You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/net/ipv6/af_inet6.c

1317 lines
30 KiB

/*
* PF_INET6 socket protocol family
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
*
* Adapted from linux/net/ipv4/af_inet.c
*
* Fixes:
* piggy, Karl Knutson : Socket protocol table
* Hideaki YOSHIFUJI : sin6_scope_id support
* Arnaldo Melo : check proc_net_create return, cleanups
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
15 years ago
#include <linux/slab.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/icmpv6.h>
#include <linux/netfilter_ipv6.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/udp.h>
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
18 years ago
#include <net/udplite.h>
#include <net/tcp.h>
#include <net/ipip.h>
#include <net/protocol.h>
#include <net/inet_common.h>
#include <net/route.h>
#include <net/transp_v6.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#ifdef CONFIG_IPV6_TUNNEL
#include <net/ip6_tunnel.h>
#endif
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/mroute6.h>
MODULE_AUTHOR("Cast of dozens");
MODULE_DESCRIPTION("IPv6 protocol stack for Linux");
MODULE_LICENSE("GPL");
/* The inetsw6 table contains everything that inet6_create needs to
* build a new socket.
*/
static struct list_head inetsw6[SOCK_MAX];
static DEFINE_SPINLOCK(inetsw6_lock);
struct ipv6_params ipv6_defaults = {
.disable_ipv6 = 0,
.autoconf = 1,
};
static int disable_ipv6_mod = 0;
module_param_named(disable, disable_ipv6_mod, int, 0444);
MODULE_PARM_DESC(disable, "Disable IPv6 module such that it is non-functional");
module_param_named(disable_ipv6, ipv6_defaults.disable_ipv6, int, 0444);
MODULE_PARM_DESC(disable_ipv6, "Disable IPv6 on all interfaces");
module_param_named(autoconf, ipv6_defaults.autoconf, int, 0444);
MODULE_PARM_DESC(autoconf, "Enable IPv6 address autoconfiguration on all interfaces");
static __inline__ struct ipv6_pinfo *inet6_sk_generic(struct sock *sk)
{
const int offset = sk->sk_prot->obj_size - sizeof(struct ipv6_pinfo);
return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
}
static int inet6_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct inet_sock *inet;
struct ipv6_pinfo *np;
struct sock *sk;
struct inet_protosw *answer;
struct proto *answer_prot;
unsigned char answer_flags;
char answer_no_check;
int try_loading_module = 0;
int err;
if (sock->type != SOCK_RAW &&
sock->type != SOCK_DGRAM &&
!inet_ehash_secret)
build_ehash_secret();
/* Look for the requested type/protocol pair. */
lookup_protocol:
err = -ESOCKTNOSUPPORT;
rcu_read_lock();
list_for_each_entry_rcu(answer, &inetsw6[sock->type], list) {
err = 0;
/* Check the non-wild match. */
if (protocol == answer->protocol) {
if (protocol != IPPROTO_IP)
break;
} else {
/* Check for the two wild cases. */
if (IPPROTO_IP == protocol) {
protocol = answer->protocol;
break;
}
if (IPPROTO_IP == answer->protocol)
break;
}
err = -EPROTONOSUPPORT;
}
if (err) {
if (try_loading_module < 2) {
rcu_read_unlock();
/*
* Be more specific, e.g. net-pf-10-proto-132-type-1
* (net-pf-PF_INET6-proto-IPPROTO_SCTP-type-SOCK_STREAM)
*/
if (++try_loading_module == 1)
request_module("net-pf-%d-proto-%d-type-%d",
PF_INET6, protocol, sock->type);
/*
* Fall back to generic, e.g. net-pf-10-proto-132
* (net-pf-PF_INET6-proto-IPPROTO_SCTP)
*/
else
request_module("net-pf-%d-proto-%d",
PF_INET6, protocol);
goto lookup_protocol;
} else
goto out_rcu_unlock;
}
err = -EPERM;
if (sock->type == SOCK_RAW && !kern && !capable(CAP_NET_RAW))
goto out_rcu_unlock;
sock->ops = answer->ops;
answer_prot = answer->prot;
answer_no_check = answer->no_check;
answer_flags = answer->flags;
rcu_read_unlock();
WARN_ON(answer_prot->slab == NULL);
err = -ENOBUFS;
sk = sk_alloc(net, PF_INET6, GFP_KERNEL, answer_prot);
if (sk == NULL)
goto out;
sock_init_data(sock, sk);
err = 0;
sk->sk_no_check = answer_no_check;
if (INET_PROTOSW_REUSE & answer_flags)
sk->sk_reuse = 1;
inet = inet_sk(sk);
inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0;
if (SOCK_RAW == sock->type) {
inet->inet_num = protocol;
if (IPPROTO_RAW == protocol)
inet->hdrincl = 1;
}
sk->sk_destruct = inet_sock_destruct;
sk->sk_family = PF_INET6;
sk->sk_protocol = protocol;
sk->sk_backlog_rcv = answer->prot->backlog_rcv;
inet_sk(sk)->pinet6 = np = inet6_sk_generic(sk);
np->hop_limit = -1;
np->mcast_hops = IPV6_DEFAULT_MCASTHOPS;
np->mc_loop = 1;
np->pmtudisc = IPV6_PMTUDISC_WANT;
np->ipv6only = net->ipv6.sysctl.bindv6only;
/* Init the ipv4 part of the socket since we can have sockets
* using v6 API for ipv4.
*/
inet->uc_ttl = -1;
inet->mc_loop = 1;
inet->mc_ttl = 1;
inet->mc_index = 0;
inet->mc_list = NULL;
if (ipv4_config.no_pmtu_disc)
inet->pmtudisc = IP_PMTUDISC_DONT;
else
inet->pmtudisc = IP_PMTUDISC_WANT;
/*
* Increment only the relevant sk_prot->socks debug field, this changes
* the previous behaviour of incrementing both the equivalent to
* answer->prot->socks (inet6_sock_nr) and inet_sock_nr.
*
* This allows better debug granularity as we'll know exactly how many
* UDPv6, TCPv6, etc socks were allocated, not the sum of all IPv6
* transport protocol socks. -acme
*/
sk_refcnt_debug_inc(sk);
if (inet->inet_num) {
/* It assumes that any protocol which allows
* the user to assign a number at socket
* creation time automatically shares.
*/
inet->inet_sport = htons(inet->inet_num);
sk->sk_prot->hash(sk);
}
if (sk->sk_prot->init) {
err = sk->sk_prot->init(sk);
if (err) {
sk_common_release(sk);
goto out;
}
}
out:
return err;
out_rcu_unlock:
rcu_read_unlock();
goto out;
}
/* bind for INET6 API */
int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sockaddr_in6 *addr=(struct sockaddr_in6 *)uaddr;
struct sock *sk = sock->sk;
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *np = inet6_sk(sk);
struct net *net = sock_net(sk);
__be32 v4addr = 0;
unsigned short snum;
int addr_type = 0;
int err = 0;
/* If the socket has its own bind function then use it. */
if (sk->sk_prot->bind)
return sk->sk_prot->bind(sk, uaddr, addr_len);
if (addr_len < SIN6_LEN_RFC2133)
return -EINVAL;
addr_type = ipv6_addr_type(&addr->sin6_addr);
if ((addr_type & IPV6_ADDR_MULTICAST) && sock->type == SOCK_STREAM)
return -EINVAL;
snum = ntohs(addr->sin6_port);
if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
lock_sock(sk);
/* Check these errors (active socket, double bind). */
if (sk->sk_state != TCP_CLOSE || inet->inet_num) {
err = -EINVAL;
goto out;
}
/* Check if the address belongs to the host. */
if (addr_type == IPV6_ADDR_MAPPED) {
int chk_addr_ret;
/* Binding to v4-mapped address on a v6-only socket
* makes no sense
*/
if (np->ipv6only) {
err = -EINVAL;
goto out;
}
/* Reproduce AF_INET checks to make the bindings consitant */
v4addr = addr->sin6_addr.s6_addr32[3];
chk_addr_ret = inet_addr_type(net, v4addr);
if (!sysctl_ip_nonlocal_bind &&
!(inet->freebind || inet->transparent) &&
v4addr != htonl(INADDR_ANY) &&
chk_addr_ret != RTN_LOCAL &&
chk_addr_ret != RTN_MULTICAST &&
chk_addr_ret != RTN_BROADCAST) {
err = -EADDRNOTAVAIL;
goto out;
}
} else {
if (addr_type != IPV6_ADDR_ANY) {
struct net_device *dev = NULL;
rcu_read_lock();
if (addr_type & IPV6_ADDR_LINKLOCAL) {
if (addr_len >= sizeof(struct sockaddr_in6) &&
addr->sin6_scope_id) {
/* Override any existing binding, if another one
* is supplied by user.
*/
sk->sk_bound_dev_if = addr->sin6_scope_id;
}
/* Binding to link-local address requires an interface */
if (!sk->sk_bound_dev_if) {
err = -EINVAL;
goto out_unlock;
}
dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
if (!dev) {
err = -ENODEV;
goto out_unlock;
}
}
/* ipv4 addr of the socket is invalid. Only the
* unspecified and mapped address have a v4 equivalent.
*/
v4addr = LOOPBACK4_IPV6;
if (!(addr_type & IPV6_ADDR_MULTICAST)) {
if (!inet->transparent &&
!ipv6_chk_addr(net, &addr->sin6_addr,
dev, 0)) {
err = -EADDRNOTAVAIL;
goto out_unlock;
}
}
rcu_read_unlock();
}
}
inet->inet_rcv_saddr = v4addr;
inet->inet_saddr = v4addr;
ipv6_addr_copy(&np->rcv_saddr, &addr->sin6_addr);
if (!(addr_type & IPV6_ADDR_MULTICAST))
ipv6_addr_copy(&np->saddr, &addr->sin6_addr);
/* Make sure we are allowed to bind here. */
if (sk->sk_prot->get_port(sk, snum)) {
inet_reset_saddr(sk);
err = -EADDRINUSE;
goto out;
}
if (addr_type != IPV6_ADDR_ANY) {
sk->sk_userlocks |= SOCK_BINDADDR_LOCK;
if (addr_type != IPV6_ADDR_MAPPED)
np->ipv6only = 1;
}
if (snum)
sk->sk_userlocks |= SOCK_BINDPORT_LOCK;
inet->inet_sport = htons(inet->inet_num);
inet->inet_dport = 0;
inet->inet_daddr = 0;
out:
release_sock(sk);
return err;
out_unlock:
rcu_read_unlock();
goto out;
}
EXPORT_SYMBOL(inet6_bind);
int inet6_release(struct socket *sock)
{
struct sock *sk = sock->sk;
if (sk == NULL)
return -EINVAL;
/* Free mc lists */
ipv6_sock_mc_close(sk);
/* Free ac lists */
ipv6_sock_ac_close(sk);
return inet_release(sock);
}
EXPORT_SYMBOL(inet6_release);
void inet6_destroy_sock(struct sock *sk)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct sk_buff *skb;
struct ipv6_txoptions *opt;
/* Release rx options */
if ((skb = xchg(&np->pktoptions, NULL)) != NULL)
kfree_skb(skb);
if ((skb = xchg(&np->rxpmtu, NULL)) != NULL)
kfree_skb(skb);
/* Free flowlabels */
fl6_free_socklist(sk);
/* Free tx options */
if ((opt = xchg(&np->opt, NULL)) != NULL)
sock_kfree_s(sk, opt, opt->tot_len);
}
EXPORT_SYMBOL_GPL(inet6_destroy_sock);
/*
* This does both peername and sockname.
*/
int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
int *uaddr_len, int peer)
{
struct sockaddr_in6 *sin=(struct sockaddr_in6 *)uaddr;
struct sock *sk = sock->sk;
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *np = inet6_sk(sk);
sin->sin6_family = AF_INET6;
sin->sin6_flowinfo = 0;
sin->sin6_scope_id = 0;
if (peer) {
if (!inet->inet_dport)
return -ENOTCONN;
if (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) &&
peer == 1)
return -ENOTCONN;
sin->sin6_port = inet->inet_dport;
ipv6_addr_copy(&sin->sin6_addr, &np->daddr);
if (np->sndflow)
sin->sin6_flowinfo = np->flow_label;
} else {
if (ipv6_addr_any(&np->rcv_saddr))
ipv6_addr_copy(&sin->sin6_addr, &np->saddr);
else
ipv6_addr_copy(&sin->sin6_addr, &np->rcv_saddr);
sin->sin6_port = inet->inet_sport;
}
if (ipv6_addr_type(&sin->sin6_addr) & IPV6_ADDR_LINKLOCAL)
sin->sin6_scope_id = sk->sk_bound_dev_if;
*uaddr_len = sizeof(*sin);
return 0;
}
EXPORT_SYMBOL(inet6_getname);
int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{
struct sock *sk = sock->sk;
struct net *net = sock_net(sk);
switch(cmd)
{
case SIOCGSTAMP:
return sock_get_timestamp(sk, (struct timeval __user *)arg);
case SIOCGSTAMPNS:
return sock_get_timestampns(sk, (struct timespec __user *)arg);
case SIOCADDRT:
case SIOCDELRT:
return ipv6_route_ioctl(net, cmd, (void __user *)arg);
case SIOCSIFADDR:
return addrconf_add_ifaddr(net, (void __user *) arg);
case SIOCDIFADDR:
return addrconf_del_ifaddr(net, (void __user *) arg);
case SIOCSIFDSTADDR:
return addrconf_set_dstaddr(net, (void __user *) arg);
default:
if (!sk->sk_prot->ioctl)
return -ENOIOCTLCMD;
return sk->sk_prot->ioctl(sk, cmd, arg);
}
/*NOTREACHED*/
return 0;
}
EXPORT_SYMBOL(inet6_ioctl);
const struct proto_ops inet6_stream_ops = {
.family = PF_INET6,
.owner = THIS_MODULE,
.release = inet6_release,
.bind = inet6_bind,
.connect = inet_stream_connect, /* ok */
.socketpair = sock_no_socketpair, /* a do nothing */
.accept = inet_accept, /* ok */
.getname = inet6_getname,
.poll = tcp_poll, /* ok */
.ioctl = inet6_ioctl, /* must change */
.listen = inet_listen, /* ok */
.shutdown = inet_shutdown, /* ok */
.setsockopt = sock_common_setsockopt, /* ok */
.getsockopt = sock_common_getsockopt, /* ok */
.sendmsg = inet_sendmsg, /* ok */
.recvmsg = inet_recvmsg, /* ok */
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
.splice_read = tcp_splice_read,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
const struct proto_ops inet6_dgram_ops = {
.family = PF_INET6,
.owner = THIS_MODULE,
.release = inet6_release,
.bind = inet6_bind,
.connect = inet_dgram_connect, /* ok */
.socketpair = sock_no_socketpair, /* a do nothing */
.accept = sock_no_accept, /* a do nothing */
.getname = inet6_getname,
.poll = udp_poll, /* ok */
.ioctl = inet6_ioctl, /* must change */
.listen = sock_no_listen, /* ok */
.shutdown = inet_shutdown, /* ok */
.setsockopt = sock_common_setsockopt, /* ok */
.getsockopt = sock_common_getsockopt, /* ok */
.sendmsg = inet_sendmsg, /* ok */
.recvmsg = inet_recvmsg, /* ok */
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
static const struct net_proto_family inet6_family_ops = {
.family = PF_INET6,
.create = inet6_create,
.owner = THIS_MODULE,
};
int inet6_register_protosw(struct inet_protosw *p)
{
struct list_head *lh;
struct inet_protosw *answer;
struct list_head *last_perm;
int protocol = p->protocol;
int ret;
spin_lock_bh(&inetsw6_lock);
ret = -EINVAL;
if (p->type >= SOCK_MAX)
goto out_illegal;
/* If we are trying to override a permanent protocol, bail. */
answer = NULL;
ret = -EPERM;
last_perm = &inetsw6[p->type];
list_for_each(lh, &inetsw6[p->type]) {
answer = list_entry(lh, struct inet_protosw, list);
/* Check only the non-wild match. */
if (INET_PROTOSW_PERMANENT & answer->flags) {
if (protocol == answer->protocol)
break;
last_perm = lh;
}
answer = NULL;
}
if (answer)
goto out_permanent;
/* Add the new entry after the last permanent entry if any, so that
* the new entry does not override a permanent entry when matched with
* a wild-card protocol. But it is allowed to override any existing
* non-permanent entry. This means that when we remove this entry, the
* system automatically returns to the old behavior.
*/
list_add_rcu(&p->list, last_perm);
ret = 0;
out:
spin_unlock_bh(&inetsw6_lock);
return ret;
out_permanent:
printk(KERN_ERR "Attempt to override permanent protocol %d.\n",
protocol);
goto out;
out_illegal:
printk(KERN_ERR
"Ignoring attempt to register invalid socket type %d.\n",
p->type);
goto out;
}
EXPORT_SYMBOL(inet6_register_protosw);
void
inet6_unregister_protosw(struct inet_protosw *p)
{
if (INET_PROTOSW_PERMANENT & p->flags) {
printk(KERN_ERR
"Attempt to unregister permanent protocol %d.\n",
p->protocol);
} else {
spin_lock_bh(&inetsw6_lock);
list_del_rcu(&p->list);
spin_unlock_bh(&inetsw6_lock);
synchronize_net();
}
}
EXPORT_SYMBOL(inet6_unregister_protosw);
int inet6_sk_rebuild_header(struct sock *sk)
{
int err;
struct dst_entry *dst;
struct ipv6_pinfo *np = inet6_sk(sk);
dst = __sk_dst_check(sk, np->dst_cookie);
if (dst == NULL) {
struct inet_sock *inet = inet_sk(sk);
struct in6_addr *final_p, final;
struct flowi fl;
memset(&fl, 0, sizeof(fl));
fl.proto = sk->sk_protocol;
ipv6_addr_copy(&fl.fl6_dst, &np->daddr);
ipv6_addr_copy(&fl.fl6_src, &np->saddr);
fl.fl6_flowlabel = np->flow_label;
fl.oif = sk->sk_bound_dev_if;
fl.mark = sk->sk_mark;
fl.fl_ip_dport = inet->inet_dport;
fl.fl_ip_sport = inet->inet_sport;
security_sk_classify_flow(sk, &fl);
final_p = fl6_update_dst(&fl, np->opt, &final);
err = ip6_dst_lookup(sk, &dst, &fl);
if (err) {
sk->sk_route_caps = 0;
return err;
}
if (final_p)
ipv6_addr_copy(&fl.fl6_dst, final_p);
if ((err = xfrm_lookup(sock_net(sk), &dst, &fl, sk, 0)) < 0) {
sk->sk_err_soft = -err;
return err;
}
__ip6_dst_store(sk, dst, NULL, NULL);
}
return 0;
}
EXPORT_SYMBOL_GPL(inet6_sk_rebuild_header);
int ipv6_opt_accepted(struct sock *sk, struct sk_buff *skb)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct inet6_skb_parm *opt = IP6CB(skb);
if (np->rxopt.all) {
if ((opt->hop && (np->rxopt.bits.hopopts ||
np->rxopt.bits.ohopopts)) ||
((IPV6_FLOWINFO_MASK &
*(__be32 *)skb_network_header(skb)) &&
np->rxopt.bits.rxflow) ||
(opt->srcrt && (np->rxopt.bits.srcrt ||
np->rxopt.bits.osrcrt)) ||
((opt->dst1 || opt->dst0) &&
(np->rxopt.bits.dstopts || np->rxopt.bits.odstopts)))
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(ipv6_opt_accepted);
static int ipv6_gso_pull_exthdrs(struct sk_buff *skb, int proto)
{
const struct inet6_protocol *ops = NULL;
for (;;) {
struct ipv6_opt_hdr *opth;
int len;
if (proto != NEXTHDR_HOP) {
ops = rcu_dereference(inet6_protos[proto]);
if (unlikely(!ops))
break;
if (!(ops->flags & INET6_PROTO_GSO_EXTHDR))
break;
}
if (unlikely(!pskb_may_pull(skb, 8)))
break;
opth = (void *)skb->data;
len = ipv6_optlen(opth);
if (unlikely(!pskb_may_pull(skb, len)))
break;
proto = opth->nexthdr;
__skb_pull(skb, len);
}
return proto;
}
static int ipv6_gso_send_check(struct sk_buff *skb)
{
struct ipv6hdr *ipv6h;
const struct inet6_protocol *ops;
int err = -EINVAL;
if (unlikely(!pskb_may_pull(skb, sizeof(*ipv6h))))
goto out;
ipv6h = ipv6_hdr(skb);
__skb_pull(skb, sizeof(*ipv6h));
err = -EPROTONOSUPPORT;
rcu_read_lock();
ops = rcu_dereference(inet6_protos[
ipv6_gso_pull_exthdrs(skb, ipv6h->nexthdr)]);
if (likely(ops && ops->gso_send_check)) {
skb_reset_transport_header(skb);
err = ops->gso_send_check(skb);
}
rcu_read_unlock();
out:
return err;
}
static struct sk_buff *ipv6_gso_segment(struct sk_buff *skb, int features)
{
struct sk_buff *segs = ERR_PTR(-EINVAL);
struct ipv6hdr *ipv6h;
const struct inet6_protocol *ops;
int proto;
struct frag_hdr *fptr;
unsigned int unfrag_ip6hlen;
u8 *prevhdr;
int offset = 0;
if (!(features & NETIF_F_V6_CSUM))
features &= ~NETIF_F_SG;
if (unlikely(skb_shinfo(skb)->gso_type &
~(SKB_GSO_UDP |
SKB_GSO_DODGY |
SKB_GSO_TCP_ECN |
SKB_GSO_TCPV6 |
0)))
goto out;
if (unlikely(!pskb_may_pull(skb, sizeof(*ipv6h))))
goto out;
ipv6h = ipv6_hdr(skb);
__skb_pull(skb, sizeof(*ipv6h));
segs = ERR_PTR(-EPROTONOSUPPORT);
proto = ipv6_gso_pull_exthdrs(skb, ipv6h->nexthdr);
rcu_read_lock();
ops = rcu_dereference(inet6_protos[proto]);
if (likely(ops && ops->gso_segment)) {
skb_reset_transport_header(skb);
segs = ops->gso_segment(skb, features);
}
rcu_read_unlock();
if (unlikely(IS_ERR(segs)))
goto out;
for (skb = segs; skb; skb = skb->next) {
ipv6h = ipv6_hdr(skb);
ipv6h->payload_len = htons(skb->len - skb->mac_len -
sizeof(*ipv6h));
if (proto == IPPROTO_UDP) {
unfrag_ip6hlen = ip6_find_1stfragopt(skb, &prevhdr);
fptr = (struct frag_hdr *)(skb_network_header(skb) +
unfrag_ip6hlen);
fptr->frag_off = htons(offset);
if (skb->next != NULL)
fptr->frag_off |= htons(IP6_MF);
offset += (ntohs(ipv6h->payload_len) -
sizeof(struct frag_hdr));
}
}
out:
return segs;
}
struct ipv6_gro_cb {
struct napi_gro_cb napi;
int proto;
};
#define IPV6_GRO_CB(skb) ((struct ipv6_gro_cb *)(skb)->cb)
static struct sk_buff **ipv6_gro_receive(struct sk_buff **head,
struct sk_buff *skb)
{
const struct inet6_protocol *ops;
struct sk_buff **pp = NULL;
struct sk_buff *p;
struct ipv6hdr *iph;
unsigned int nlen;
unsigned int hlen;
unsigned int off;
int flush = 1;
int proto;
__wsum csum;
off = skb_gro_offset(skb);
hlen = off + sizeof(*iph);
iph = skb_gro_header_fast(skb, off);
if (skb_gro_header_hard(skb, hlen)) {
iph = skb_gro_header_slow(skb, hlen, off);
if (unlikely(!iph))
goto out;
}
skb_gro_pull(skb, sizeof(*iph));
skb_set_transport_header(skb, skb_gro_offset(skb));
flush += ntohs(iph->payload_len) != skb_gro_len(skb);
rcu_read_lock();
proto = iph->nexthdr;
ops = rcu_dereference(inet6_protos[proto]);
if (!ops || !ops->gro_receive) {
__pskb_pull(skb, skb_gro_offset(skb));
proto = ipv6_gso_pull_exthdrs(skb, proto);
skb_gro_pull(skb, -skb_transport_offset(skb));
skb_reset_transport_header(skb);
__skb_push(skb, skb_gro_offset(skb));
if (!ops || !ops->gro_receive)
goto out_unlock;
iph = ipv6_hdr(skb);
}
IPV6_GRO_CB(skb)->proto = proto;
flush--;
nlen = skb_network_header_len(skb);
for (p = *head; p; p = p->next) {
struct ipv6hdr *iph2;
if (!NAPI_GRO_CB(p)->same_flow)
continue;
iph2 = ipv6_hdr(p);
/* All fields must match except length. */
if (nlen != skb_network_header_len(p) ||
memcmp(iph, iph2, offsetof(struct ipv6hdr, payload_len)) ||
memcmp(&iph->nexthdr, &iph2->nexthdr,
nlen - offsetof(struct ipv6hdr, nexthdr))) {
NAPI_GRO_CB(p)->same_flow = 0;
continue;
}
NAPI_GRO_CB(p)->flush |= flush;
}
NAPI_GRO_CB(skb)->flush |= flush;
csum = skb->csum;
skb_postpull_rcsum(skb, iph, skb_network_header_len(skb));
pp = ops->gro_receive(head, skb);
skb->csum = csum;
out_unlock:
rcu_read_unlock();
out:
NAPI_GRO_CB(skb)->flush |= flush;
return pp;
}
static int ipv6_gro_complete(struct sk_buff *skb)
{
const struct inet6_protocol *ops;
struct ipv6hdr *iph = ipv6_hdr(skb);
int err = -ENOSYS;
iph->payload_len = htons(skb->len - skb_network_offset(skb) -
sizeof(*iph));
rcu_read_lock();
ops = rcu_dereference(inet6_protos[IPV6_GRO_CB(skb)->proto]);
if (WARN_ON(!ops || !ops->gro_complete))
goto out_unlock;
err = ops->gro_complete(skb);
out_unlock:
rcu_read_unlock();
return err;
}
static struct packet_type ipv6_packet_type __read_mostly = {
.type = cpu_to_be16(ETH_P_IPV6),
.func = ipv6_rcv,
.gso_send_check = ipv6_gso_send_check,
.gso_segment = ipv6_gso_segment,
.gro_receive = ipv6_gro_receive,
.gro_complete = ipv6_gro_complete,
};
static int __init ipv6_packet_init(void)
{
dev_add_pack(&ipv6_packet_type);
return 0;
}
static void ipv6_packet_cleanup(void)
{
dev_remove_pack(&ipv6_packet_type);
}
static int __net_init ipv6_init_mibs(struct net *net)
{
if (snmp_mib_init((void __percpu **)net->mib.udp_stats_in6,
sizeof(struct udp_mib),
__alignof__(struct udp_mib)) < 0)
return -ENOMEM;
if (snmp_mib_init((void __percpu **)net->mib.udplite_stats_in6,
sizeof(struct udp_mib),
__alignof__(struct udp_mib)) < 0)
goto err_udplite_mib;
if (snmp_mib_init((void __percpu **)net->mib.ipv6_statistics,
sizeof(struct ipstats_mib),
__alignof__(struct ipstats_mib)) < 0)
goto err_ip_mib;
if (snmp_mib_init((void __percpu **)net->mib.icmpv6_statistics,
sizeof(struct icmpv6_mib),
__alignof__(struct icmpv6_mib)) < 0)
goto err_icmp_mib;
if (snmp_mib_init((void __percpu **)net->mib.icmpv6msg_statistics,
sizeof(struct icmpv6msg_mib),
__alignof__(struct icmpv6msg_mib)) < 0)
goto err_icmpmsg_mib;
return 0;
err_icmpmsg_mib:
snmp_mib_free((void __percpu **)net->mib.icmpv6_statistics);
err_icmp_mib:
snmp_mib_free((void __percpu **)net->mib.ipv6_statistics);
err_ip_mib:
snmp_mib_free((void __percpu **)net->mib.udplite_stats_in6);
err_udplite_mib:
snmp_mib_free((void __percpu **)net->mib.udp_stats_in6);
return -ENOMEM;
}
static void ipv6_cleanup_mibs(struct net *net)
{
snmp_mib_free((void __percpu **)net->mib.udp_stats_in6);
snmp_mib_free((void __percpu **)net->mib.udplite_stats_in6);
snmp_mib_free((void __percpu **)net->mib.ipv6_statistics);
snmp_mib_free((void __percpu **)net->mib.icmpv6_statistics);
snmp_mib_free((void __percpu **)net->mib.icmpv6msg_statistics);
}
static int __net_init inet6_net_init(struct net *net)
{
int err = 0;
net->ipv6.sysctl.bindv6only = 0;
net->ipv6.sysctl.icmpv6_time = 1*HZ;
err = ipv6_init_mibs(net);
if (err)
return err;
#ifdef CONFIG_PROC_FS
err = udp6_proc_init(net);
if (err)
goto out;
err = tcp6_proc_init(net);
if (err)
goto proc_tcp6_fail;
err = ac6_proc_init(net);
if (err)
goto proc_ac6_fail;
#endif
return err;
#ifdef CONFIG_PROC_FS
proc_ac6_fail:
tcp6_proc_exit(net);
proc_tcp6_fail:
udp6_proc_exit(net);
out:
ipv6_cleanup_mibs(net);
return err;
#endif
}
static void __net_exit inet6_net_exit(struct net *net)
{
#ifdef CONFIG_PROC_FS
udp6_proc_exit(net);
tcp6_proc_exit(net);
ac6_proc_exit(net);
#endif
ipv6_cleanup_mibs(net);
}
static struct pernet_operations inet6_net_ops = {
.init = inet6_net_init,
.exit = inet6_net_exit,
};
static int __init inet6_init(void)
{
struct sk_buff *dummy_skb;
struct list_head *r;
int err = 0;
BUILD_BUG_ON(sizeof(struct inet6_skb_parm) > sizeof(dummy_skb->cb));
/* Register the socket-side information for inet6_create. */
for(r = &inetsw6[0]; r < &inetsw6[SOCK_MAX]; ++r)
INIT_LIST_HEAD(r);
if (disable_ipv6_mod) {
printk(KERN_INFO
"IPv6: Loaded, but administratively disabled, "
"reboot required to enable\n");
goto out;
}
err = proto_register(&tcpv6_prot, 1);
if (err)
goto out;
err = proto_register(&udpv6_prot, 1);
if (err)
goto out_unregister_tcp_proto;
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
18 years ago
err = proto_register(&udplitev6_prot, 1);
if (err)
goto out_unregister_udp_proto;
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
18 years ago
err = proto_register(&rawv6_prot, 1);
if (err)
goto out_unregister_udplite_proto;
/* We MUST register RAW sockets before we create the ICMP6,
* IGMP6, or NDISC control sockets.
*/
err = rawv6_init();
if (err)
goto out_unregister_raw_proto;
/* Register the family here so that the init calls below will
* be able to create sockets. (?? is this dangerous ??)
*/
err = sock_register(&inet6_family_ops);
if (err)
goto out_sock_register_fail;
#ifdef CONFIG_SYSCTL
err = ipv6_static_sysctl_register();
if (err)
goto static_sysctl_fail;
#endif
/*
* ipngwg API draft makes clear that the correct semantics
* for TCP and UDP is to consider one TCP and UDP instance
* in a host availiable by both INET and INET6 APIs and
* able to communicate via both network protocols.
*/
err = register_pernet_subsys(&inet6_net_ops);
if (err)
goto register_pernet_fail;
err = icmpv6_init();
if (err)
goto icmp_fail;
err = ip6_mr_init();
if (err)
goto ipmr_fail;
err = ndisc_init();
if (err)
goto ndisc_fail;
err = igmp6_init();
if (err)
goto igmp_fail;
err = ipv6_netfilter_init();
if (err)
goto netfilter_fail;
/* Create /proc/foo6 entries. */
#ifdef CONFIG_PROC_FS
err = -ENOMEM;
if (raw6_proc_init())
goto proc_raw6_fail;
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
18 years ago
if (udplite6_proc_init())
goto proc_udplite6_fail;
if (ipv6_misc_proc_init())
goto proc_misc6_fail;
if (if6_proc_init())
goto proc_if6_fail;
#endif
err = ip6_route_init();
if (err)
goto ip6_route_fail;
err = ip6_flowlabel_init();
if (err)
goto ip6_flowlabel_fail;
err = addrconf_init();
if (err)
goto addrconf_fail;
/* Init v6 extension headers. */
err = ipv6_exthdrs_init();
if (err)
goto ipv6_exthdrs_fail;
err = ipv6_frag_init();
if (err)
goto ipv6_frag_fail;
/* Init v6 transport protocols. */
err = udpv6_init();
if (err)
goto udpv6_fail;
err = udplitev6_init();
if (err)
goto udplitev6_fail;
err = tcpv6_init();
if (err)
goto tcpv6_fail;
err = ipv6_packet_init();
if (err)
goto ipv6_packet_fail;
#ifdef CONFIG_SYSCTL
err = ipv6_sysctl_register();
if (err)
goto sysctl_fail;
#endif
out:
return err;
#ifdef CONFIG_SYSCTL
sysctl_fail:
ipv6_packet_cleanup();
#endif
ipv6_packet_fail:
tcpv6_exit();
tcpv6_fail:
udplitev6_exit();
udplitev6_fail:
udpv6_exit();
udpv6_fail:
ipv6_frag_exit();
ipv6_frag_fail:
ipv6_exthdrs_exit();
ipv6_exthdrs_fail:
addrconf_cleanup();
addrconf_fail:
ip6_flowlabel_cleanup();
ip6_flowlabel_fail:
ip6_route_cleanup();
ip6_route_fail:
#ifdef CONFIG_PROC_FS
if6_proc_exit();
proc_if6_fail:
ipv6_misc_proc_exit();
proc_misc6_fail:
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
18 years ago
udplite6_proc_exit();
proc_udplite6_fail:
raw6_proc_exit();
proc_raw6_fail:
#endif
ipv6_netfilter_fini();
netfilter_fail:
igmp6_cleanup();
igmp_fail:
ndisc_cleanup();
ndisc_fail:
ip6_mr_cleanup();
ipmr_fail:
icmpv6_cleanup();
icmp_fail:
unregister_pernet_subsys(&inet6_net_ops);
register_pernet_fail:
#ifdef CONFIG_SYSCTL
ipv6_static_sysctl_unregister();
static_sysctl_fail:
#endif
sock_unregister(PF_INET6);
rtnl_unregister_all(PF_INET6);
out_sock_register_fail:
rawv6_exit();
out_unregister_raw_proto:
proto_unregister(&rawv6_prot);
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
18 years ago
out_unregister_udplite_proto:
proto_unregister(&udplitev6_prot);
out_unregister_udp_proto:
proto_unregister(&udpv6_prot);
out_unregister_tcp_proto:
proto_unregister(&tcpv6_prot);
goto out;
}
module_init(inet6_init);
static void __exit inet6_exit(void)
{
if (disable_ipv6_mod)
return;
/* First of all disallow new sockets creation. */
sock_unregister(PF_INET6);
/* Disallow any further netlink messages */
rtnl_unregister_all(PF_INET6);
#ifdef CONFIG_SYSCTL
ipv6_sysctl_unregister();
#endif
udpv6_exit();
udplitev6_exit();
tcpv6_exit();
/* Cleanup code parts. */
ipv6_packet_cleanup();
ipv6_frag_exit();
ipv6_exthdrs_exit();
addrconf_cleanup();
ip6_flowlabel_cleanup();
ip6_route_cleanup();
#ifdef CONFIG_PROC_FS
/* Cleanup code parts. */
if6_proc_exit();
ipv6_misc_proc_exit();
udplite6_proc_exit();
raw6_proc_exit();
#endif
ipv6_netfilter_fini();
igmp6_cleanup();
ndisc_cleanup();
ip6_mr_cleanup();
icmpv6_cleanup();
rawv6_exit();
unregister_pernet_subsys(&inet6_net_ops);
#ifdef CONFIG_SYSCTL
ipv6_static_sysctl_unregister();
#endif
proto_unregister(&rawv6_prot);
proto_unregister(&udplitev6_prot);
proto_unregister(&udpv6_prot);
proto_unregister(&tcpv6_prot);
rcu_barrier(); /* Wait for completion of call_rcu()'s */
}
module_exit(inet6_exit);
MODULE_ALIAS_NETPROTO(PF_INET6);