You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1928 lines
50 KiB
1928 lines
50 KiB
20 years ago
|
/*
|
||
|
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
|
||
|
* of PCI-SCSI IO processors.
|
||
|
*
|
||
|
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
|
||
|
*
|
||
|
* This driver is derived from the Linux sym53c8xx driver.
|
||
|
* Copyright (C) 1998-2000 Gerard Roudier
|
||
|
*
|
||
|
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
|
||
|
* a port of the FreeBSD ncr driver to Linux-1.2.13.
|
||
|
*
|
||
|
* The original ncr driver has been written for 386bsd and FreeBSD by
|
||
|
* Wolfgang Stanglmeier <wolf@cologne.de>
|
||
|
* Stefan Esser <se@mi.Uni-Koeln.de>
|
||
|
* Copyright (C) 1994 Wolfgang Stanglmeier
|
||
|
*
|
||
|
* Other major contributions:
|
||
|
*
|
||
|
* NVRAM detection and reading.
|
||
|
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
|
||
|
*
|
||
|
*-----------------------------------------------------------------------------
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Scripts for SYMBIOS-Processor
|
||
|
*
|
||
|
* We have to know the offsets of all labels before we reach
|
||
|
* them (for forward jumps). Therefore we declare a struct
|
||
|
* here. If you make changes inside the script,
|
||
|
*
|
||
|
* DONT FORGET TO CHANGE THE LENGTHS HERE!
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Script fragments which are loaded into the on-chip RAM
|
||
|
* of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
|
||
|
* Must not exceed 4K bytes.
|
||
|
*/
|
||
|
struct SYM_FWA_SCR {
|
||
|
u32 start [ 14];
|
||
|
u32 getjob_begin [ 4];
|
||
|
u32 getjob_end [ 4];
|
||
|
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
|
||
|
u32 select [ 6];
|
||
|
#else
|
||
|
u32 select [ 4];
|
||
|
#endif
|
||
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
||
|
u32 is_dmap_dirty [ 4];
|
||
|
#endif
|
||
|
u32 wf_sel_done [ 2];
|
||
|
u32 sel_done [ 2];
|
||
|
u32 send_ident [ 2];
|
||
|
#ifdef SYM_CONF_IARB_SUPPORT
|
||
|
u32 select2 [ 8];
|
||
|
#else
|
||
|
u32 select2 [ 2];
|
||
|
#endif
|
||
|
u32 command [ 2];
|
||
|
u32 dispatch [ 28];
|
||
|
u32 sel_no_cmd [ 10];
|
||
|
u32 init [ 6];
|
||
|
u32 clrack [ 4];
|
||
|
u32 datai_done [ 10];
|
||
|
u32 datai_done_wsr [ 20];
|
||
|
u32 datao_done [ 10];
|
||
|
u32 datao_done_wss [ 6];
|
||
|
u32 datai_phase [ 4];
|
||
|
u32 datao_phase [ 6];
|
||
|
u32 msg_in [ 2];
|
||
|
u32 msg_in2 [ 10];
|
||
|
#ifdef SYM_CONF_IARB_SUPPORT
|
||
|
u32 status [ 14];
|
||
|
#else
|
||
|
u32 status [ 10];
|
||
|
#endif
|
||
|
u32 complete [ 6];
|
||
|
u32 complete2 [ 12];
|
||
|
u32 done [ 14];
|
||
|
u32 done_end [ 2];
|
||
|
u32 complete_error [ 4];
|
||
|
u32 save_dp [ 12];
|
||
|
u32 restore_dp [ 8];
|
||
|
u32 disconnect [ 12];
|
||
|
#ifdef SYM_CONF_IARB_SUPPORT
|
||
|
u32 idle [ 4];
|
||
|
#else
|
||
|
u32 idle [ 2];
|
||
|
#endif
|
||
|
#ifdef SYM_CONF_IARB_SUPPORT
|
||
|
u32 ungetjob [ 6];
|
||
|
#else
|
||
|
u32 ungetjob [ 4];
|
||
|
#endif
|
||
|
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
|
||
|
u32 reselect [ 4];
|
||
|
#else
|
||
|
u32 reselect [ 2];
|
||
|
#endif
|
||
|
u32 reselected [ 22];
|
||
|
u32 resel_scntl4 [ 20];
|
||
|
u32 resel_lun0 [ 6];
|
||
|
#if SYM_CONF_MAX_TASK*4 > 512
|
||
|
u32 resel_tag [ 26];
|
||
|
#elif SYM_CONF_MAX_TASK*4 > 256
|
||
|
u32 resel_tag [ 20];
|
||
|
#else
|
||
|
u32 resel_tag [ 16];
|
||
|
#endif
|
||
|
u32 resel_dsa [ 2];
|
||
|
u32 resel_dsa1 [ 4];
|
||
|
u32 resel_no_tag [ 6];
|
||
|
u32 data_in [SYM_CONF_MAX_SG * 2];
|
||
|
u32 data_in2 [ 4];
|
||
|
u32 data_out [SYM_CONF_MAX_SG * 2];
|
||
|
u32 data_out2 [ 4];
|
||
|
u32 pm0_data [ 12];
|
||
|
u32 pm0_data_out [ 6];
|
||
|
u32 pm0_data_end [ 6];
|
||
|
u32 pm1_data [ 12];
|
||
|
u32 pm1_data_out [ 6];
|
||
|
u32 pm1_data_end [ 6];
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Script fragments which stay in main memory for all chips
|
||
|
* except for chips that support 8K on-chip RAM.
|
||
|
*/
|
||
|
struct SYM_FWB_SCR {
|
||
|
u32 start64 [ 2];
|
||
|
u32 no_data [ 2];
|
||
|
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
|
||
|
u32 sel_for_abort [ 18];
|
||
|
#else
|
||
|
u32 sel_for_abort [ 16];
|
||
|
#endif
|
||
|
u32 sel_for_abort_1 [ 2];
|
||
|
u32 msg_in_etc [ 12];
|
||
|
u32 msg_received [ 4];
|
||
|
u32 msg_weird_seen [ 4];
|
||
|
u32 msg_extended [ 20];
|
||
|
u32 msg_bad [ 6];
|
||
|
u32 msg_weird [ 4];
|
||
|
u32 msg_weird1 [ 8];
|
||
|
|
||
|
u32 wdtr_resp [ 6];
|
||
|
u32 send_wdtr [ 4];
|
||
|
u32 sdtr_resp [ 6];
|
||
|
u32 send_sdtr [ 4];
|
||
|
u32 ppr_resp [ 6];
|
||
|
u32 send_ppr [ 4];
|
||
|
u32 nego_bad_phase [ 4];
|
||
|
u32 msg_out [ 4];
|
||
|
u32 msg_out_done [ 4];
|
||
|
u32 data_ovrun [ 2];
|
||
|
u32 data_ovrun1 [ 22];
|
||
|
u32 data_ovrun2 [ 8];
|
||
|
u32 abort_resel [ 16];
|
||
|
u32 resend_ident [ 4];
|
||
|
u32 ident_break [ 4];
|
||
|
u32 ident_break_atn [ 4];
|
||
|
u32 sdata_in [ 6];
|
||
|
u32 resel_bad_lun [ 4];
|
||
|
u32 bad_i_t_l [ 4];
|
||
|
u32 bad_i_t_l_q [ 4];
|
||
|
u32 bad_status [ 6];
|
||
|
u32 pm_handle [ 20];
|
||
|
u32 pm_handle1 [ 4];
|
||
|
u32 pm_save [ 4];
|
||
|
u32 pm0_save [ 12];
|
||
|
u32 pm_save_end [ 4];
|
||
|
u32 pm1_save [ 14];
|
||
|
|
||
|
/* WSR handling */
|
||
|
u32 pm_wsr_handle [ 38];
|
||
|
u32 wsr_ma_helper [ 4];
|
||
|
|
||
|
#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
|
||
|
/* Unknown direction handling */
|
||
|
u32 data_io [ 2];
|
||
|
u32 data_io_in [ 2];
|
||
|
u32 data_io_com [ 6];
|
||
|
u32 data_io_out [ 8];
|
||
|
#endif
|
||
|
/* Data area */
|
||
|
u32 zero [ 1];
|
||
|
u32 scratch [ 1];
|
||
|
u32 pm0_data_addr [ 1];
|
||
|
u32 pm1_data_addr [ 1];
|
||
|
u32 done_pos [ 1];
|
||
|
u32 startpos [ 1];
|
||
|
u32 targtbl [ 1];
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Script fragments used at initialisations.
|
||
|
* Only runs out of main memory.
|
||
|
*/
|
||
|
struct SYM_FWZ_SCR {
|
||
|
u32 snooptest [ 6];
|
||
|
u32 snoopend [ 2];
|
||
|
};
|
||
|
|
||
|
static struct SYM_FWA_SCR SYM_FWA_SCR = {
|
||
|
/*--------------------------< START >----------------------------*/ {
|
||
|
/*
|
||
|
* Switch the LED on.
|
||
|
* Will be patched with a NO_OP if LED
|
||
|
* not needed or not desired.
|
||
|
*/
|
||
|
SCR_REG_REG (gpreg, SCR_AND, 0xfe),
|
||
|
0,
|
||
|
/*
|
||
|
* Clear SIGP.
|
||
|
*/
|
||
|
SCR_FROM_REG (ctest2),
|
||
|
0,
|
||
|
/*
|
||
|
* Stop here if the C code wants to perform
|
||
|
* some error recovery procedure manually.
|
||
|
* (Indicate this by setting SEM in ISTAT)
|
||
|
*/
|
||
|
SCR_FROM_REG (istat),
|
||
|
0,
|
||
|
/*
|
||
|
* Report to the C code the next position in
|
||
|
* the start queue the SCRIPTS will schedule.
|
||
|
* The C code must not change SCRATCHA.
|
||
|
*/
|
||
|
SCR_LOAD_ABS (scratcha, 4),
|
||
|
PADDR_B (startpos),
|
||
|
SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
|
||
|
SIR_SCRIPT_STOPPED,
|
||
|
/*
|
||
|
* Start the next job.
|
||
|
*
|
||
|
* @DSA = start point for this job.
|
||
|
* SCRATCHA = address of this job in the start queue.
|
||
|
*
|
||
|
* We will restore startpos with SCRATCHA if we fails the
|
||
|
* arbitration or if it is the idle job.
|
||
|
*
|
||
|
* The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
|
||
|
* is a critical path. If it is partially executed, it then
|
||
|
* may happen that the job address is not yet in the DSA
|
||
|
* and the next queue position points to the next JOB.
|
||
|
*/
|
||
|
SCR_LOAD_ABS (dsa, 4),
|
||
|
PADDR_B (startpos),
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
4,
|
||
|
}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
|
||
|
SCR_STORE_ABS (temp, 4),
|
||
|
PADDR_B (startpos),
|
||
|
SCR_LOAD_REL (dsa, 4),
|
||
|
0,
|
||
|
}/*-------------------------< GETJOB_END >-----------------------*/,{
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
0,
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
}/*-------------------------< SELECT >---------------------------*/,{
|
||
|
/*
|
||
|
* DSA contains the address of a scheduled
|
||
|
* data structure.
|
||
|
*
|
||
|
* SCRATCHA contains the address of the start queue
|
||
|
* entry which points to the next job.
|
||
|
*
|
||
|
* Set Initiator mode.
|
||
|
*
|
||
|
* (Target mode is left as an exercise for the reader)
|
||
|
*/
|
||
|
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
|
||
|
SCR_CLR (SCR_TRG),
|
||
|
0,
|
||
|
#endif
|
||
|
/*
|
||
|
* And try to select this target.
|
||
|
*/
|
||
|
SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
|
||
|
PADDR_A (ungetjob),
|
||
|
/*
|
||
|
* Now there are 4 possibilities:
|
||
|
*
|
||
|
* (1) The chip loses arbitration.
|
||
|
* This is ok, because it will try again,
|
||
|
* when the bus becomes idle.
|
||
|
* (But beware of the timeout function!)
|
||
|
*
|
||
|
* (2) The chip is reselected.
|
||
|
* Then the script processor takes the jump
|
||
|
* to the RESELECT label.
|
||
|
*
|
||
|
* (3) The chip wins arbitration.
|
||
|
* Then it will execute SCRIPTS instruction until
|
||
|
* the next instruction that checks SCSI phase.
|
||
|
* Then will stop and wait for selection to be
|
||
|
* complete or selection time-out to occur.
|
||
|
*
|
||
|
* After having won arbitration, the SCRIPTS
|
||
|
* processor is able to execute instructions while
|
||
|
* the SCSI core is performing SCSI selection.
|
||
|
*/
|
||
|
/*
|
||
|
* Initialize the status registers
|
||
|
*/
|
||
|
SCR_LOAD_REL (scr0, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.status),
|
||
|
/*
|
||
|
* We may need help from CPU if the DMA segment
|
||
|
* registers aren't up-to-date for this IO.
|
||
|
* Patched with NOOP for chips that donnot
|
||
|
* support DAC addressing.
|
||
|
*/
|
||
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
||
|
}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
|
||
|
SCR_FROM_REG (HX_REG),
|
||
|
0,
|
||
|
SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
|
||
|
SIR_DMAP_DIRTY,
|
||
|
#endif
|
||
|
}/*-------------------------< WF_SEL_DONE >----------------------*/,{
|
||
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
||
|
SIR_SEL_ATN_NO_MSG_OUT,
|
||
|
}/*-------------------------< SEL_DONE >-------------------------*/,{
|
||
|
/*
|
||
|
* C1010-33 errata work-around.
|
||
|
* Due to a race, the SCSI core may not have
|
||
|
* loaded SCNTL3 on SEL_TBL instruction.
|
||
|
* We reload it once phase is stable.
|
||
|
* Patched with a NOOP for other chips.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scntl3, 1),
|
||
|
offsetof(struct sym_dsb, select.sel_scntl3),
|
||
|
}/*-------------------------< SEND_IDENT >-----------------------*/,{
|
||
|
/*
|
||
|
* Selection complete.
|
||
|
* Send the IDENTIFY and possibly the TAG message
|
||
|
* and negotiation message if present.
|
||
|
*/
|
||
|
SCR_MOVE_TBL ^ SCR_MSG_OUT,
|
||
|
offsetof (struct sym_dsb, smsg),
|
||
|
}/*-------------------------< SELECT2 >--------------------------*/,{
|
||
|
#ifdef SYM_CONF_IARB_SUPPORT
|
||
|
/*
|
||
|
* Set IMMEDIATE ARBITRATION if we have been given
|
||
|
* a hint to do so. (Some job to do after this one).
|
||
|
*/
|
||
|
SCR_FROM_REG (HF_REG),
|
||
|
0,
|
||
|
SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
|
||
|
8,
|
||
|
SCR_REG_REG (scntl1, SCR_OR, IARB),
|
||
|
0,
|
||
|
#endif
|
||
|
/*
|
||
|
* Anticipate the COMMAND phase.
|
||
|
* This is the PHASE we expect at this point.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
|
||
|
PADDR_A (sel_no_cmd),
|
||
|
}/*-------------------------< COMMAND >--------------------------*/,{
|
||
|
/*
|
||
|
* ... and send the command
|
||
|
*/
|
||
|
SCR_MOVE_TBL ^ SCR_COMMAND,
|
||
|
offsetof (struct sym_dsb, cmd),
|
||
|
}/*-------------------------< DISPATCH >-------------------------*/,{
|
||
|
/*
|
||
|
* MSG_IN is the only phase that shall be
|
||
|
* entered at least once for each (re)selection.
|
||
|
* So we test it first.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
||
|
PADDR_A (msg_in),
|
||
|
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
|
||
|
PADDR_A (datao_phase),
|
||
|
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
|
||
|
PADDR_A (datai_phase),
|
||
|
SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
|
||
|
PADDR_A (status),
|
||
|
SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
|
||
|
PADDR_A (command),
|
||
|
SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
|
||
|
PADDR_B (msg_out),
|
||
|
/*
|
||
|
* Discard as many illegal phases as
|
||
|
* required and tell the C code about.
|
||
|
*/
|
||
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
|
||
|
16,
|
||
|
SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
|
||
|
HADDR_1 (scratch),
|
||
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
|
||
|
-16,
|
||
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
|
||
|
16,
|
||
|
SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
|
||
|
HADDR_1 (scratch),
|
||
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
|
||
|
-16,
|
||
|
SCR_INT,
|
||
|
SIR_BAD_PHASE,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
|
||
|
/*
|
||
|
* The target does not switch to command
|
||
|
* phase after IDENTIFY has been sent.
|
||
|
*
|
||
|
* If it stays in MSG OUT phase send it
|
||
|
* the IDENTIFY again.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
|
||
|
PADDR_B (resend_ident),
|
||
|
/*
|
||
|
* If target does not switch to MSG IN phase
|
||
|
* and we sent a negotiation, assert the
|
||
|
* failure immediately.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
||
|
PADDR_A (dispatch),
|
||
|
SCR_FROM_REG (HS_REG),
|
||
|
0,
|
||
|
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
|
||
|
SIR_NEGO_FAILED,
|
||
|
/*
|
||
|
* Jump to dispatcher.
|
||
|
*/
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< INIT >-----------------------------*/,{
|
||
|
/*
|
||
|
* Wait for the SCSI RESET signal to be
|
||
|
* inactive before restarting operations,
|
||
|
* since the chip may hang on SEL_ATN
|
||
|
* if SCSI RESET is active.
|
||
|
*/
|
||
|
SCR_FROM_REG (sstat0),
|
||
|
0,
|
||
|
SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
|
||
|
-16,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (start),
|
||
|
}/*-------------------------< CLRACK >---------------------------*/,{
|
||
|
/*
|
||
|
* Terminate possible pending message phase.
|
||
|
*/
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< DATAI_DONE >-----------------------*/,{
|
||
|
/*
|
||
|
* Save current pointer to LASTP.
|
||
|
*/
|
||
|
SCR_STORE_REL (temp, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.lastp),
|
||
|
/*
|
||
|
* If the SWIDE is not full, jump to dispatcher.
|
||
|
* We anticipate a STATUS phase.
|
||
|
*/
|
||
|
SCR_FROM_REG (scntl2),
|
||
|
0,
|
||
|
SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
|
||
|
PADDR_A (datai_done_wsr),
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
|
||
|
PADDR_A (status),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
|
||
|
/*
|
||
|
* The SWIDE is full.
|
||
|
* Clear this condition.
|
||
|
*/
|
||
|
SCR_REG_REG (scntl2, SCR_OR, WSR),
|
||
|
0,
|
||
|
/*
|
||
|
* We are expecting an IGNORE RESIDUE message
|
||
|
* from the device, otherwise we are in data
|
||
|
* overrun condition. Check against MSG_IN phase.
|
||
|
*/
|
||
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
||
|
SIR_SWIDE_OVERRUN,
|
||
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
||
|
PADDR_A (dispatch),
|
||
|
/*
|
||
|
* We are in MSG_IN phase,
|
||
|
* Read the first byte of the message.
|
||
|
* If it is not an IGNORE RESIDUE message,
|
||
|
* signal overrun and jump to message
|
||
|
* processing.
|
||
|
*/
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
||
|
HADDR_1 (msgin[0]),
|
||
|
SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
|
||
|
SIR_SWIDE_OVERRUN,
|
||
|
SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
|
||
|
PADDR_A (msg_in2),
|
||
|
/*
|
||
|
* We got the message we expected.
|
||
|
* Read the 2nd byte, and jump to dispatcher.
|
||
|
*/
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
||
|
HADDR_1 (msgin[1]),
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< DATAO_DONE >-----------------------*/,{
|
||
|
/*
|
||
|
* Save current pointer to LASTP.
|
||
|
*/
|
||
|
SCR_STORE_REL (temp, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.lastp),
|
||
|
/*
|
||
|
* If the SODL is not full jump to dispatcher.
|
||
|
* We anticipate a STATUS phase.
|
||
|
*/
|
||
|
SCR_FROM_REG (scntl2),
|
||
|
0,
|
||
|
SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
|
||
|
PADDR_A (datao_done_wss),
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
|
||
|
PADDR_A (status),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
|
||
|
/*
|
||
|
* The SODL is full, clear this condition.
|
||
|
*/
|
||
|
SCR_REG_REG (scntl2, SCR_OR, WSS),
|
||
|
0,
|
||
|
/*
|
||
|
* And signal a DATA UNDERRUN condition
|
||
|
* to the C code.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_SODL_UNDERRUN,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< DATAI_PHASE >----------------------*/,{
|
||
|
/*
|
||
|
* Jump to current pointer.
|
||
|
*/
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.lastp),
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
}/*-------------------------< DATAO_PHASE >----------------------*/,{
|
||
|
/*
|
||
|
* C1010-66 errata work-around.
|
||
|
* Extra clocks of data hold must be inserted
|
||
|
* in DATA OUT phase on 33 MHz PCI BUS.
|
||
|
* Patched with a NOOP for other chips.
|
||
|
*/
|
||
|
SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
|
||
|
0,
|
||
|
/*
|
||
|
* Jump to current pointer.
|
||
|
*/
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.lastp),
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
}/*-------------------------< MSG_IN >---------------------------*/,{
|
||
|
/*
|
||
|
* Get the first byte of the message.
|
||
|
*
|
||
|
* The script processor doesn't negate the
|
||
|
* ACK signal after this transfer.
|
||
|
*/
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
||
|
HADDR_1 (msgin[0]),
|
||
|
}/*-------------------------< MSG_IN2 >--------------------------*/,{
|
||
|
/*
|
||
|
* Check first against 1 byte messages
|
||
|
* that we handle from SCRIPTS.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
|
||
|
PADDR_A (complete),
|
||
|
SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
|
||
|
PADDR_A (disconnect),
|
||
|
SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
|
||
|
PADDR_A (save_dp),
|
||
|
SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
|
||
|
PADDR_A (restore_dp),
|
||
|
/*
|
||
|
* We handle all other messages from the
|
||
|
* C code, so no need to waste on-chip RAM
|
||
|
* for those ones.
|
||
|
*/
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (msg_in_etc),
|
||
|
}/*-------------------------< STATUS >---------------------------*/,{
|
||
|
/*
|
||
|
* get the status
|
||
|
*/
|
||
|
SCR_MOVE_ABS (1) ^ SCR_STATUS,
|
||
|
HADDR_1 (scratch),
|
||
|
#ifdef SYM_CONF_IARB_SUPPORT
|
||
|
/*
|
||
|
* If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
|
||
|
* since we may have to tamper the start queue from
|
||
|
* the C code.
|
||
|
*/
|
||
|
SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
|
||
|
8,
|
||
|
SCR_REG_REG (scntl1, SCR_AND, ~IARB),
|
||
|
0,
|
||
|
#endif
|
||
|
/*
|
||
|
* save status to scsi_status.
|
||
|
* mark as complete.
|
||
|
*/
|
||
|
SCR_TO_REG (SS_REG),
|
||
|
0,
|
||
|
SCR_LOAD_REG (HS_REG, HS_COMPLETE),
|
||
|
0,
|
||
|
/*
|
||
|
* Anticipate the MESSAGE PHASE for
|
||
|
* the TASK COMPLETE message.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
||
|
PADDR_A (msg_in),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< COMPLETE >-------------------------*/,{
|
||
|
/*
|
||
|
* Complete message.
|
||
|
*
|
||
|
* When we terminate the cycle by clearing ACK,
|
||
|
* the target may disconnect immediately.
|
||
|
*
|
||
|
* We don't want to be told of an "unexpected disconnect",
|
||
|
* so we disable this feature.
|
||
|
*/
|
||
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
||
|
0,
|
||
|
/*
|
||
|
* Terminate cycle ...
|
||
|
*/
|
||
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
||
|
0,
|
||
|
/*
|
||
|
* ... and wait for the disconnect.
|
||
|
*/
|
||
|
SCR_WAIT_DISC,
|
||
|
0,
|
||
|
}/*-------------------------< COMPLETE2 >------------------------*/,{
|
||
|
/*
|
||
|
* Save host status.
|
||
|
*/
|
||
|
SCR_STORE_REL (scr0, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.status),
|
||
|
/*
|
||
|
* Some bridges may reorder DMA writes to memory.
|
||
|
* We donnot want the CPU to deal with completions
|
||
|
* without all the posted write having been flushed
|
||
|
* to memory. This DUMMY READ should flush posted
|
||
|
* buffers prior to the CPU having to deal with
|
||
|
* completions.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
|
||
|
offsetof (struct sym_ccb, phys.head.status),
|
||
|
|
||
|
/*
|
||
|
* If command resulted in not GOOD status,
|
||
|
* call the C code if needed.
|
||
|
*/
|
||
|
SCR_FROM_REG (SS_REG),
|
||
|
0,
|
||
|
SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
|
||
|
PADDR_B (bad_status),
|
||
|
/*
|
||
|
* If we performed an auto-sense, call
|
||
|
* the C code to synchronyze task aborts
|
||
|
* with UNIT ATTENTION conditions.
|
||
|
*/
|
||
|
SCR_FROM_REG (HF_REG),
|
||
|
0,
|
||
|
SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
|
||
|
PADDR_A (complete_error),
|
||
|
}/*-------------------------< DONE >-----------------------------*/,{
|
||
|
/*
|
||
|
* Copy the DSA to the DONE QUEUE and
|
||
|
* signal completion to the host.
|
||
|
* If we are interrupted between DONE
|
||
|
* and DONE_END, we must reset, otherwise
|
||
|
* the completed CCB may be lost.
|
||
|
*/
|
||
|
SCR_STORE_ABS (dsa, 4),
|
||
|
PADDR_B (scratch),
|
||
|
SCR_LOAD_ABS (dsa, 4),
|
||
|
PADDR_B (done_pos),
|
||
|
SCR_LOAD_ABS (scratcha, 4),
|
||
|
PADDR_B (scratch),
|
||
|
SCR_STORE_REL (scratcha, 4),
|
||
|
0,
|
||
|
/*
|
||
|
* The instruction below reads the DONE QUEUE next
|
||
|
* free position from memory.
|
||
|
* In addition it ensures that all PCI posted writes
|
||
|
* are flushed and so the DSA value of the done
|
||
|
* CCB is visible by the CPU before INTFLY is raised.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scratcha, 4),
|
||
|
4,
|
||
|
SCR_INT_FLY,
|
||
|
0,
|
||
|
SCR_STORE_ABS (scratcha, 4),
|
||
|
PADDR_B (done_pos),
|
||
|
}/*-------------------------< DONE_END >-------------------------*/,{
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (start),
|
||
|
}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
|
||
|
SCR_LOAD_ABS (scratcha, 4),
|
||
|
PADDR_B (startpos),
|
||
|
SCR_INT,
|
||
|
SIR_COMPLETE_ERROR,
|
||
|
}/*-------------------------< SAVE_DP >--------------------------*/,{
|
||
|
/*
|
||
|
* Clear ACK immediately.
|
||
|
* No need to delay it.
|
||
|
*/
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
/*
|
||
|
* Keep track we received a SAVE DP, so
|
||
|
* we will switch to the other PM context
|
||
|
* on the next PM since the DP may point
|
||
|
* to the current PM context.
|
||
|
*/
|
||
|
SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
|
||
|
0,
|
||
|
/*
|
||
|
* SAVE_DP message:
|
||
|
* Copy LASTP to SAVEP.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.lastp),
|
||
|
SCR_STORE_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.savep),
|
||
|
/*
|
||
|
* Anticipate the MESSAGE PHASE for
|
||
|
* the DISCONNECT message.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
||
|
PADDR_A (msg_in),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< RESTORE_DP >-----------------------*/,{
|
||
|
/*
|
||
|
* Clear ACK immediately.
|
||
|
* No need to delay it.
|
||
|
*/
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
/*
|
||
|
* Copy SAVEP to LASTP.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.savep),
|
||
|
SCR_STORE_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.lastp),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< DISCONNECT >-----------------------*/,{
|
||
|
/*
|
||
|
* DISCONNECTing ...
|
||
|
*
|
||
|
* disable the "unexpected disconnect" feature,
|
||
|
* and remove the ACK signal.
|
||
|
*/
|
||
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
||
|
0,
|
||
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
||
|
0,
|
||
|
/*
|
||
|
* Wait for the disconnect.
|
||
|
*/
|
||
|
SCR_WAIT_DISC,
|
||
|
0,
|
||
|
/*
|
||
|
* Status is: DISCONNECTED.
|
||
|
*/
|
||
|
SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
|
||
|
0,
|
||
|
/*
|
||
|
* Save host status.
|
||
|
*/
|
||
|
SCR_STORE_REL (scr0, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.status),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (start),
|
||
|
}/*-------------------------< IDLE >-----------------------------*/,{
|
||
|
/*
|
||
|
* Nothing to do?
|
||
|
* Switch the LED off and wait for reselect.
|
||
|
* Will be patched with a NO_OP if LED
|
||
|
* not needed or not desired.
|
||
|
*/
|
||
|
SCR_REG_REG (gpreg, SCR_OR, 0x01),
|
||
|
0,
|
||
|
#ifdef SYM_CONF_IARB_SUPPORT
|
||
|
SCR_JUMPR,
|
||
|
8,
|
||
|
#endif
|
||
|
}/*-------------------------< UNGETJOB >-------------------------*/,{
|
||
|
#ifdef SYM_CONF_IARB_SUPPORT
|
||
|
/*
|
||
|
* Set IMMEDIATE ARBITRATION, for the next time.
|
||
|
* This will give us better chance to win arbitration
|
||
|
* for the job we just wanted to do.
|
||
|
*/
|
||
|
SCR_REG_REG (scntl1, SCR_OR, IARB),
|
||
|
0,
|
||
|
#endif
|
||
|
/*
|
||
|
* We are not able to restart the SCRIPTS if we are
|
||
|
* interrupted and these instruction haven't been
|
||
|
* all executed. BTW, this is very unlikely to
|
||
|
* happen, but we check that from the C code.
|
||
|
*/
|
||
|
SCR_LOAD_REG (dsa, 0xff),
|
||
|
0,
|
||
|
SCR_STORE_ABS (scratcha, 4),
|
||
|
PADDR_B (startpos),
|
||
|
}/*-------------------------< RESELECT >-------------------------*/,{
|
||
|
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
|
||
|
/*
|
||
|
* Make sure we are in initiator mode.
|
||
|
*/
|
||
|
SCR_CLR (SCR_TRG),
|
||
|
0,
|
||
|
#endif
|
||
|
/*
|
||
|
* Sleep waiting for a reselection.
|
||
|
*/
|
||
|
SCR_WAIT_RESEL,
|
||
|
PADDR_A(start),
|
||
|
}/*-------------------------< RESELECTED >-----------------------*/,{
|
||
|
/*
|
||
|
* Switch the LED on.
|
||
|
* Will be patched with a NO_OP if LED
|
||
|
* not needed or not desired.
|
||
|
*/
|
||
|
SCR_REG_REG (gpreg, SCR_AND, 0xfe),
|
||
|
0,
|
||
|
/*
|
||
|
* load the target id into the sdid
|
||
|
*/
|
||
|
SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
|
||
|
0,
|
||
|
SCR_TO_REG (sdid),
|
||
|
0,
|
||
|
/*
|
||
|
* Load the target control block address
|
||
|
*/
|
||
|
SCR_LOAD_ABS (dsa, 4),
|
||
|
PADDR_B (targtbl),
|
||
|
SCR_SFBR_REG (dsa, SCR_SHL, 0),
|
||
|
0,
|
||
|
SCR_REG_REG (dsa, SCR_SHL, 0),
|
||
|
0,
|
||
|
SCR_REG_REG (dsa, SCR_AND, 0x3c),
|
||
|
0,
|
||
|
SCR_LOAD_REL (dsa, 4),
|
||
|
0,
|
||
|
/*
|
||
|
* We expect MESSAGE IN phase.
|
||
|
* If not, get help from the C code.
|
||
|
*/
|
||
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
||
|
SIR_RESEL_NO_MSG_IN,
|
||
|
/*
|
||
|
* Load the legacy synchronous transfer registers.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scntl3, 1),
|
||
|
offsetof(struct sym_tcb, head.wval),
|
||
|
SCR_LOAD_REL (sxfer, 1),
|
||
|
offsetof(struct sym_tcb, head.sval),
|
||
|
}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
|
||
|
/*
|
||
|
* The C1010 uses a new synchronous timing scheme.
|
||
|
* Will be patched with a NO_OP if not a C1010.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scntl4, 1),
|
||
|
offsetof(struct sym_tcb, head.uval),
|
||
|
/*
|
||
|
* Get the IDENTIFY message.
|
||
|
*/
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
||
|
HADDR_1 (msgin),
|
||
|
/*
|
||
|
* If IDENTIFY LUN #0, use a faster path
|
||
|
* to find the LCB structure.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
|
||
|
PADDR_A (resel_lun0),
|
||
|
/*
|
||
|
* If message isn't an IDENTIFY,
|
||
|
* tell the C code about.
|
||
|
*/
|
||
|
SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
|
||
|
SIR_RESEL_NO_IDENTIFY,
|
||
|
/*
|
||
|
* It is an IDENTIFY message,
|
||
|
* Load the LUN control block address.
|
||
|
*/
|
||
|
SCR_LOAD_REL (dsa, 4),
|
||
|
offsetof(struct sym_tcb, head.luntbl_sa),
|
||
|
SCR_SFBR_REG (dsa, SCR_SHL, 0),
|
||
|
0,
|
||
|
SCR_REG_REG (dsa, SCR_SHL, 0),
|
||
|
0,
|
||
|
SCR_REG_REG (dsa, SCR_AND, 0xfc),
|
||
|
0,
|
||
|
SCR_LOAD_REL (dsa, 4),
|
||
|
0,
|
||
|
SCR_JUMPR,
|
||
|
8,
|
||
|
}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
|
||
|
/*
|
||
|
* LUN 0 special case (but usual one :))
|
||
|
*/
|
||
|
SCR_LOAD_REL (dsa, 4),
|
||
|
offsetof(struct sym_tcb, head.lun0_sa),
|
||
|
/*
|
||
|
* Jump indirectly to the reselect action for this LUN.
|
||
|
*/
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof(struct sym_lcb, head.resel_sa),
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
|
||
|
}/*-------------------------< RESEL_TAG >------------------------*/,{
|
||
|
/*
|
||
|
* ACK the IDENTIFY previously received.
|
||
|
*/
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
/*
|
||
|
* It shall be a tagged command.
|
||
|
* Read SIMPLE+TAG.
|
||
|
* The C code will deal with errors.
|
||
|
* Agressive optimization, is'nt it? :)
|
||
|
*/
|
||
|
SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
|
||
|
HADDR_1 (msgin),
|
||
|
/*
|
||
|
* Load the pointer to the tagged task
|
||
|
* table for this LUN.
|
||
|
*/
|
||
|
SCR_LOAD_REL (dsa, 4),
|
||
|
offsetof(struct sym_lcb, head.itlq_tbl_sa),
|
||
|
/*
|
||
|
* The SIDL still contains the TAG value.
|
||
|
* Agressive optimization, isn't it? :):)
|
||
|
*/
|
||
|
SCR_REG_SFBR (sidl, SCR_SHL, 0),
|
||
|
0,
|
||
|
#if SYM_CONF_MAX_TASK*4 > 512
|
||
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
||
|
8,
|
||
|
SCR_REG_REG (dsa1, SCR_OR, 2),
|
||
|
0,
|
||
|
SCR_REG_REG (sfbr, SCR_SHL, 0),
|
||
|
0,
|
||
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
||
|
8,
|
||
|
SCR_REG_REG (dsa1, SCR_OR, 1),
|
||
|
0,
|
||
|
#elif SYM_CONF_MAX_TASK*4 > 256
|
||
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
||
|
8,
|
||
|
SCR_REG_REG (dsa1, SCR_OR, 1),
|
||
|
0,
|
||
|
#endif
|
||
|
/*
|
||
|
* Retrieve the DSA of this task.
|
||
|
* JUMP indirectly to the restart point of the CCB.
|
||
|
*/
|
||
|
SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
|
||
|
0,
|
||
|
SCR_LOAD_REL (dsa, 4),
|
||
|
0,
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof(struct sym_ccb, phys.head.go.restart),
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
/* In normal situations we branch to RESEL_DSA */
|
||
|
}/*-------------------------< RESEL_DSA >------------------------*/,{
|
||
|
/*
|
||
|
* ACK the IDENTIFY or TAG previously received.
|
||
|
*/
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
|
||
|
/*
|
||
|
* Initialize the status registers
|
||
|
*/
|
||
|
SCR_LOAD_REL (scr0, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.status),
|
||
|
/*
|
||
|
* Jump to dispatcher.
|
||
|
*/
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
|
||
|
/*
|
||
|
* Load the DSA with the unique ITL task.
|
||
|
*/
|
||
|
SCR_LOAD_REL (dsa, 4),
|
||
|
offsetof(struct sym_lcb, head.itl_task_sa),
|
||
|
/*
|
||
|
* JUMP indirectly to the restart point of the CCB.
|
||
|
*/
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof(struct sym_ccb, phys.head.go.restart),
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
/* In normal situations we branch to RESEL_DSA */
|
||
|
}/*-------------------------< DATA_IN >--------------------------*/,{
|
||
|
/*
|
||
|
* Because the size depends on the
|
||
|
* #define SYM_CONF_MAX_SG parameter,
|
||
|
* it is filled in at runtime.
|
||
|
*
|
||
|
* ##===========< i=0; i<SYM_CONF_MAX_SG >=========
|
||
|
* || SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
||
|
* || offsetof (struct sym_dsb, data[ i]),
|
||
|
* ##==========================================
|
||
|
*/
|
||
|
0
|
||
|
}/*-------------------------< DATA_IN2 >-------------------------*/,{
|
||
|
SCR_CALL,
|
||
|
PADDR_A (datai_done),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (data_ovrun),
|
||
|
}/*-------------------------< DATA_OUT >-------------------------*/,{
|
||
|
/*
|
||
|
* Because the size depends on the
|
||
|
* #define SYM_CONF_MAX_SG parameter,
|
||
|
* it is filled in at runtime.
|
||
|
*
|
||
|
* ##===========< i=0; i<SYM_CONF_MAX_SG >=========
|
||
|
* || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
||
|
* || offsetof (struct sym_dsb, data[ i]),
|
||
|
* ##==========================================
|
||
|
*/
|
||
|
0
|
||
|
}/*-------------------------< DATA_OUT2 >------------------------*/,{
|
||
|
SCR_CALL,
|
||
|
PADDR_A (datao_done),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (data_ovrun),
|
||
|
}/*-------------------------< PM0_DATA >-------------------------*/,{
|
||
|
/*
|
||
|
* Read our host flags to SFBR, so we will be able
|
||
|
* to check against the data direction we expect.
|
||
|
*/
|
||
|
SCR_FROM_REG (HF_REG),
|
||
|
0,
|
||
|
/*
|
||
|
* Check against actual DATA PHASE.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
|
||
|
PADDR_A (pm0_data_out),
|
||
|
/*
|
||
|
* Actual phase is DATA IN.
|
||
|
* Check against expected direction.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
||
|
PADDR_B (data_ovrun),
|
||
|
/*
|
||
|
* Keep track we are moving data from the
|
||
|
* PM0 DATA mini-script.
|
||
|
*/
|
||
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
|
||
|
0,
|
||
|
/*
|
||
|
* Move the data to memory.
|
||
|
*/
|
||
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
||
|
offsetof (struct sym_ccb, phys.pm0.sg),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (pm0_data_end),
|
||
|
}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
|
||
|
/*
|
||
|
* Actual phase is DATA OUT.
|
||
|
* Check against expected direction.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
||
|
PADDR_B (data_ovrun),
|
||
|
/*
|
||
|
* Keep track we are moving data from the
|
||
|
* PM0 DATA mini-script.
|
||
|
*/
|
||
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
|
||
|
0,
|
||
|
/*
|
||
|
* Move the data from memory.
|
||
|
*/
|
||
|
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
||
|
offsetof (struct sym_ccb, phys.pm0.sg),
|
||
|
}/*-------------------------< PM0_DATA_END >---------------------*/,{
|
||
|
/*
|
||
|
* Clear the flag that told we were moving
|
||
|
* data from the PM0 DATA mini-script.
|
||
|
*/
|
||
|
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
|
||
|
0,
|
||
|
/*
|
||
|
* Return to the previous DATA script which
|
||
|
* is guaranteed by design (if no bug) to be
|
||
|
* the main DATA script for this transfer.
|
||
|
*/
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof (struct sym_ccb, phys.pm0.ret),
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
}/*-------------------------< PM1_DATA >-------------------------*/,{
|
||
|
/*
|
||
|
* Read our host flags to SFBR, so we will be able
|
||
|
* to check against the data direction we expect.
|
||
|
*/
|
||
|
SCR_FROM_REG (HF_REG),
|
||
|
0,
|
||
|
/*
|
||
|
* Check against actual DATA PHASE.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
|
||
|
PADDR_A (pm1_data_out),
|
||
|
/*
|
||
|
* Actual phase is DATA IN.
|
||
|
* Check against expected direction.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
||
|
PADDR_B (data_ovrun),
|
||
|
/*
|
||
|
* Keep track we are moving data from the
|
||
|
* PM1 DATA mini-script.
|
||
|
*/
|
||
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
|
||
|
0,
|
||
|
/*
|
||
|
* Move the data to memory.
|
||
|
*/
|
||
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
||
|
offsetof (struct sym_ccb, phys.pm1.sg),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (pm1_data_end),
|
||
|
}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
|
||
|
/*
|
||
|
* Actual phase is DATA OUT.
|
||
|
* Check against expected direction.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
||
|
PADDR_B (data_ovrun),
|
||
|
/*
|
||
|
* Keep track we are moving data from the
|
||
|
* PM1 DATA mini-script.
|
||
|
*/
|
||
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
|
||
|
0,
|
||
|
/*
|
||
|
* Move the data from memory.
|
||
|
*/
|
||
|
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
||
|
offsetof (struct sym_ccb, phys.pm1.sg),
|
||
|
}/*-------------------------< PM1_DATA_END >---------------------*/,{
|
||
|
/*
|
||
|
* Clear the flag that told we were moving
|
||
|
* data from the PM1 DATA mini-script.
|
||
|
*/
|
||
|
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
|
||
|
0,
|
||
|
/*
|
||
|
* Return to the previous DATA script which
|
||
|
* is guaranteed by design (if no bug) to be
|
||
|
* the main DATA script for this transfer.
|
||
|
*/
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof (struct sym_ccb, phys.pm1.ret),
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
}/*-------------------------<>-----------------------------------*/
|
||
|
};
|
||
|
|
||
|
static struct SYM_FWB_SCR SYM_FWB_SCR = {
|
||
|
/*--------------------------< START64 >--------------------------*/ {
|
||
|
/*
|
||
|
* SCRIPT entry point for the 895A, 896 and 1010.
|
||
|
* For now, there is no specific stuff for those
|
||
|
* chips at this point, but this may come.
|
||
|
*/
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (init),
|
||
|
}/*-------------------------< NO_DATA >--------------------------*/,{
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (data_ovrun),
|
||
|
}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
|
||
|
/*
|
||
|
* We are jumped here by the C code, if we have
|
||
|
* some target to reset or some disconnected
|
||
|
* job to abort. Since error recovery is a serious
|
||
|
* busyness, we will really reset the SCSI BUS, if
|
||
|
* case of a SCSI interrupt occurring in this path.
|
||
|
*/
|
||
|
#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
|
||
|
/*
|
||
|
* Set initiator mode.
|
||
|
*/
|
||
|
SCR_CLR (SCR_TRG),
|
||
|
0,
|
||
|
#endif
|
||
|
/*
|
||
|
* And try to select this target.
|
||
|
*/
|
||
|
SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
|
||
|
PADDR_A (reselect),
|
||
|
/*
|
||
|
* Wait for the selection to complete or
|
||
|
* the selection to time out.
|
||
|
*/
|
||
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
||
|
-8,
|
||
|
/*
|
||
|
* Call the C code.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_TARGET_SELECTED,
|
||
|
/*
|
||
|
* The C code should let us continue here.
|
||
|
* Send the 'kiss of death' message.
|
||
|
* We expect an immediate disconnect once
|
||
|
* the target has eaten the message.
|
||
|
*/
|
||
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
||
|
0,
|
||
|
SCR_MOVE_TBL ^ SCR_MSG_OUT,
|
||
|
offsetof (struct sym_hcb, abrt_tbl),
|
||
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
||
|
0,
|
||
|
SCR_WAIT_DISC,
|
||
|
0,
|
||
|
/*
|
||
|
* Tell the C code that we are done.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_ABORT_SENT,
|
||
|
}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
|
||
|
/*
|
||
|
* Jump at scheduler.
|
||
|
*/
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (start),
|
||
|
}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
|
||
|
/*
|
||
|
* If it is an EXTENDED (variable size message)
|
||
|
* Handle it.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
|
||
|
PADDR_B (msg_extended),
|
||
|
/*
|
||
|
* Let the C code handle any other
|
||
|
* 1 byte message.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
|
||
|
PADDR_B (msg_received),
|
||
|
SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
|
||
|
PADDR_B (msg_received),
|
||
|
/*
|
||
|
* We donnot handle 2 bytes messages from SCRIPTS.
|
||
|
* So, let the C code deal with these ones too.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
|
||
|
PADDR_B (msg_weird_seen),
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
||
|
HADDR_1 (msgin[1]),
|
||
|
}/*-------------------------< MSG_RECEIVED >---------------------*/,{
|
||
|
SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
|
||
|
0,
|
||
|
SCR_INT,
|
||
|
SIR_MSG_RECEIVED,
|
||
|
}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
|
||
|
SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
|
||
|
0,
|
||
|
SCR_INT,
|
||
|
SIR_MSG_WEIRD,
|
||
|
}/*-------------------------< MSG_EXTENDED >---------------------*/,{
|
||
|
/*
|
||
|
* Clear ACK and get the next byte
|
||
|
* assumed to be the message length.
|
||
|
*/
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
||
|
HADDR_1 (msgin[1]),
|
||
|
/*
|
||
|
* Try to catch some unlikely situations as 0 length
|
||
|
* or too large the length.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (DATA (0)),
|
||
|
PADDR_B (msg_weird_seen),
|
||
|
SCR_TO_REG (scratcha),
|
||
|
0,
|
||
|
SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
|
||
|
0,
|
||
|
SCR_JUMP ^ IFTRUE (CARRYSET),
|
||
|
PADDR_B (msg_weird_seen),
|
||
|
/*
|
||
|
* We donnot handle extended messages from SCRIPTS.
|
||
|
* Read the amount of data correponding to the
|
||
|
* message length and call the C code.
|
||
|
*/
|
||
|
SCR_STORE_REL (scratcha, 1),
|
||
|
offsetof (struct sym_dsb, smsg_ext.size),
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_MOVE_TBL ^ SCR_MSG_IN,
|
||
|
offsetof (struct sym_dsb, smsg_ext),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (msg_received),
|
||
|
}/*-------------------------< MSG_BAD >--------------------------*/,{
|
||
|
/*
|
||
|
* unimplemented message - reject it.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_REJECT_TO_SEND,
|
||
|
SCR_SET (SCR_ATN),
|
||
|
0,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (clrack),
|
||
|
}/*-------------------------< MSG_WEIRD >------------------------*/,{
|
||
|
/*
|
||
|
* weird message received
|
||
|
* ignore all MSG IN phases and reject it.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_REJECT_TO_SEND,
|
||
|
SCR_SET (SCR_ATN),
|
||
|
0,
|
||
|
}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
||
|
PADDR_A (dispatch),
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
||
|
HADDR_1 (scratch),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (msg_weird1),
|
||
|
}/*-------------------------< WDTR_RESP >------------------------*/,{
|
||
|
/*
|
||
|
* let the target fetch our answer.
|
||
|
*/
|
||
|
SCR_SET (SCR_ATN),
|
||
|
0,
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
||
|
PADDR_B (nego_bad_phase),
|
||
|
}/*-------------------------< SEND_WDTR >------------------------*/,{
|
||
|
/*
|
||
|
* Send the M_X_WIDE_REQ
|
||
|
*/
|
||
|
SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
|
||
|
HADDR_1 (msgout),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (msg_out_done),
|
||
|
}/*-------------------------< SDTR_RESP >------------------------*/,{
|
||
|
/*
|
||
|
* let the target fetch our answer.
|
||
|
*/
|
||
|
SCR_SET (SCR_ATN),
|
||
|
0,
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
||
|
PADDR_B (nego_bad_phase),
|
||
|
}/*-------------------------< SEND_SDTR >------------------------*/,{
|
||
|
/*
|
||
|
* Send the M_X_SYNC_REQ
|
||
|
*/
|
||
|
SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
|
||
|
HADDR_1 (msgout),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (msg_out_done),
|
||
|
}/*-------------------------< PPR_RESP >-------------------------*/,{
|
||
|
/*
|
||
|
* let the target fetch our answer.
|
||
|
*/
|
||
|
SCR_SET (SCR_ATN),
|
||
|
0,
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
||
|
PADDR_B (nego_bad_phase),
|
||
|
}/*-------------------------< SEND_PPR >-------------------------*/,{
|
||
|
/*
|
||
|
* Send the M_X_PPR_REQ
|
||
|
*/
|
||
|
SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
|
||
|
HADDR_1 (msgout),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (msg_out_done),
|
||
|
}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
|
||
|
SCR_INT,
|
||
|
SIR_NEGO_PROTO,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< MSG_OUT >--------------------------*/,{
|
||
|
/*
|
||
|
* The target requests a message.
|
||
|
* We donnot send messages that may
|
||
|
* require the device to go to bus free.
|
||
|
*/
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
|
||
|
HADDR_1 (msgout),
|
||
|
/*
|
||
|
* ... wait for the next phase
|
||
|
* if it's a message out, send it again, ...
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
|
||
|
PADDR_B (msg_out),
|
||
|
}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
|
||
|
/*
|
||
|
* Let the C code be aware of the
|
||
|
* sent message and clear the message.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_MSG_OUT_DONE,
|
||
|
/*
|
||
|
* ... and process the next phase
|
||
|
*/
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< DATA_OVRUN >-----------------------*/,{
|
||
|
/*
|
||
|
* Use scratcha to count the extra bytes.
|
||
|
*/
|
||
|
SCR_LOAD_ABS (scratcha, 4),
|
||
|
PADDR_B (zero),
|
||
|
}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
|
||
|
/*
|
||
|
* The target may want to transfer too much data.
|
||
|
*
|
||
|
* If phase is DATA OUT write 1 byte and count it.
|
||
|
*/
|
||
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
|
||
|
16,
|
||
|
SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
|
||
|
HADDR_1 (scratch),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (data_ovrun2),
|
||
|
/*
|
||
|
* If WSR is set, clear this condition, and
|
||
|
* count this byte.
|
||
|
*/
|
||
|
SCR_FROM_REG (scntl2),
|
||
|
0,
|
||
|
SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
|
||
|
16,
|
||
|
SCR_REG_REG (scntl2, SCR_OR, WSR),
|
||
|
0,
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (data_ovrun2),
|
||
|
/*
|
||
|
* Finally check against DATA IN phase.
|
||
|
* Signal data overrun to the C code
|
||
|
* and jump to dispatcher if not so.
|
||
|
* Read 1 byte otherwise and count it.
|
||
|
*/
|
||
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
|
||
|
16,
|
||
|
SCR_INT,
|
||
|
SIR_DATA_OVERRUN,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
|
||
|
HADDR_1 (scratch),
|
||
|
}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
|
||
|
/*
|
||
|
* Count this byte.
|
||
|
* This will allow to return a negative
|
||
|
* residual to user.
|
||
|
*/
|
||
|
SCR_REG_REG (scratcha, SCR_ADD, 0x01),
|
||
|
0,
|
||
|
SCR_REG_REG (scratcha1, SCR_ADDC, 0),
|
||
|
0,
|
||
|
SCR_REG_REG (scratcha2, SCR_ADDC, 0),
|
||
|
0,
|
||
|
/*
|
||
|
* .. and repeat as required.
|
||
|
*/
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (data_ovrun1),
|
||
|
}/*-------------------------< ABORT_RESEL >----------------------*/,{
|
||
|
SCR_SET (SCR_ATN),
|
||
|
0,
|
||
|
SCR_CLR (SCR_ACK),
|
||
|
0,
|
||
|
/*
|
||
|
* send the abort/abortag/reset message
|
||
|
* we expect an immediate disconnect
|
||
|
*/
|
||
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
||
|
0,
|
||
|
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
|
||
|
HADDR_1 (msgout),
|
||
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
||
|
0,
|
||
|
SCR_WAIT_DISC,
|
||
|
0,
|
||
|
SCR_INT,
|
||
|
SIR_RESEL_ABORTED,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (start),
|
||
|
}/*-------------------------< RESEND_IDENT >---------------------*/,{
|
||
|
/*
|
||
|
* The target stays in MSG OUT phase after having acked
|
||
|
* Identify [+ Tag [+ Extended message ]]. Targets shall
|
||
|
* behave this way on parity error.
|
||
|
* We must send it again all the messages.
|
||
|
*/
|
||
|
SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
|
||
|
0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (send_ident),
|
||
|
}/*-------------------------< IDENT_BREAK >----------------------*/,{
|
||
|
SCR_CLR (SCR_ATN),
|
||
|
0,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (select2),
|
||
|
}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
|
||
|
SCR_SET (SCR_ATN),
|
||
|
0,
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (select2),
|
||
|
}/*-------------------------< SDATA_IN >-------------------------*/,{
|
||
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
||
|
offsetof (struct sym_dsb, sense),
|
||
|
SCR_CALL,
|
||
|
PADDR_A (datai_done),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (data_ovrun),
|
||
|
}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
|
||
|
/*
|
||
|
* Message is an IDENTIFY, but lun is unknown.
|
||
|
* Signal problem to C code for logging the event.
|
||
|
* Send a M_ABORT to clear all pending tasks.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_RESEL_BAD_LUN,
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (abort_resel),
|
||
|
}/*-------------------------< BAD_I_T_L >------------------------*/,{
|
||
|
/*
|
||
|
* We donnot have a task for that I_T_L.
|
||
|
* Signal problem to C code for logging the event.
|
||
|
* Send a M_ABORT message.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_RESEL_BAD_I_T_L,
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (abort_resel),
|
||
|
}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
|
||
|
/*
|
||
|
* We donnot have a task that matches the tag.
|
||
|
* Signal problem to C code for logging the event.
|
||
|
* Send a M_ABORTTAG message.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
SIR_RESEL_BAD_I_T_L_Q,
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (abort_resel),
|
||
|
}/*-------------------------< BAD_STATUS >-----------------------*/,{
|
||
|
/*
|
||
|
* Anything different from INTERMEDIATE
|
||
|
* CONDITION MET should be a bad SCSI status,
|
||
|
* given that GOOD status has already been tested.
|
||
|
* Call the C code.
|
||
|
*/
|
||
|
SCR_LOAD_ABS (scratcha, 4),
|
||
|
PADDR_B (startpos),
|
||
|
SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
|
||
|
SIR_BAD_SCSI_STATUS,
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
}/*-------------------------< PM_HANDLE >------------------------*/,{
|
||
|
/*
|
||
|
* Phase mismatch handling.
|
||
|
*
|
||
|
* Since we have to deal with 2 SCSI data pointers
|
||
|
* (current and saved), we need at least 2 contexts.
|
||
|
* Each context (pm0 and pm1) has a saved area, a
|
||
|
* SAVE mini-script and a DATA phase mini-script.
|
||
|
*/
|
||
|
/*
|
||
|
* Get the PM handling flags.
|
||
|
*/
|
||
|
SCR_FROM_REG (HF_REG),
|
||
|
0,
|
||
|
/*
|
||
|
* If no flags (1rst PM for example), avoid
|
||
|
* all the below heavy flags testing.
|
||
|
* This makes the normal case a bit faster.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
|
||
|
PADDR_B (pm_handle1),
|
||
|
/*
|
||
|
* If we received a SAVE DP, switch to the
|
||
|
* other PM context since the savep may point
|
||
|
* to the current PM context.
|
||
|
*/
|
||
|
SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
|
||
|
8,
|
||
|
SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
|
||
|
0,
|
||
|
/*
|
||
|
* If we have been interrupt in a PM DATA mini-script,
|
||
|
* we take the return address from the corresponding
|
||
|
* saved area.
|
||
|
* This ensure the return address always points to the
|
||
|
* main DATA script for this transfer.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
|
||
|
PADDR_B (pm_handle1),
|
||
|
SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
|
||
|
16,
|
||
|
SCR_LOAD_REL (ia, 4),
|
||
|
offsetof(struct sym_ccb, phys.pm0.ret),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (pm_save),
|
||
|
SCR_LOAD_REL (ia, 4),
|
||
|
offsetof(struct sym_ccb, phys.pm1.ret),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (pm_save),
|
||
|
}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
|
||
|
/*
|
||
|
* Normal case.
|
||
|
* Update the return address so that it
|
||
|
* will point after the interrupted MOVE.
|
||
|
*/
|
||
|
SCR_REG_REG (ia, SCR_ADD, 8),
|
||
|
0,
|
||
|
SCR_REG_REG (ia1, SCR_ADDC, 0),
|
||
|
0,
|
||
|
}/*-------------------------< PM_SAVE >--------------------------*/,{
|
||
|
/*
|
||
|
* Clear all the flags that told us if we were
|
||
|
* interrupted in a PM DATA mini-script and/or
|
||
|
* we received a SAVE DP.
|
||
|
*/
|
||
|
SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
|
||
|
0,
|
||
|
/*
|
||
|
* Choose the current PM context.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
|
||
|
PADDR_B (pm1_save),
|
||
|
}/*-------------------------< PM0_SAVE >-------------------------*/,{
|
||
|
SCR_STORE_REL (ia, 4),
|
||
|
offsetof(struct sym_ccb, phys.pm0.ret),
|
||
|
/*
|
||
|
* If WSR bit is set, either UA and RBC may
|
||
|
* have to be changed whether the device wants
|
||
|
* to ignore this residue or not.
|
||
|
*/
|
||
|
SCR_FROM_REG (scntl2),
|
||
|
0,
|
||
|
SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
|
||
|
PADDR_B (pm_wsr_handle),
|
||
|
/*
|
||
|
* Save the remaining byte count, the updated
|
||
|
* address and the return address.
|
||
|
*/
|
||
|
SCR_STORE_REL (rbc, 4),
|
||
|
offsetof(struct sym_ccb, phys.pm0.sg.size),
|
||
|
SCR_STORE_REL (ua, 4),
|
||
|
offsetof(struct sym_ccb, phys.pm0.sg.addr),
|
||
|
/*
|
||
|
* Set the current pointer at the PM0 DATA mini-script.
|
||
|
*/
|
||
|
SCR_LOAD_ABS (ia, 4),
|
||
|
PADDR_B (pm0_data_addr),
|
||
|
}/*-------------------------< PM_SAVE_END >----------------------*/,{
|
||
|
SCR_STORE_REL (ia, 4),
|
||
|
offsetof(struct sym_ccb, phys.head.lastp),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
}/*-------------------------< PM1_SAVE >-------------------------*/,{
|
||
|
SCR_STORE_REL (ia, 4),
|
||
|
offsetof(struct sym_ccb, phys.pm1.ret),
|
||
|
/*
|
||
|
* If WSR bit is set, either UA and RBC may
|
||
|
* have to be changed whether the device wants
|
||
|
* to ignore this residue or not.
|
||
|
*/
|
||
|
SCR_FROM_REG (scntl2),
|
||
|
0,
|
||
|
SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
|
||
|
PADDR_B (pm_wsr_handle),
|
||
|
/*
|
||
|
* Save the remaining byte count, the updated
|
||
|
* address and the return address.
|
||
|
*/
|
||
|
SCR_STORE_REL (rbc, 4),
|
||
|
offsetof(struct sym_ccb, phys.pm1.sg.size),
|
||
|
SCR_STORE_REL (ua, 4),
|
||
|
offsetof(struct sym_ccb, phys.pm1.sg.addr),
|
||
|
/*
|
||
|
* Set the current pointer at the PM1 DATA mini-script.
|
||
|
*/
|
||
|
SCR_LOAD_ABS (ia, 4),
|
||
|
PADDR_B (pm1_data_addr),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (pm_save_end),
|
||
|
}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
|
||
|
/*
|
||
|
* Phase mismatch handling from SCRIPT with WSR set.
|
||
|
* Such a condition can occur if the chip wants to
|
||
|
* execute a CHMOV(size > 1) when the WSR bit is
|
||
|
* set and the target changes PHASE.
|
||
|
*
|
||
|
* We must move the residual byte to memory.
|
||
|
*
|
||
|
* UA contains bit 0..31 of the address to
|
||
|
* move the residual byte.
|
||
|
* Move it to the table indirect.
|
||
|
*/
|
||
|
SCR_STORE_REL (ua, 4),
|
||
|
offsetof (struct sym_ccb, phys.wresid.addr),
|
||
|
/*
|
||
|
* Increment UA (move address to next position).
|
||
|
*/
|
||
|
SCR_REG_REG (ua, SCR_ADD, 1),
|
||
|
0,
|
||
|
SCR_REG_REG (ua1, SCR_ADDC, 0),
|
||
|
0,
|
||
|
SCR_REG_REG (ua2, SCR_ADDC, 0),
|
||
|
0,
|
||
|
SCR_REG_REG (ua3, SCR_ADDC, 0),
|
||
|
0,
|
||
|
/*
|
||
|
* Compute SCRATCHA as:
|
||
|
* - size to transfer = 1 byte.
|
||
|
* - bit 24..31 = high address bit [32...39].
|
||
|
*/
|
||
|
SCR_LOAD_ABS (scratcha, 4),
|
||
|
PADDR_B (zero),
|
||
|
SCR_REG_REG (scratcha, SCR_OR, 1),
|
||
|
0,
|
||
|
SCR_FROM_REG (rbc3),
|
||
|
0,
|
||
|
SCR_TO_REG (scratcha3),
|
||
|
0,
|
||
|
/*
|
||
|
* Move this value to the table indirect.
|
||
|
*/
|
||
|
SCR_STORE_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.wresid.size),
|
||
|
/*
|
||
|
* Wait for a valid phase.
|
||
|
* While testing with bogus QUANTUM drives, the C1010
|
||
|
* sometimes raised a spurious phase mismatch with
|
||
|
* WSR and the CHMOV(1) triggered another PM.
|
||
|
* Waiting explicitely for the PHASE seemed to avoid
|
||
|
* the nested phase mismatch. Btw, this didn't happen
|
||
|
* using my IBM drives.
|
||
|
*/
|
||
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
|
||
|
0,
|
||
|
/*
|
||
|
* Perform the move of the residual byte.
|
||
|
*/
|
||
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
||
|
offsetof (struct sym_ccb, phys.wresid),
|
||
|
/*
|
||
|
* We can now handle the phase mismatch with UA fixed.
|
||
|
* RBC[0..23]=0 is a special case that does not require
|
||
|
* a PM context. The C code also checks against this.
|
||
|
*/
|
||
|
SCR_FROM_REG (rbc),
|
||
|
0,
|
||
|
SCR_RETURN ^ IFFALSE (DATA (0)),
|
||
|
0,
|
||
|
SCR_FROM_REG (rbc1),
|
||
|
0,
|
||
|
SCR_RETURN ^ IFFALSE (DATA (0)),
|
||
|
0,
|
||
|
SCR_FROM_REG (rbc2),
|
||
|
0,
|
||
|
SCR_RETURN ^ IFFALSE (DATA (0)),
|
||
|
0,
|
||
|
/*
|
||
|
* RBC[0..23]=0.
|
||
|
* Not only we donnot need a PM context, but this would
|
||
|
* lead to a bogus CHMOV(0). This condition means that
|
||
|
* the residual was the last byte to move from this CHMOV.
|
||
|
* So, we just have to move the current data script pointer
|
||
|
* (i.e. TEMP) to the SCRIPTS address following the
|
||
|
* interrupted CHMOV and jump to dispatcher.
|
||
|
* IA contains the data pointer to save.
|
||
|
*/
|
||
|
SCR_JUMP,
|
||
|
PADDR_B (pm_save_end),
|
||
|
}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
|
||
|
/*
|
||
|
* Helper for the C code when WSR bit is set.
|
||
|
* Perform the move of the residual byte.
|
||
|
*/
|
||
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
||
|
offsetof (struct sym_ccb, phys.wresid),
|
||
|
SCR_JUMP,
|
||
|
PADDR_A (dispatch),
|
||
|
|
||
|
#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
|
||
|
}/*-------------------------< DATA_IO >--------------------------*/,{
|
||
|
/*
|
||
|
* We jump here if the data direction was unknown at the
|
||
|
* time we had to queue the command to the scripts processor.
|
||
|
* Pointers had been set as follow in this situation:
|
||
|
* savep --> DATA_IO
|
||
|
* lastp --> start pointer when DATA_IN
|
||
|
* wlastp --> start pointer when DATA_OUT
|
||
|
* This script sets savep and lastp according to the
|
||
|
* direction chosen by the target.
|
||
|
*/
|
||
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
|
||
|
PADDR_B (data_io_out),
|
||
|
}/*-------------------------< DATA_IO_IN >-----------------------*/,{
|
||
|
/*
|
||
|
* Direction is DATA IN.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.lastp),
|
||
|
}/*-------------------------< DATA_IO_COM >----------------------*/,{
|
||
|
SCR_STORE_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.savep),
|
||
|
|
||
|
/*
|
||
|
* Jump to the SCRIPTS according to actual direction.
|
||
|
*/
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.savep),
|
||
|
SCR_RETURN,
|
||
|
0,
|
||
|
}/*-------------------------< DATA_IO_OUT >----------------------*/,{
|
||
|
/*
|
||
|
* Direction is DATA OUT.
|
||
|
*/
|
||
|
SCR_REG_REG (HF_REG, SCR_AND, (~HF_DATA_IN)),
|
||
|
0,
|
||
|
SCR_LOAD_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.wlastp),
|
||
|
SCR_STORE_REL (scratcha, 4),
|
||
|
offsetof (struct sym_ccb, phys.head.lastp),
|
||
|
SCR_JUMP,
|
||
|
PADDR_B(data_io_com),
|
||
|
#endif /* SYM_OPT_HANDLE_DIR_UNKNOWN */
|
||
|
|
||
|
}/*-------------------------< ZERO >-----------------------------*/,{
|
||
|
SCR_DATA_ZERO,
|
||
|
}/*-------------------------< SCRATCH >--------------------------*/,{
|
||
|
SCR_DATA_ZERO,
|
||
|
}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
|
||
|
SCR_DATA_ZERO,
|
||
|
}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
|
||
|
SCR_DATA_ZERO,
|
||
|
}/*-------------------------< DONE_POS >-------------------------*/,{
|
||
|
SCR_DATA_ZERO,
|
||
|
}/*-------------------------< STARTPOS >-------------------------*/,{
|
||
|
SCR_DATA_ZERO,
|
||
|
}/*-------------------------< TARGTBL >--------------------------*/,{
|
||
|
SCR_DATA_ZERO,
|
||
|
}/*-------------------------<>-----------------------------------*/
|
||
|
};
|
||
|
|
||
|
static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
|
||
|
/*-------------------------< SNOOPTEST >------------------------*/{
|
||
|
/*
|
||
|
* Read the variable from memory.
|
||
|
*/
|
||
|
SCR_LOAD_REL (scratcha, 4),
|
||
|
offsetof(struct sym_hcb, scratch),
|
||
|
/*
|
||
|
* Write the variable to memory.
|
||
|
*/
|
||
|
SCR_STORE_REL (temp, 4),
|
||
|
offsetof(struct sym_hcb, scratch),
|
||
|
/*
|
||
|
* Read back the variable from memory.
|
||
|
*/
|
||
|
SCR_LOAD_REL (temp, 4),
|
||
|
offsetof(struct sym_hcb, scratch),
|
||
|
}/*-------------------------< SNOOPEND >-------------------------*/,{
|
||
|
/*
|
||
|
* And stop.
|
||
|
*/
|
||
|
SCR_INT,
|
||
|
99,
|
||
|
}/*-------------------------<>-----------------------------------*/
|
||
|
};
|