|
|
|
/*
|
|
|
|
* net/sched/sch_red.c Random Early Detection queue.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
|
|
*
|
|
|
|
* Changes:
|
|
|
|
* J Hadi Salim <hadi@nortel.com> 980914: computation fixes
|
|
|
|
* Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly.
|
|
|
|
* J Hadi Salim <hadi@nortelnetworks.com> 980816: ECN support
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/config.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/socket.h>
|
|
|
|
#include <linux/sockios.h>
|
|
|
|
#include <linux/in.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/if_ether.h>
|
|
|
|
#include <linux/inet.h>
|
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/etherdevice.h>
|
|
|
|
#include <linux/notifier.h>
|
|
|
|
#include <net/ip.h>
|
|
|
|
#include <net/route.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <net/sock.h>
|
|
|
|
#include <net/pkt_sched.h>
|
|
|
|
#include <net/inet_ecn.h>
|
|
|
|
#include <net/dsfield.h>
|
|
|
|
|
|
|
|
|
|
|
|
/* Random Early Detection (RED) algorithm.
|
|
|
|
=======================================
|
|
|
|
|
|
|
|
Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
|
|
|
|
for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
|
|
|
|
|
|
|
|
This file codes a "divisionless" version of RED algorithm
|
|
|
|
as written down in Fig.17 of the paper.
|
|
|
|
|
|
|
|
Short description.
|
|
|
|
------------------
|
|
|
|
|
|
|
|
When a new packet arrives we calculate the average queue length:
|
|
|
|
|
|
|
|
avg = (1-W)*avg + W*current_queue_len,
|
|
|
|
|
|
|
|
W is the filter time constant (chosen as 2^(-Wlog)), it controls
|
|
|
|
the inertia of the algorithm. To allow larger bursts, W should be
|
|
|
|
decreased.
|
|
|
|
|
|
|
|
if (avg > th_max) -> packet marked (dropped).
|
|
|
|
if (avg < th_min) -> packet passes.
|
|
|
|
if (th_min < avg < th_max) we calculate probability:
|
|
|
|
|
|
|
|
Pb = max_P * (avg - th_min)/(th_max-th_min)
|
|
|
|
|
|
|
|
and mark (drop) packet with this probability.
|
|
|
|
Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
|
|
|
|
max_P should be small (not 1), usually 0.01..0.02 is good value.
|
|
|
|
|
|
|
|
max_P is chosen as a number, so that max_P/(th_max-th_min)
|
|
|
|
is a negative power of two in order arithmetics to contain
|
|
|
|
only shifts.
|
|
|
|
|
|
|
|
|
|
|
|
Parameters, settable by user:
|
|
|
|
-----------------------------
|
|
|
|
|
|
|
|
limit - bytes (must be > qth_max + burst)
|
|
|
|
|
|
|
|
Hard limit on queue length, should be chosen >qth_max
|
|
|
|
to allow packet bursts. This parameter does not
|
|
|
|
affect the algorithms behaviour and can be chosen
|
|
|
|
arbitrarily high (well, less than ram size)
|
|
|
|
Really, this limit will never be reached
|
|
|
|
if RED works correctly.
|
|
|
|
|
|
|
|
qth_min - bytes (should be < qth_max/2)
|
|
|
|
qth_max - bytes (should be at least 2*qth_min and less limit)
|
|
|
|
Wlog - bits (<32) log(1/W).
|
|
|
|
Plog - bits (<32)
|
|
|
|
|
|
|
|
Plog is related to max_P by formula:
|
|
|
|
|
|
|
|
max_P = (qth_max-qth_min)/2^Plog;
|
|
|
|
|
|
|
|
F.e. if qth_max=128K and qth_min=32K, then Plog=22
|
|
|
|
corresponds to max_P=0.02
|
|
|
|
|
|
|
|
Scell_log
|
|
|
|
Stab
|
|
|
|
|
|
|
|
Lookup table for log((1-W)^(t/t_ave).
|
|
|
|
|
|
|
|
|
|
|
|
NOTES:
|
|
|
|
|
|
|
|
Upper bound on W.
|
|
|
|
-----------------
|
|
|
|
|
|
|
|
If you want to allow bursts of L packets of size S,
|
|
|
|
you should choose W:
|
|
|
|
|
|
|
|
L + 1 - th_min/S < (1-(1-W)^L)/W
|
|
|
|
|
|
|
|
th_min/S = 32 th_min/S = 4
|
|
|
|
|
|
|
|
log(W) L
|
|
|
|
-1 33
|
|
|
|
-2 35
|
|
|
|
-3 39
|
|
|
|
-4 46
|
|
|
|
-5 57
|
|
|
|
-6 75
|
|
|
|
-7 101
|
|
|
|
-8 135
|
|
|
|
-9 190
|
|
|
|
etc.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct red_sched_data
|
|
|
|
{
|
|
|
|
/* Parameters */
|
|
|
|
u32 limit; /* HARD maximal queue length */
|
|
|
|
u32 qth_min; /* Min average length threshold: A scaled */
|
|
|
|
u32 qth_max; /* Max average length threshold: A scaled */
|
|
|
|
u32 Rmask;
|
|
|
|
u32 Scell_max;
|
|
|
|
unsigned char flags;
|
|
|
|
char Wlog; /* log(W) */
|
|
|
|
char Plog; /* random number bits */
|
|
|
|
char Scell_log;
|
|
|
|
u8 Stab[256];
|
|
|
|
|
|
|
|
/* Variables */
|
|
|
|
unsigned long qave; /* Average queue length: A scaled */
|
|
|
|
int qcount; /* Packets since last random number generation */
|
|
|
|
u32 qR; /* Cached random number */
|
|
|
|
|
|
|
|
psched_time_t qidlestart; /* Start of idle period */
|
|
|
|
struct tc_red_xstats st;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int red_ecn_mark(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
if (skb->nh.raw + 20 > skb->tail)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
switch (skb->protocol) {
|
|
|
|
case __constant_htons(ETH_P_IP):
|
|
|
|
if (INET_ECN_is_not_ect(skb->nh.iph->tos))
|
|
|
|
return 0;
|
|
|
|
IP_ECN_set_ce(skb->nh.iph);
|
|
|
|
return 1;
|
|
|
|
case __constant_htons(ETH_P_IPV6):
|
|
|
|
if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h)))
|
|
|
|
return 0;
|
|
|
|
IP6_ECN_set_ce(skb->nh.ipv6h);
|
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
red_enqueue(struct sk_buff *skb, struct Qdisc* sch)
|
|
|
|
{
|
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
|
|
psched_time_t now;
|
|
|
|
|
|
|
|
if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) {
|
|
|
|
long us_idle;
|
|
|
|
int shift;
|
|
|
|
|
|
|
|
PSCHED_GET_TIME(now);
|
|
|
|
us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max);
|
|
|
|
PSCHED_SET_PASTPERFECT(q->qidlestart);
|
|
|
|
|
|
|
|
/*
|
|
|
|
The problem: ideally, average length queue recalcultion should
|
|
|
|
be done over constant clock intervals. This is too expensive, so that
|
|
|
|
the calculation is driven by outgoing packets.
|
|
|
|
When the queue is idle we have to model this clock by hand.
|
|
|
|
|
|
|
|
SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth)
|
|
|
|
dummy packets as a burst after idle time, i.e.
|
|
|
|
|
|
|
|
q->qave *= (1-W)^m
|
|
|
|
|
|
|
|
This is an apparently overcomplicated solution (f.e. we have to precompute
|
|
|
|
a table to make this calculation in reasonable time)
|
|
|
|
I believe that a simpler model may be used here,
|
|
|
|
but it is field for experiments.
|
|
|
|
*/
|
|
|
|
shift = q->Stab[us_idle>>q->Scell_log];
|
|
|
|
|
|
|
|
if (shift) {
|
|
|
|
q->qave >>= shift;
|
|
|
|
} else {
|
|
|
|
/* Approximate initial part of exponent
|
|
|
|
with linear function:
|
|
|
|
(1-W)^m ~= 1-mW + ...
|
|
|
|
|
|
|
|
Seems, it is the best solution to
|
|
|
|
problem of too coarce exponent tabulation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
us_idle = (q->qave * us_idle)>>q->Scell_log;
|
|
|
|
if (us_idle < q->qave/2)
|
|
|
|
q->qave -= us_idle;
|
|
|
|
else
|
|
|
|
q->qave >>= 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
q->qave += sch->qstats.backlog - (q->qave >> q->Wlog);
|
|
|
|
/* NOTE:
|
|
|
|
q->qave is fixed point number with point at Wlog.
|
|
|
|
The formulae above is equvalent to floating point
|
|
|
|
version:
|
|
|
|
|
|
|
|
qave = qave*(1-W) + sch->qstats.backlog*W;
|
|
|
|
--ANK (980924)
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
if (q->qave < q->qth_min) {
|
|
|
|
q->qcount = -1;
|
|
|
|
enqueue:
|
|
|
|
if (sch->qstats.backlog + skb->len <= q->limit) {
|
|
|
|
__skb_queue_tail(&sch->q, skb);
|
|
|
|
sch->qstats.backlog += skb->len;
|
|
|
|
sch->bstats.bytes += skb->len;
|
|
|
|
sch->bstats.packets++;
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
} else {
|
|
|
|
q->st.pdrop++;
|
|
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
|
|
sch->qstats.drops++;
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
}
|
|
|
|
if (q->qave >= q->qth_max) {
|
|
|
|
q->qcount = -1;
|
|
|
|
sch->qstats.overlimits++;
|
|
|
|
mark:
|
|
|
|
if (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) {
|
|
|
|
q->st.early++;
|
|
|
|
goto drop;
|
|
|
|
}
|
|
|
|
q->st.marked++;
|
|
|
|
goto enqueue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (++q->qcount) {
|
|
|
|
/* The formula used below causes questions.
|
|
|
|
|
|
|
|
OK. qR is random number in the interval 0..Rmask
|
|
|
|
i.e. 0..(2^Plog). If we used floating point
|
|
|
|
arithmetics, it would be: (2^Plog)*rnd_num,
|
|
|
|
where rnd_num is less 1.
|
|
|
|
|
|
|
|
Taking into account, that qave have fixed
|
|
|
|
point at Wlog, and Plog is related to max_P by
|
|
|
|
max_P = (qth_max-qth_min)/2^Plog; two lines
|
|
|
|
below have the following floating point equivalent:
|
|
|
|
|
|
|
|
max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount
|
|
|
|
|
|
|
|
Any questions? --ANK (980924)
|
|
|
|
*/
|
|
|
|
if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR)
|
|
|
|
goto enqueue;
|
|
|
|
q->qcount = 0;
|
|
|
|
q->qR = net_random()&q->Rmask;
|
|
|
|
sch->qstats.overlimits++;
|
|
|
|
goto mark;
|
|
|
|
}
|
|
|
|
q->qR = net_random()&q->Rmask;
|
|
|
|
goto enqueue;
|
|
|
|
|
|
|
|
drop:
|
|
|
|
kfree_skb(skb);
|
|
|
|
sch->qstats.drops++;
|
|
|
|
return NET_XMIT_CN;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
red_requeue(struct sk_buff *skb, struct Qdisc* sch)
|
|
|
|
{
|
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
|
|
PSCHED_SET_PASTPERFECT(q->qidlestart);
|
|
|
|
|
|
|
|
__skb_queue_head(&sch->q, skb);
|
|
|
|
sch->qstats.backlog += skb->len;
|
|
|
|
sch->qstats.requeues++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct sk_buff *
|
|
|
|
red_dequeue(struct Qdisc* sch)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
|
|
skb = __skb_dequeue(&sch->q);
|
|
|
|
if (skb) {
|
|
|
|
sch->qstats.backlog -= skb->len;
|
|
|
|
return skb;
|
|
|
|
}
|
|
|
|
PSCHED_GET_TIME(q->qidlestart);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned int red_drop(struct Qdisc* sch)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
|
|
skb = __skb_dequeue_tail(&sch->q);
|
|
|
|
if (skb) {
|
|
|
|
unsigned int len = skb->len;
|
|
|
|
sch->qstats.backlog -= len;
|
|
|
|
sch->qstats.drops++;
|
|
|
|
q->st.other++;
|
|
|
|
kfree_skb(skb);
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
PSCHED_GET_TIME(q->qidlestart);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void red_reset(struct Qdisc* sch)
|
|
|
|
{
|
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
|
|
__skb_queue_purge(&sch->q);
|
|
|
|
sch->qstats.backlog = 0;
|
|
|
|
PSCHED_SET_PASTPERFECT(q->qidlestart);
|
|
|
|
q->qave = 0;
|
|
|
|
q->qcount = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int red_change(struct Qdisc *sch, struct rtattr *opt)
|
|
|
|
{
|
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
struct rtattr *tb[TCA_RED_STAB];
|
|
|
|
struct tc_red_qopt *ctl;
|
|
|
|
|
|
|
|
if (opt == NULL ||
|
|
|
|
rtattr_parse_nested(tb, TCA_RED_STAB, opt) ||
|
|
|
|
tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 ||
|
|
|
|
RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) ||
|
|
|
|
RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
ctl = RTA_DATA(tb[TCA_RED_PARMS-1]);
|
|
|
|
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
q->flags = ctl->flags;
|
|
|
|
q->Wlog = ctl->Wlog;
|
|
|
|
q->Plog = ctl->Plog;
|
|
|
|
q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL;
|
|
|
|
q->Scell_log = ctl->Scell_log;
|
|
|
|
q->Scell_max = (255<<q->Scell_log);
|
|
|
|
q->qth_min = ctl->qth_min<<ctl->Wlog;
|
|
|
|
q->qth_max = ctl->qth_max<<ctl->Wlog;
|
|
|
|
q->limit = ctl->limit;
|
|
|
|
memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256);
|
|
|
|
|
|
|
|
q->qcount = -1;
|
|
|
|
if (skb_queue_empty(&sch->q))
|
|
|
|
PSCHED_SET_PASTPERFECT(q->qidlestart);
|
|
|
|
sch_tree_unlock(sch);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int red_init(struct Qdisc* sch, struct rtattr *opt)
|
|
|
|
{
|
|
|
|
return red_change(sch, opt);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int red_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
unsigned char *b = skb->tail;
|
|
|
|
struct rtattr *rta;
|
|
|
|
struct tc_red_qopt opt;
|
|
|
|
|
|
|
|
rta = (struct rtattr*)b;
|
|
|
|
RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
|
|
|
|
opt.limit = q->limit;
|
|
|
|
opt.qth_min = q->qth_min>>q->Wlog;
|
|
|
|
opt.qth_max = q->qth_max>>q->Wlog;
|
|
|
|
opt.Wlog = q->Wlog;
|
|
|
|
opt.Plog = q->Plog;
|
|
|
|
opt.Scell_log = q->Scell_log;
|
|
|
|
opt.flags = q->flags;
|
|
|
|
RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt);
|
|
|
|
rta->rta_len = skb->tail - b;
|
|
|
|
|
|
|
|
return skb->len;
|
|
|
|
|
|
|
|
rtattr_failure:
|
|
|
|
skb_trim(skb, b - skb->data);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
|
|
|
|
{
|
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
|
|
return gnet_stats_copy_app(d, &q->st, sizeof(q->st));
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct Qdisc_ops red_qdisc_ops = {
|
|
|
|
.next = NULL,
|
|
|
|
.cl_ops = NULL,
|
|
|
|
.id = "red",
|
|
|
|
.priv_size = sizeof(struct red_sched_data),
|
|
|
|
.enqueue = red_enqueue,
|
|
|
|
.dequeue = red_dequeue,
|
|
|
|
.requeue = red_requeue,
|
|
|
|
.drop = red_drop,
|
|
|
|
.init = red_init,
|
|
|
|
.reset = red_reset,
|
|
|
|
.change = red_change,
|
|
|
|
.dump = red_dump,
|
|
|
|
.dump_stats = red_dump_stats,
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init red_module_init(void)
|
|
|
|
{
|
|
|
|
return register_qdisc(&red_qdisc_ops);
|
|
|
|
}
|
|
|
|
static void __exit red_module_exit(void)
|
|
|
|
{
|
|
|
|
unregister_qdisc(&red_qdisc_ops);
|
|
|
|
}
|
|
|
|
module_init(red_module_init)
|
|
|
|
module_exit(red_module_exit)
|
|
|
|
MODULE_LICENSE("GPL");
|