You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/include/asm-blackfin/mach-bf537/anomaly.h

140 lines
6.7 KiB

blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
/*
* File: include/asm-blackfin/mach-bf537/anomaly.h
* Based on:
* Author:
*
* Created:
* Description:
*
* Rev:
*
* Modified:
*
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING.
* If not, write to the Free Software Foundation,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* This file shoule be up to date with:
* - Revision J, June 1, 2006; ADSP-BF537 Blackfin Processor Anomaly List
* - Revision I, June 1, 2006; ADSP-BF536 Blackfin Processor Anomaly List
* - Revision J, June 1, 2006; ADSP-BF534 Blackfin Processor Anomaly List
*/
#ifndef _MACH_ANOMALY_H_
#define _MACH_ANOMALY_H_
/* We do not support 0.1 silicon - sorry */
#if (defined(CONFIG_BF_REV_0_1))
#error Kernel will not work on BF537/6/4 Version 0.1
#endif
#if (defined(CONFIG_BF_REV_0_3) || defined(CONFIG_BF_REV_0_2))
#define ANOMALY_05000074 /* A multi issue instruction with dsp32shiftimm in
slot1 and store of a P register in slot 2 is not
supported */
#define ANOMALY_05000119 /* DMA_RUN bit is not valid after a Peripheral Receive
Channel DMA stops */
#define ANOMALY_05000122 /* Rx.H can not be used to access 16-bit System MMR
registers. */
#define ANOMALY_05000166 /* PPI Data Lengths Between 8 and 16 do not zero out
upper bits*/
#define ANOMALY_05000180 /* PPI_DELAY not functional in PPI modes with 0 frame
syncs */
#if (defined(CONFIG_BF537) || defined(CONFIG_BF536))
#define ANOMALY_05000247 /* CLKIN Buffer Output Enable Reset Behavior Is
Changed */
#endif
#define ANOMALY_05000265 /* Sensitivity to noise with slow input edge rates on
SPORT external receive and transmit clocks. */
#define ANOMALY_05000272 /* Certain data cache write through modes fail for
VDDint <=0.9V */
#define ANOMALY_05000273 /* Writes to Synchronous SDRAM memory may be lost */
#define ANOMALY_05000277 /* Writes to a flag data register one SCLK cycle after
an edge is detected may clear interrupt */
#define ANOMALY_05000281 /* False Hardware Error Exception when ISR context is
not restored */
#define ANOMALY_05000282 /* Memory DMA corruption with 32-bit data and traffic
control */
#define ANOMALY_05000283 /* A system MMR write is stalled indefinitely when
killed in a particular stage*/
#define ANOMALY_05000310 /* False hardware errors caused by fetches at the
* boundary of reserved memory */
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
#define ANOMALY_05000312 /* Errors when SSYNC, CSYNC, or loads to LT, LB and LC
registers are interrupted */
#define ANOMALY_05000313 /* PPI is level sensitive on first transfer */
#define ANOMALY_05000322 /* EMAC RMII mode at 10-Base-T speed: RX frames not
* received properly */
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
#endif
#if defined(CONFIG_BF_REV_0_2)
#define ANOMALY_05000244 /* With instruction cache enabled, a CSYNC or SSYNC or
IDLE around a Change of Control causes
unpredictable results */
#define ANOMALY_05000250 /* Incorrect Bit-Shift of Data Word in Multichannel
(TDM) */
#if (defined(CONFIG_BF537) || defined(CONFIG_BF536))
#define ANOMALY_05000252 /* EMAC Tx DMA error after an early frame abort */
#endif
#define ANOMALY_05000253 /* Maximum external clock speed for Timers */
#define ANOMALY_05000255 /* Entering Hibernate Mode with RTC Seconds event
interrupt not functional */
#if (defined(CONFIG_BF537) || defined(CONFIG_BF536))
#define ANOMALY_05000256 /* EMAC MDIO input latched on wrong MDC edge */
#endif
#define ANOMALY_05000257 /* An interrupt or exception during short Hardware
loops may cause the instruction fetch unit to
malfunction */
#define ANOMALY_05000258 /* Instruction Cache is corrupted when bit 9 and 12 of
the ICPLB Data registers differ */
#define ANOMALY_05000260 /* ICPLB_STATUS MMR register may be corrupted */
#define ANOMALY_05000261 /* DCPLB_FAULT_ADDR MMR register may be corrupted */
#define ANOMALY_05000262 /* Stores to data cache may be lost */
#define ANOMALY_05000263 /* Hardware loop corrupted when taking an ICPLB exception */
#define ANOMALY_05000264 /* A Sync instruction (CSYNC, SSYNC) or an IDLE
instruction will cause an infinite stall in the
second to last instruction in a hardware loop */
#define ANOMALY_05000268 /* Memory DMA error when peripheral DMA is running
and non-zero DEB_TRAFFIC_PERIOD value */
#define ANOMALY_05000270 /* High I/O activity causes the output voltage of the
internal voltage regulator (VDDint) to decrease */
#define ANOMALY_05000277 /* Writes to a flag data register one SCLK cycle after
an edge is detected may clear interrupt */
#define ANOMALY_05000278 /* Disabling Peripherals with DMA running may cause
DMA system instability */
#define ANOMALY_05000280 /* SPI Master boot mode does not work well with
Atmel Dataflash devices */
#define ANOMALY_05000281 /* False Hardware Error Exception when ISR context
* is not restored */
#define ANOMALY_05000282 /* Memory DMA corruption with 32-bit data and traffic
* control */
#define ANOMALY_05000283 /* System MMR Write Is Stalled Indefinitely When
* Killed in a Particular Stage */
#define ANOMALY_05000285 /* New Feature: EMAC TX DMA Word Alignment
* (Not Available On Older Silicon) */
#define ANOMALY_05000288 /* SPORTs may receive bad data if FIFOs fill up */
#define ANOMALY_05000315 /* Killed System MMR Write Completes Erroneously
* On Next System MMR Access */
#define ANOMALY_05000316 /* EMAC RMII mode: collisions occur in Full Duplex
* mode */
#define ANOMALY_05000321 /* EMAC RMII mode: TX frames in half duplex fail with
* status No Carrier */
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
#endif /* CONFIG_BF_REV_0_2 */
#endif /* _MACH_ANOMALY_H_ */