faultinfo *) to the faultinfo
in regs->skas.faultinfo
GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *)
copies the relevant parts of the sigcontext to
struct faultinfo.
On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture
provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is
missing, because segv-stub will provide the info.
The benefit of the change is, that in case of a non-fixable SIGSEGV, we can
give user processes a SIGSEGV, instead of possibly looping on pagefault
handling.
Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(),
I changed segv() to call arch_fixup() only, if !is_user.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
struct faultinfo faultinfo;
|
|
|
|
long syscall;
|
|
|
|
int is_user;
|
|
|
|
} skas;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
#define EMPTY_UML_PT_REGS { }
|
|
|
|
|
|
|
|
extern int mode_tt;
|
|
|
|
|
|
|
|
#define UPT_SC(r) ((r)->tt.sc)
|
|
|
|
#define UPT_IP(r) \
|
|
|
|
__CHOOSE_MODE(SC_IP(UPT_SC(r)), REGS_IP((r)->skas.regs))
|
|
|
|
#define UPT_SP(r) \
|
|
|
|
__CHOOSE_MODE(SC_SP(UPT_SC(r)), REGS_SP((r)->skas.regs))
|
|
|
|
#define UPT_EFLAGS(r) \
|
|
|
|
__CHOOSE_MODE(SC_EFLAGS(UPT_SC(r)), REGS_EFLAGS((r)->skas.regs))
|
|
|
|
#define UPT_EAX(r) \
|
|
|
|
__CHOOSE_MODE(SC_EAX(UPT_SC(r)), REGS_EAX((r)->skas.regs))
|
|
|
|
#define UPT_EBX(r) \
|
|
|
|
__CHOOSE_MODE(SC_EBX(UPT_SC(r)), REGS_EBX((r)->skas.regs))
|
|
|
|
#define UPT_ECX(r) \
|
|
|
|
__CHOOSE_MODE(SC_ECX(UPT_SC(r)), REGS_ECX((r)->skas.regs))
|
|
|
|
#define UPT_EDX(r) \
|
|
|
|
__CHOOSE_MODE(SC_EDX(UPT_SC(r)), REGS_EDX((r)->skas.regs))
|
|
|
|
#define UPT_ESI(r) \
|
|
|
|
__CHOOSE_MODE(SC_ESI(UPT_SC(r)), REGS_ESI((r)->skas.regs))
|
|
|
|
#define UPT_EDI(r) \
|
|
|
|
__CHOOSE_MODE(SC_EDI(UPT_SC(r)), REGS_EDI((r)->skas.regs))
|
|
|
|
#define UPT_EBP(r) \
|
|
|
|
__CHOOSE_MODE(SC_EBP(UPT_SC(r)), REGS_EBP((r)->skas.regs))
|
|
|
|
#define UPT_ORIG_EAX(r) \
|
|
|
|
__CHOOSE_MODE((r)->tt.syscall, (r)->skas.syscall)
|
|
|
|
#define UPT_CS(r) \
|
|
|
|
__CHOOSE_MODE(SC_CS(UPT_SC(r)), REGS_CS((r)->skas.regs))
|
|
|
|
#define UPT_SS(r) \
|
|
|
|
__CHOOSE_MODE(SC_SS(UPT_SC(r)), REGS_SS((r)->skas.regs))
|
|
|
|
#define UPT_DS(r) \
|
|
|
|
__CHOOSE_MODE(SC_DS(UPT_SC(r)), REGS_DS((r)->skas.regs))
|
|
|
|
#define UPT_ES(r) \
|
|
|
|
__CHOOSE_MODE(SC_ES(UPT_SC(r)), REGS_ES((r)->skas.regs))
|
|
|
|
#define UPT_FS(r) \
|
|
|
|
__CHOOSE_MODE(SC_FS(UPT_SC(r)), REGS_FS((r)->skas.regs))
|
|
|
|
#define UPT_GS(r) \
|
|
|
|
__CHOOSE_MODE(SC_GS(UPT_SC(r)), REGS_GS((r)->skas.regs))
|
|
|
|
|
|
|
|
#define UPT_SYSCALL_ARG1(r) UPT_EBX(r)
|
|
|
|
#define UPT_SYSCALL_ARG2(r) UPT_ECX(r)
|
|
|
|
#define UPT_SYSCALL_ARG3(r) UPT_EDX(r)
|
|
|
|
#define UPT_SYSCALL_ARG4(r) UPT_ESI(r)
|
|
|
|
#define UPT_SYSCALL_ARG5(r) UPT_EDI(r)
|
|
|
|
#define UPT_SYSCALL_ARG6(r) UPT_EBP(r)
|
|
|
|
|
|
|
|
extern int user_context(unsigned long sp);
|
|
|
|
|
|
|
|
#define UPT_IS_USER(r) \
|
|
|
|
CHOOSE_MODE(user_context(UPT_SP(r)), (r)->skas.is_user)
|
|
|
|
|
|
|
|
struct syscall_args {
|
|
|
|
unsigned long args[6];
|
|
|
|
};
|
|
|
|
|
|
|
|
#define SYSCALL_ARGS(r) ((struct syscall_args) \
|
|
|
|
{ .args = { UPT_SYSCALL_ARG1(r), \
|
|
|
|
UPT_SYSCALL_ARG2(r), \
|
|
|
|
UPT_SYSCALL_ARG3(r), \
|
|
|
|
UPT_SYSCALL_ARG4(r), \
|
|
|
|
UPT_SYSCALL_ARG5(r), \
|
|
|
|
UPT_SYSCALL_ARG6(r) } } )
|
|
|
|
|
|
|
|
#define UPT_REG(regs, reg) \
|
|
|
|
({ unsigned long val; \
|
|
|
|
switch(reg){ \
|
|
|
|
case EIP: val = UPT_IP(regs); break; \
|
|
|
|
case UESP: val = UPT_SP(regs); break; \
|
|
|
|
case EAX: val = UPT_EAX(regs); break; \
|
|
|
|
case EBX: val = UPT_EBX(regs); break; \
|
|
|
|
case ECX: val = UPT_ECX(regs); break; \
|
|
|
|
case EDX: val = UPT_EDX(regs); break; \
|
|
|
|
case ESI: val = UPT_ESI(regs); break; \
|
|
|
|
case EDI: val = UPT_EDI(regs); break; \
|
|
|
|
case EBP: val = UPT_EBP(regs); break; \
|
|
|
|
case ORIG_EAX: val = UPT_ORIG_EAX(regs); break; \
|
|
|
|
case CS: val = UPT_CS(regs); break; \
|
|
|
|
case SS: val = UPT_SS(regs); break; \
|
|
|
|
case DS: val = UPT_DS(regs); break; \
|
|
|
|
case ES: val = UPT_ES(regs); break; \
|
|
|
|
case FS: val = UPT_FS(regs); break; \
|
|
|
|
case GS: val = UPT_GS(regs); break; \
|
|
|
|
case EFL: val = UPT_EFLAGS(regs); break; \
|
|
|
|
default : \
|
|
|
|
panic("Bad register in UPT_REG : %d\n", reg); \
|
|
|
|
val = -1; \
|
|
|
|
} \
|
|
|
|
val; \
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
#define UPT_SET(regs, reg, val) \
|
|
|
|
do { \
|
|
|
|
switch(reg){ \
|
|
|
|
case EIP: UPT_IP(regs) = val; break; \
|
|
|
|
case UESP: UPT_SP(regs) = val; break; \
|
|
|
|
case EAX: UPT_EAX(regs) = val; break; \
|
|
|
|
case EBX: UPT_EBX(regs) = val; break; \
|
|
|
|
case ECX: UPT_ECX(regs) = val; break; \
|
|
|
|
case EDX: UPT_EDX(regs) = val; break; \
|
|
|
|
case ESI: UPT_ESI(regs) = val; break; \
|
|
|
|
case EDI: UPT_EDI(regs) = val; break; \
|
|
|
|
case EBP: UPT_EBP(regs) = val; break; \
|
|
|
|
case ORIG_EAX: UPT_ORIG_EAX(regs) = val; break; \
|
|
|
|
case CS: UPT_CS(regs) = val; break; \
|
|
|
|
case SS: UPT_SS(regs) = val; break; \
|
|
|
|
case DS: UPT_DS(regs) = val; break; \
|
|
|
|
case ES: UPT_ES(regs) = val; break; \
|
|
|
|
case FS: UPT_FS(regs) = val; break; \
|
|
|
|
case GS: UPT_GS(regs) = val; break; \
|
|
|
|
case EFL: UPT_EFLAGS(regs) = val; break; \
|
|
|
|
default : \
|
|
|
|
panic("Bad register in UPT_SET : %d\n", reg); \
|
|
|
|
break; \
|
|
|
|
} \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define UPT_SET_SYSCALL_RETURN(r, res) \
|
|
|
|
CHOOSE_MODE(SC_SET_SYSCALL_RETURN(UPT_SC(r), (res)), \
|
|
|
|
REGS_SET_SYSCALL_RETURN((r)->skas.regs, (res)))
|
|
|
|
|
|
|
|
#define UPT_RESTART_SYSCALL(r) \
|
|
|
|
CHOOSE_MODE(SC_RESTART_SYSCALL(UPT_SC(r)), \
|
|
|
|
REGS_RESTART_SYSCALL((r)->skas.regs))
|
|
|
|
|
|
|
|
#define UPT_ORIG_SYSCALL(r) UPT_EAX(r)
|
|
|
|
#define UPT_SYSCALL_NR(r) UPT_ORIG_EAX(r)
|
|
|
|
#define UPT_SYSCALL_RET(r) UPT_EAX(r)
|
|
|
|
|
[PATCH] uml: S390 preparation, abstract host page fault data
This patch removes the arch-specific fault/trap-infos from thread and
skas-regs.
It adds a new struct faultinfo, that is arch-specific defined in
sysdep/faultinfo.h.
The structure is inserted in thread.arch and thread.regs.skas and
thread.regs.tt
Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo
to thread.arch.faultinfo with one simple assignment.
Also, the number of macros necessary is reduced to
FAULT_ADDRESS(struct faultinfo)
extracts the faulting address from faultinfo
FAULT_WRITE(struct faultinfo)
extracts the "is_write" flag
SEGV_IS_FIXABLE(struct faultinfo)
is true for the fixable segvs, i.e. (TRAP == 14)
on i386
UPT_FAULTINFO(regs)
result is (struct faultinfo *) to the faultinfo
in regs->skas.faultinfo
GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *)
copies the relevant parts of the sigcontext to
struct faultinfo.
On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture
provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is
missing, because segv-stub will provide the info.
The benefit of the change is, that in case of a non-fixable SIGSEGV, we can
give user processes a SIGSEGV, instead of possibly looping on pagefault
handling.
Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(),
I changed segv() to call arch_fixup() only, if !is_user.
Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
#define UPT_FAULTINFO(r) \
|
|
|
|
CHOOSE_MODE((&(r)->tt.faultinfo), (&(r)->skas.faultinfo))
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Overrides for Emacs so that we follow Linus's tabbing style.
|
|
|
|
* Emacs will notice this stuff at the end of the file and automatically
|
|
|
|
* adjust the settings for this buffer only. This must remain at the end
|
|
|
|
* of the file.
|
|
|
|
* ---------------------------------------------------------------------------
|
|
|
|
* Local variables:
|
|
|
|
* c-file-style: "linux"
|
|
|
|
* End:
|
|
|
|
*/
|