|
|
|
/*
|
|
|
|
* DMA Pool allocator
|
|
|
|
*
|
|
|
|
* Copyright 2001 David Brownell
|
|
|
|
* Copyright 2007 Intel Corporation
|
|
|
|
* Author: Matthew Wilcox <willy@linux.intel.com>
|
|
|
|
*
|
|
|
|
* This software may be redistributed and/or modified under the terms of
|
|
|
|
* the GNU General Public License ("GPL") version 2 as published by the
|
|
|
|
* Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This allocator returns small blocks of a given size which are DMA-able by
|
|
|
|
* the given device. It uses the dma_alloc_coherent page allocator to get
|
|
|
|
* new pages, then splits them up into blocks of the required size.
|
|
|
|
* Many older drivers still have their own code to do this.
|
|
|
|
*
|
|
|
|
* The current design of this allocator is fairly simple. The pool is
|
|
|
|
* represented by the 'struct dma_pool' which keeps a doubly-linked list of
|
|
|
|
* allocated pages. Each page in the page_list is split into blocks of at
|
|
|
|
* least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
|
|
|
|
* list of free blocks within the page. Used blocks aren't tracked, but we
|
|
|
|
* keep a count of how many are currently allocated from each page.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/dmapool.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
#include <linux/poison.h>
|
Detach sched.h from mm.h
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/wait.h>
|
|
|
|
|
|
|
|
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
|
|
|
|
#define DMAPOOL_DEBUG 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct dma_pool { /* the pool */
|
|
|
|
struct list_head page_list;
|
|
|
|
spinlock_t lock;
|
|
|
|
size_t size;
|
|
|
|
struct device *dev;
|
|
|
|
size_t allocation;
|
|
|
|
size_t boundary;
|
|
|
|
char name[32];
|
|
|
|
wait_queue_head_t waitq;
|
|
|
|
struct list_head pools;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct dma_page { /* cacheable header for 'allocation' bytes */
|
|
|
|
struct list_head page_list;
|
|
|
|
void *vaddr;
|
|
|
|
dma_addr_t dma;
|
|
|
|
unsigned int in_use;
|
|
|
|
unsigned int offset;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
|
|
|
|
|
|
|
|
static DEFINE_MUTEX(pools_lock);
|
|
|
|
|
|
|
|
static ssize_t
|
|
|
|
show_pools(struct device *dev, struct device_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
unsigned temp;
|
|
|
|
unsigned size;
|
|
|
|
char *next;
|
|
|
|
struct dma_page *page;
|
|
|
|
struct dma_pool *pool;
|
|
|
|
|
|
|
|
next = buf;
|
|
|
|
size = PAGE_SIZE;
|
|
|
|
|
|
|
|
temp = scnprintf(next, size, "poolinfo - 0.1\n");
|
|
|
|
size -= temp;
|
|
|
|
next += temp;
|
|
|
|
|
|
|
|
mutex_lock(&pools_lock);
|
|
|
|
list_for_each_entry(pool, &dev->dma_pools, pools) {
|
|
|
|
unsigned pages = 0;
|
|
|
|
unsigned blocks = 0;
|
|
|
|
|
|
|
|
list_for_each_entry(page, &pool->page_list, page_list) {
|
|
|
|
pages++;
|
|
|
|
blocks += page->in_use;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* per-pool info, no real statistics yet */
|
|
|
|
temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
|
|
|
|
pool->name, blocks,
|
|
|
|
pages * (pool->allocation / pool->size),
|
|
|
|
pool->size, pages);
|
|
|
|
size -= temp;
|
|
|
|
next += temp;
|
|
|
|
}
|
|
|
|
mutex_unlock(&pools_lock);
|
|
|
|
|
|
|
|
return PAGE_SIZE - size;
|
|
|
|
}
|
|
|
|
|
|
|
|
static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* dma_pool_create - Creates a pool of consistent memory blocks, for dma.
|
|
|
|
* @name: name of pool, for diagnostics
|
|
|
|
* @dev: device that will be doing the DMA
|
|
|
|
* @size: size of the blocks in this pool.
|
|
|
|
* @align: alignment requirement for blocks; must be a power of two
|
|
|
|
* @boundary: returned blocks won't cross this power of two boundary
|
|
|
|
* Context: !in_interrupt()
|
|
|
|
*
|
|
|
|
* Returns a dma allocation pool with the requested characteristics, or
|
|
|
|
* null if one can't be created. Given one of these pools, dma_pool_alloc()
|
|
|
|
* may be used to allocate memory. Such memory will all have "consistent"
|
|
|
|
* DMA mappings, accessible by the device and its driver without using
|
|
|
|
* cache flushing primitives. The actual size of blocks allocated may be
|
|
|
|
* larger than requested because of alignment.
|
|
|
|
*
|
|
|
|
* If @boundary is nonzero, objects returned from dma_pool_alloc() won't
|
|
|
|
* cross that size boundary. This is useful for devices which have
|
|
|
|
* addressing restrictions on individual DMA transfers, such as not crossing
|
|
|
|
* boundaries of 4KBytes.
|
|
|
|
*/
|
|
|
|
struct dma_pool *dma_pool_create(const char *name, struct device *dev,
|
|
|
|
size_t size, size_t align, size_t boundary)
|
|
|
|
{
|
|
|
|
struct dma_pool *retval;
|
|
|
|
size_t allocation;
|
|
|
|
|
|
|
|
if (align == 0) {
|
|
|
|
align = 1;
|
|
|
|
} else if (align & (align - 1)) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size == 0) {
|
|
|
|
return NULL;
|
|
|
|
} else if (size < 4) {
|
|
|
|
size = 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((size % align) != 0)
|
|
|
|
size = ALIGN(size, align);
|
|
|
|
|
|
|
|
allocation = max_t(size_t, size, PAGE_SIZE);
|
|
|
|
|
|
|
|
if (!boundary) {
|
|
|
|
boundary = allocation;
|
|
|
|
} else if ((boundary < size) || (boundary & (boundary - 1))) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
|
|
|
|
if (!retval)
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
strlcpy(retval->name, name, sizeof(retval->name));
|
|
|
|
|
|
|
|
retval->dev = dev;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&retval->page_list);
|
|
|
|
spin_lock_init(&retval->lock);
|
|
|
|
retval->size = size;
|
|
|
|
retval->boundary = boundary;
|
|
|
|
retval->allocation = allocation;
|
|
|
|
init_waitqueue_head(&retval->waitq);
|
|
|
|
|
|
|
|
if (dev) {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
mutex_lock(&pools_lock);
|
|
|
|
if (list_empty(&dev->dma_pools))
|
|
|
|
ret = device_create_file(dev, &dev_attr_pools);
|
|
|
|
else
|
|
|
|
ret = 0;
|
|
|
|
/* note: not currently insisting "name" be unique */
|
|
|
|
if (!ret)
|
|
|
|
list_add(&retval->pools, &dev->dma_pools);
|
|
|
|
else {
|
|
|
|
kfree(retval);
|
|
|
|
retval = NULL;
|
|
|
|
}
|
|
|
|
mutex_unlock(&pools_lock);
|
|
|
|
} else
|
|
|
|
INIT_LIST_HEAD(&retval->pools);
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(dma_pool_create);
|
|
|
|
|
|
|
|
static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
|
|
|
|
{
|
|
|
|
unsigned int offset = 0;
|
|
|
|
unsigned int next_boundary = pool->boundary;
|
|
|
|
|
|
|
|
do {
|
|
|
|
unsigned int next = offset + pool->size;
|
|
|
|
if (unlikely((next + pool->size) >= next_boundary)) {
|
|
|
|
next = next_boundary;
|
|
|
|
next_boundary += pool->boundary;
|
|
|
|
}
|
|
|
|
*(int *)(page->vaddr + offset) = next;
|
|
|
|
offset = next;
|
|
|
|
} while (offset < pool->allocation);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
|
|
|
|
{
|
|
|
|
struct dma_page *page;
|
|
|
|
|
|
|
|
page = kmalloc(sizeof(*page), mem_flags);
|
|
|
|
if (!page)
|
|
|
|
return NULL;
|
|
|
|
page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
|
|
|
|
&page->dma, mem_flags);
|
|
|
|
if (page->vaddr) {
|
|
|
|
#ifdef DMAPOOL_DEBUG
|
|
|
|
memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
|
|
|
|
#endif
|
|
|
|
pool_initialise_page(pool, page);
|
|
|
|
list_add(&page->page_list, &pool->page_list);
|
|
|
|
page->in_use = 0;
|
|
|
|
page->offset = 0;
|
|
|
|
} else {
|
|
|
|
kfree(page);
|
|
|
|
page = NULL;
|
|
|
|
}
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int is_page_busy(struct dma_page *page)
|
|
|
|
{
|
|
|
|
return page->in_use != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
|
|
|
|
{
|
|
|
|
dma_addr_t dma = page->dma;
|
|
|
|
|
|
|
|
#ifdef DMAPOOL_DEBUG
|
|
|
|
memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
|
|
|
|
#endif
|
|
|
|
dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
|
|
|
|
list_del(&page->page_list);
|
|
|
|
kfree(page);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* dma_pool_destroy - destroys a pool of dma memory blocks.
|
|
|
|
* @pool: dma pool that will be destroyed
|
|
|
|
* Context: !in_interrupt()
|
|
|
|
*
|
|
|
|
* Caller guarantees that no more memory from the pool is in use,
|
|
|
|
* and that nothing will try to use the pool after this call.
|
|
|
|
*/
|
|
|
|
void dma_pool_destroy(struct dma_pool *pool)
|
|
|
|
{
|
|
|
|
mutex_lock(&pools_lock);
|
|
|
|
list_del(&pool->pools);
|
|
|
|
if (pool->dev && list_empty(&pool->dev->dma_pools))
|
|
|
|
device_remove_file(pool->dev, &dev_attr_pools);
|
|
|
|
mutex_unlock(&pools_lock);
|
|
|
|
|
|
|
|
while (!list_empty(&pool->page_list)) {
|
|
|
|
struct dma_page *page;
|
|
|
|
page = list_entry(pool->page_list.next,
|
|
|
|
struct dma_page, page_list);
|
|
|
|
if (is_page_busy(page)) {
|
|
|
|
if (pool->dev)
|
|
|
|
dev_err(pool->dev,
|
|
|
|
"dma_pool_destroy %s, %p busy\n",
|
|
|
|
pool->name, page->vaddr);
|
|
|
|
else
|
|
|
|
printk(KERN_ERR
|
|
|
|
"dma_pool_destroy %s, %p busy\n",
|
|
|
|
pool->name, page->vaddr);
|
|
|
|
/* leak the still-in-use consistent memory */
|
|
|
|
list_del(&page->page_list);
|
|
|
|
kfree(page);
|
|
|
|
} else
|
|
|
|
pool_free_page(pool, page);
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(pool);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(dma_pool_destroy);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* dma_pool_alloc - get a block of consistent memory
|
|
|
|
* @pool: dma pool that will produce the block
|
|
|
|
* @mem_flags: GFP_* bitmask
|
|
|
|
* @handle: pointer to dma address of block
|
|
|
|
*
|
|
|
|
* This returns the kernel virtual address of a currently unused block,
|
|
|
|
* and reports its dma address through the handle.
|
|
|
|
* If such a memory block can't be allocated, %NULL is returned.
|
|
|
|
*/
|
|
|
|
void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
|
|
|
|
dma_addr_t *handle)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
struct dma_page *page;
|
|
|
|
size_t offset;
|
|
|
|
void *retval;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
|
|
restart:
|
|
|
|
list_for_each_entry(page, &pool->page_list, page_list) {
|
|
|
|
if (page->offset < pool->allocation)
|
|
|
|
goto ready;
|
|
|
|
}
|
|
|
|
page = pool_alloc_page(pool, GFP_ATOMIC);
|
|
|
|
if (!page) {
|
|
|
|
if (mem_flags & __GFP_WAIT) {
|
|
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
|
|
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
__add_wait_queue(&pool->waitq, &wait);
|
|
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
|
|
|
|
schedule_timeout(POOL_TIMEOUT_JIFFIES);
|
|
|
|
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
|
|
__remove_wait_queue(&pool->waitq, &wait);
|
|
|
|
goto restart;
|
|
|
|
}
|
|
|
|
retval = NULL;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
ready:
|
|
|
|
page->in_use++;
|
|
|
|
offset = page->offset;
|
|
|
|
page->offset = *(int *)(page->vaddr + offset);
|
|
|
|
retval = offset + page->vaddr;
|
|
|
|
*handle = offset + page->dma;
|
|
|
|
#ifdef DMAPOOL_DEBUG
|
|
|
|
memset(retval, POOL_POISON_ALLOCATED, pool->size);
|
|
|
|
#endif
|
|
|
|
done:
|
|
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(dma_pool_alloc);
|
|
|
|
|
|
|
|
static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
struct dma_page *page;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
|
|
list_for_each_entry(page, &pool->page_list, page_list) {
|
|
|
|
if (dma < page->dma)
|
|
|
|
continue;
|
|
|
|
if (dma < (page->dma + pool->allocation))
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
page = NULL;
|
|
|
|
done:
|
|
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* dma_pool_free - put block back into dma pool
|
|
|
|
* @pool: the dma pool holding the block
|
|
|
|
* @vaddr: virtual address of block
|
|
|
|
* @dma: dma address of block
|
|
|
|
*
|
|
|
|
* Caller promises neither device nor driver will again touch this block
|
|
|
|
* unless it is first re-allocated.
|
|
|
|
*/
|
|
|
|
void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
|
|
|
|
{
|
|
|
|
struct dma_page *page;
|
|
|
|
unsigned long flags;
|
|
|
|
unsigned int offset;
|
|
|
|
|
|
|
|
page = pool_find_page(pool, dma);
|
|
|
|
if (!page) {
|
|
|
|
if (pool->dev)
|
|
|
|
dev_err(pool->dev,
|
|
|
|
"dma_pool_free %s, %p/%lx (bad dma)\n",
|
|
|
|
pool->name, vaddr, (unsigned long)dma);
|
|
|
|
else
|
|
|
|
printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
|
|
|
|
pool->name, vaddr, (unsigned long)dma);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
offset = vaddr - page->vaddr;
|
|
|
|
#ifdef DMAPOOL_DEBUG
|
|
|
|
if ((dma - page->dma) != offset) {
|
|
|
|
if (pool->dev)
|
|
|
|
dev_err(pool->dev,
|
|
|
|
"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
|
|
|
|
pool->name, vaddr, (unsigned long long)dma);
|
|
|
|
else
|
|
|
|
printk(KERN_ERR
|
|
|
|
"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
|
|
|
|
pool->name, vaddr, (unsigned long long)dma);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
unsigned int chain = page->offset;
|
|
|
|
while (chain < pool->allocation) {
|
|
|
|
if (chain != offset) {
|
|
|
|
chain = *(int *)(page->vaddr + chain);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (pool->dev)
|
|
|
|
dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
|
|
|
|
"already free\n", pool->name,
|
|
|
|
(unsigned long long)dma);
|
|
|
|
else
|
|
|
|
printk(KERN_ERR "dma_pool_free %s, dma %Lx "
|
|
|
|
"already free\n", pool->name,
|
|
|
|
(unsigned long long)dma);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
memset(vaddr, POOL_POISON_FREED, pool->size);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
|
|
page->in_use--;
|
|
|
|
*(int *)vaddr = page->offset;
|
|
|
|
page->offset = offset;
|
|
|
|
if (waitqueue_active(&pool->waitq))
|
|
|
|
wake_up_locked(&pool->waitq);
|
|
|
|
/*
|
|
|
|
* Resist a temptation to do
|
|
|
|
* if (!is_page_busy(page)) pool_free_page(pool, page);
|
|
|
|
* Better have a few empty pages hang around.
|
|
|
|
*/
|
|
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(dma_pool_free);
|
|
|
|
|
devres: device resource management
Implement device resource management, in short, devres. A device
driver can allocate arbirary size of devres data which is associated
with a release function. On driver detach, release function is
invoked on the devres data, then, devres data is freed.
devreses are typed by associated release functions. Some devreses are
better represented by single instance of the type while others need
multiple instances sharing the same release function. Both usages are
supported.
devreses can be grouped using devres group such that a device driver
can easily release acquired resources halfway through initialization
or selectively release resources (e.g. resources for port 1 out of 4
ports).
This patch adds devres core including documentation and the following
managed interfaces.
* alloc/free : devm_kzalloc(), devm_kzfree()
* IO region : devm_request_region(), devm_release_region()
* IRQ : devm_request_irq(), devm_free_irq()
* DMA : dmam_alloc_coherent(), dmam_free_coherent(),
dmam_declare_coherent_memory(), dmam_pool_create(),
dmam_pool_destroy()
* PCI : pcim_enable_device(), pcim_pin_device(), pci_is_managed()
* iomap : devm_ioport_map(), devm_ioport_unmap(), devm_ioremap(),
devm_ioremap_nocache(), devm_iounmap(), pcim_iomap_table(),
pcim_iomap(), pcim_iounmap()
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
/*
|
|
|
|
* Managed DMA pool
|
|
|
|
*/
|
|
|
|
static void dmam_pool_release(struct device *dev, void *res)
|
|
|
|
{
|
|
|
|
struct dma_pool *pool = *(struct dma_pool **)res;
|
|
|
|
|
|
|
|
dma_pool_destroy(pool);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dmam_pool_match(struct device *dev, void *res, void *match_data)
|
|
|
|
{
|
|
|
|
return *(struct dma_pool **)res == match_data;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* dmam_pool_create - Managed dma_pool_create()
|
|
|
|
* @name: name of pool, for diagnostics
|
|
|
|
* @dev: device that will be doing the DMA
|
|
|
|
* @size: size of the blocks in this pool.
|
|
|
|
* @align: alignment requirement for blocks; must be a power of two
|
|
|
|
* @allocation: returned blocks won't cross this boundary (or zero)
|
|
|
|
*
|
|
|
|
* Managed dma_pool_create(). DMA pool created with this function is
|
|
|
|
* automatically destroyed on driver detach.
|
|
|
|
*/
|
|
|
|
struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
|
|
|
|
size_t size, size_t align, size_t allocation)
|
|
|
|
{
|
|
|
|
struct dma_pool **ptr, *pool;
|
|
|
|
|
|
|
|
ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
|
|
|
|
if (!ptr)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
|
|
|
|
if (pool)
|
|
|
|
devres_add(dev, ptr);
|
|
|
|
else
|
|
|
|
devres_free(ptr);
|
|
|
|
|
|
|
|
return pool;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(dmam_pool_create);
|
devres: device resource management
Implement device resource management, in short, devres. A device
driver can allocate arbirary size of devres data which is associated
with a release function. On driver detach, release function is
invoked on the devres data, then, devres data is freed.
devreses are typed by associated release functions. Some devreses are
better represented by single instance of the type while others need
multiple instances sharing the same release function. Both usages are
supported.
devreses can be grouped using devres group such that a device driver
can easily release acquired resources halfway through initialization
or selectively release resources (e.g. resources for port 1 out of 4
ports).
This patch adds devres core including documentation and the following
managed interfaces.
* alloc/free : devm_kzalloc(), devm_kzfree()
* IO region : devm_request_region(), devm_release_region()
* IRQ : devm_request_irq(), devm_free_irq()
* DMA : dmam_alloc_coherent(), dmam_free_coherent(),
dmam_declare_coherent_memory(), dmam_pool_create(),
dmam_pool_destroy()
* PCI : pcim_enable_device(), pcim_pin_device(), pci_is_managed()
* iomap : devm_ioport_map(), devm_ioport_unmap(), devm_ioremap(),
devm_ioremap_nocache(), devm_iounmap(), pcim_iomap_table(),
pcim_iomap(), pcim_iounmap()
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
|
|
|
|
/**
|
|
|
|
* dmam_pool_destroy - Managed dma_pool_destroy()
|
|
|
|
* @pool: dma pool that will be destroyed
|
|
|
|
*
|
|
|
|
* Managed dma_pool_destroy().
|
|
|
|
*/
|
|
|
|
void dmam_pool_destroy(struct dma_pool *pool)
|
|
|
|
{
|
|
|
|
struct device *dev = pool->dev;
|
|
|
|
|
|
|
|
dma_pool_destroy(pool);
|
|
|
|
WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(dmam_pool_destroy);
|