You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/fs/xfs/xfs_inode.c

3774 lines
107 KiB

/*
* Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Further, this software is distributed without any warranty that it is
* free of the rightful claim of any third person regarding infringement
* or the like. Any license provided herein, whether implied or
* otherwise, applies only to this software file. Patent licenses, if
* any, provided herein do not apply to combinations of this program with
* other software, or any other product whatsoever.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
* Mountain View, CA 94043, or:
*
* http://www.sgi.com
*
* For further information regarding this notice, see:
*
* http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
*/
#include "xfs.h"
#include "xfs_macros.h"
#include "xfs_types.h"
#include "xfs_inum.h"
#include "xfs_log.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_alloc_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_imap.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_attr_sf.h"
#include "xfs_dir_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode_item.h"
#include "xfs_inode.h"
#include "xfs_bmap.h"
#include "xfs_buf_item.h"
#include "xfs_rw.h"
#include "xfs_error.h"
#include "xfs_bit.h"
#include "xfs_utils.h"
#include "xfs_dir2_trace.h"
#include "xfs_quota.h"
#include "xfs_mac.h"
#include "xfs_acl.h"
kmem_zone_t *xfs_ifork_zone;
kmem_zone_t *xfs_inode_zone;
kmem_zone_t *xfs_chashlist_zone;
/*
* Used in xfs_itruncate(). This is the maximum number of extents
* freed from a file in a single transaction.
*/
#define XFS_ITRUNC_MAX_EXTENTS 2
STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
#ifdef DEBUG
/*
* Make sure that the extents in the given memory buffer
* are valid.
*/
STATIC void
xfs_validate_extents(
xfs_bmbt_rec_t *ep,
int nrecs,
int disk,
xfs_exntfmt_t fmt)
{
xfs_bmbt_irec_t irec;
xfs_bmbt_rec_t rec;
int i;
for (i = 0; i < nrecs; i++) {
rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
if (disk)
xfs_bmbt_disk_get_all(&rec, &irec);
else
xfs_bmbt_get_all(&rec, &irec);
if (fmt == XFS_EXTFMT_NOSTATE)
ASSERT(irec.br_state == XFS_EXT_NORM);
ep++;
}
}
#else /* DEBUG */
#define xfs_validate_extents(ep, nrecs, disk, fmt)
#endif /* DEBUG */
/*
* Check that none of the inode's in the buffer have a next
* unlinked field of 0.
*/
#if defined(DEBUG)
void
xfs_inobp_check(
xfs_mount_t *mp,
xfs_buf_t *bp)
{
int i;
int j;
xfs_dinode_t *dip;
j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
for (i = 0; i < j; i++) {
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
i * mp->m_sb.sb_inodesize);
if (!dip->di_next_unlinked) {
xfs_fs_cmn_err(CE_ALERT, mp,
"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
bp);
ASSERT(dip->di_next_unlinked);
}
}
}
#endif
/*
* This routine is called to map an inode number within a file
* system to the buffer containing the on-disk version of the
* inode. It returns a pointer to the buffer containing the
* on-disk inode in the bpp parameter, and in the dip parameter
* it returns a pointer to the on-disk inode within that buffer.
*
* If a non-zero error is returned, then the contents of bpp and
* dipp are undefined.
*
* Use xfs_imap() to determine the size and location of the
* buffer to read from disk.
*/
STATIC int
xfs_inotobp(
xfs_mount_t *mp,
xfs_trans_t *tp,
xfs_ino_t ino,
xfs_dinode_t **dipp,
xfs_buf_t **bpp,
int *offset)
{
int di_ok;
xfs_imap_t imap;
xfs_buf_t *bp;
int error;
xfs_dinode_t *dip;
/*
* Call the space managment code to find the location of the
* inode on disk.
*/
imap.im_blkno = 0;
error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
if (error != 0) {
cmn_err(CE_WARN,
"xfs_inotobp: xfs_imap() returned an "
"error %d on %s. Returning error.", error, mp->m_fsname);
return error;
}
/*
* If the inode number maps to a block outside the bounds of the
* file system then return NULL rather than calling read_buf
* and panicing when we get an error from the driver.
*/
if ((imap.im_blkno + imap.im_len) >
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
cmn_err(CE_WARN,
"xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
"of the file system %s. Returning EINVAL.",
imap.im_blkno, imap.im_len,mp->m_fsname);
return XFS_ERROR(EINVAL);
}
/*
* Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
* default to just a read_buf() call.
*/
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
(int)imap.im_len, XFS_BUF_LOCK, &bp);
if (error) {
cmn_err(CE_WARN,
"xfs_inotobp: xfs_trans_read_buf() returned an "
"error %d on %s. Returning error.", error, mp->m_fsname);
return error;
}
dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
di_ok =
INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
XFS_RANDOM_ITOBP_INOTOBP))) {
XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
xfs_trans_brelse(tp, bp);
cmn_err(CE_WARN,
"xfs_inotobp: XFS_TEST_ERROR() returned an "
"error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
return XFS_ERROR(EFSCORRUPTED);
}
xfs_inobp_check(mp, bp);
/*
* Set *dipp to point to the on-disk inode in the buffer.
*/
*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
*bpp = bp;
*offset = imap.im_boffset;
return 0;
}
/*
* This routine is called to map an inode to the buffer containing
* the on-disk version of the inode. It returns a pointer to the
* buffer containing the on-disk inode in the bpp parameter, and in
* the dip parameter it returns a pointer to the on-disk inode within
* that buffer.
*
* If a non-zero error is returned, then the contents of bpp and
* dipp are undefined.
*
* If the inode is new and has not yet been initialized, use xfs_imap()
* to determine the size and location of the buffer to read from disk.
* If the inode has already been mapped to its buffer and read in once,
* then use the mapping information stored in the inode rather than
* calling xfs_imap(). This allows us to avoid the overhead of looking
* at the inode btree for small block file systems (see xfs_dilocate()).
* We can tell whether the inode has been mapped in before by comparing
* its disk block address to 0. Only uninitialized inodes will have
* 0 for the disk block address.
*/
int
xfs_itobp(
xfs_mount_t *mp,
xfs_trans_t *tp,
xfs_inode_t *ip,
xfs_dinode_t **dipp,
xfs_buf_t **bpp,
xfs_daddr_t bno)
{
xfs_buf_t *bp;
int error;
xfs_imap_t imap;
#ifdef __KERNEL__
int i;
int ni;
#endif
if (ip->i_blkno == (xfs_daddr_t)0) {
/*
* Call the space management code to find the location of the
* inode on disk.
*/
imap.im_blkno = bno;
error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
if (error != 0) {
return error;
}
/*
* If the inode number maps to a block outside the bounds
* of the file system then return NULL rather than calling
* read_buf and panicing when we get an error from the
* driver.
*/
if ((imap.im_blkno + imap.im_len) >
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
#ifdef DEBUG
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
"(imap.im_blkno (0x%llx) "
"+ imap.im_len (0x%llx)) > "
" XFS_FSB_TO_BB(mp, "
"mp->m_sb.sb_dblocks) (0x%llx)",
(unsigned long long) imap.im_blkno,
(unsigned long long) imap.im_len,
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
#endif /* DEBUG */
return XFS_ERROR(EINVAL);
}
/*
* Fill in the fields in the inode that will be used to
* map the inode to its buffer from now on.
*/
ip->i_blkno = imap.im_blkno;
ip->i_len = imap.im_len;
ip->i_boffset = imap.im_boffset;
} else {
/*
* We've already mapped the inode once, so just use the
* mapping that we saved the first time.
*/
imap.im_blkno = ip->i_blkno;
imap.im_len = ip->i_len;
imap.im_boffset = ip->i_boffset;
}
ASSERT(bno == 0 || bno == imap.im_blkno);
/*
* Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
* default to just a read_buf() call.
*/
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
(int)imap.im_len, XFS_BUF_LOCK, &bp);
if (error) {
#ifdef DEBUG
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
"xfs_trans_read_buf() returned error %d, "
"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
error, (unsigned long long) imap.im_blkno,
(unsigned long long) imap.im_len);
#endif /* DEBUG */
return error;
}
#ifdef __KERNEL__
/*
* Validate the magic number and version of every inode in the buffer
* (if DEBUG kernel) or the first inode in the buffer, otherwise.
*/
#ifdef DEBUG
ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
#else
ni = 1;
#endif
for (i = 0; i < ni; i++) {
int di_ok;
xfs_dinode_t *dip;
dip = (xfs_dinode_t *)xfs_buf_offset(bp,
(i << mp->m_sb.sb_inodelog));
di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
XFS_RANDOM_ITOBP_INOTOBP))) {
#ifdef DEBUG
prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
mp->m_ddev_targp,
(unsigned long long)imap.im_blkno, i,
INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
#endif
XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
mp, dip);
xfs_trans_brelse(tp, bp);
return XFS_ERROR(EFSCORRUPTED);
}
}
#endif /* __KERNEL__ */
xfs_inobp_check(mp, bp);
/*
* Mark the buffer as an inode buffer now that it looks good
*/
XFS_BUF_SET_VTYPE(bp, B_FS_INO);
/*
* Set *dipp to point to the on-disk inode in the buffer.
*/
*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
*bpp = bp;
return 0;
}
/*
* Move inode type and inode format specific information from the
* on-disk inode to the in-core inode. For fifos, devs, and sockets
* this means set if_rdev to the proper value. For files, directories,
* and symlinks this means to bring in the in-line data or extent
* pointers. For a file in B-tree format, only the root is immediately
* brought in-core. The rest will be in-lined in if_extents when it
* is first referenced (see xfs_iread_extents()).
*/
STATIC int
xfs_iformat(
xfs_inode_t *ip,
xfs_dinode_t *dip)
{
xfs_attr_shortform_t *atp;
int size;
int error;
xfs_fsize_t di_size;
ip->i_df.if_ext_max =
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
error = 0;
if (unlikely(
INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
"corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
" Unmount and run xfs_repair.",
(unsigned long long)ip->i_ino,
(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
+ INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
(unsigned long long)
INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return XFS_ERROR(EFSCORRUPTED);
}
if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
"corrupt dinode %Lu, forkoff = 0x%x."
" Unmount and run xfs_repair.",
(unsigned long long)ip->i_ino,
(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return XFS_ERROR(EFSCORRUPTED);
}
switch (ip->i_d.di_mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return XFS_ERROR(EFSCORRUPTED);
}
ip->i_d.di_size = 0;
ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
break;
case S_IFREG:
case S_IFLNK:
case S_IFDIR:
switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
case XFS_DINODE_FMT_LOCAL:
/*
* no local regular files yet
*/
if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
"corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
(unsigned long long) ip->i_ino);
XFS_CORRUPTION_ERROR("xfs_iformat(4)",
XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return XFS_ERROR(EFSCORRUPTED);
}
di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
"corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
(unsigned long long) ip->i_ino,
(long long) di_size);
XFS_CORRUPTION_ERROR("xfs_iformat(5)",
XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return XFS_ERROR(EFSCORRUPTED);
}
size = (int)di_size;
error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
break;
case XFS_DINODE_FMT_EXTENTS:
error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
break;
case XFS_DINODE_FMT_BTREE:
error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
break;
default:
XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
ip->i_mount);
return XFS_ERROR(EFSCORRUPTED);
}
break;
default:
XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
return XFS_ERROR(EFSCORRUPTED);
}
if (error) {
return error;
}
if (!XFS_DFORK_Q(dip))
return 0;
ASSERT(ip->i_afp == NULL);
ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
ip->i_afp->if_ext_max =
XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
case XFS_DINODE_FMT_LOCAL:
atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
break;
case XFS_DINODE_FMT_EXTENTS:
error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
break;
case XFS_DINODE_FMT_BTREE:
error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
break;
default:
error = XFS_ERROR(EFSCORRUPTED);
break;
}
if (error) {
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
ip->i_afp = NULL;
xfs_idestroy_fork(ip, XFS_DATA_FORK);
}
return error;
}
/*
* The file is in-lined in the on-disk inode.
* If it fits into if_inline_data, then copy
* it there, otherwise allocate a buffer for it
* and copy the data there. Either way, set
* if_data to point at the data.
* If we allocate a buffer for the data, make
* sure that its size is a multiple of 4 and
* record the real size in i_real_bytes.
*/
STATIC int
xfs_iformat_local(
xfs_inode_t *ip,
xfs_dinode_t *dip,
int whichfork,
int size)
{
xfs_ifork_t *ifp;
int real_size;
/*
* If the size is unreasonable, then something
* is wrong and we just bail out rather than crash in
* kmem_alloc() or memcpy() below.
*/
if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
"corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
(unsigned long long) ip->i_ino, size,
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return XFS_ERROR(EFSCORRUPTED);
}
ifp = XFS_IFORK_PTR(ip, whichfork);
real_size = 0;
if (size == 0)
ifp->if_u1.if_data = NULL;
else if (size <= sizeof(ifp->if_u2.if_inline_data))
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
else {
real_size = roundup(size, 4);
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
}
ifp->if_bytes = size;
ifp->if_real_bytes = real_size;
if (size)
memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
ifp->if_flags &= ~XFS_IFEXTENTS;
ifp->if_flags |= XFS_IFINLINE;
return 0;
}
/*
* The file consists of a set of extents all
* of which fit into the on-disk inode.
* If there are few enough extents to fit into
* the if_inline_ext, then copy them there.
* Otherwise allocate a buffer for them and copy
* them into it. Either way, set if_extents
* to point at the extents.
*/
STATIC int
xfs_iformat_extents(
xfs_inode_t *ip,
xfs_dinode_t *dip,
int whichfork)
{
xfs_bmbt_rec_t *ep, *dp;
xfs_ifork_t *ifp;
int nex;
int real_size;
int size;
int i;
ifp = XFS_IFORK_PTR(ip, whichfork);
nex = XFS_DFORK_NEXTENTS(dip, whichfork);
size = nex * (uint)sizeof(xfs_bmbt_rec_t);
/*
* If the number of extents is unreasonable, then something
* is wrong and we just bail out rather than crash in
* kmem_alloc() or memcpy() below.
*/
if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
"corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
(unsigned long long) ip->i_ino, nex);
XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
ip->i_mount, dip);
return XFS_ERROR(EFSCORRUPTED);
}
real_size = 0;
if (nex == 0)
ifp->if_u1.if_extents = NULL;
else if (nex <= XFS_INLINE_EXTS)
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
else {
ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
ASSERT(ifp->if_u1.if_extents != NULL);
real_size = size;
}
ifp->if_bytes = size;
ifp->if_real_bytes = real_size;
if (size) {
dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
ep = ifp->if_u1.if_extents;
for (i = 0; i < nex; i++, ep++, dp++) {
ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
ARCH_CONVERT);
ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
ARCH_CONVERT);
}
xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
whichfork);
if (whichfork != XFS_DATA_FORK ||
XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
if (unlikely(xfs_check_nostate_extents(
ifp->if_u1.if_extents, nex))) {
XFS_ERROR_REPORT("xfs_iformat_extents(2)",
XFS_ERRLEVEL_LOW,
ip->i_mount);
return XFS_ERROR(EFSCORRUPTED);
}
}
ifp->if_flags |= XFS_IFEXTENTS;
return 0;
}
/*
* The file has too many extents to fit into
* the inode, so they are in B-tree format.
* Allocate a buffer for the root of the B-tree
* and copy the root into it. The i_extents
* field will remain NULL until all of the
* extents are read in (when they are needed).
*/
STATIC int
xfs_iformat_btree(
xfs_inode_t *ip,
xfs_dinode_t *dip,
int whichfork)
{
xfs_bmdr_block_t *dfp;
xfs_ifork_t *ifp;
/* REFERENCED */
int nrecs;
int size;
ifp = XFS_IFORK_PTR(ip, whichfork);
dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
size = XFS_BMAP_BROOT_SPACE(dfp);
nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
/*
* blow out if -- fork has less extents than can fit in
* fork (fork shouldn't be a btree format), root btree
* block has more records than can fit into the fork,
* or the number of extents is greater than the number of
* blocks.
*/
if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
|| XFS_BMDR_SPACE_CALC(nrecs) >
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
|| XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
xfs_fs_cmn_err(CE_WARN, ip->i_mount,
"corrupt inode %Lu (btree). Unmount and run xfs_repair.",
(unsigned long long) ip->i_ino);
XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
ip->i_mount);
return XFS_ERROR(EFSCORRUPTED);
}
ifp->if_broot_bytes = size;
ifp->if_broot = kmem_alloc(size, KM_SLEEP);
ASSERT(ifp->if_broot != NULL);
/*
* Copy and convert from the on-disk structure
* to the in-memory structure.
*/
xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
ifp->if_broot, size);
ifp->if_flags &= ~XFS_IFEXTENTS;
ifp->if_flags |= XFS_IFBROOT;
return 0;
}
/*
* xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
* and native format
*
* buf = on-disk representation
* dip = native representation
* dir = direction - +ve -> disk to native
* -ve -> native to disk
*/
void
xfs_xlate_dinode_core(
xfs_caddr_t buf,
xfs_dinode_core_t *dip,
int dir)
{
xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
xfs_arch_t arch = ARCH_CONVERT;
ASSERT(dir);
INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
if (dir > 0) {
memcpy(mem_core->di_pad, buf_core->di_pad,
sizeof(buf_core->di_pad));
} else {
memcpy(buf_core->di_pad, mem_core->di_pad,
sizeof(buf_core->di_pad));
}
INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
dir, arch);
INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
dir, arch);
INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
dir, arch);
INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
dir, arch);
INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
dir, arch);
INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
dir, arch);
INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
}
STATIC uint
_xfs_dic2xflags(
xfs_dinode_core_t *dic,
__uint16_t di_flags)
{
uint flags = 0;
if (di_flags & XFS_DIFLAG_ANY) {
if (di_flags & XFS_DIFLAG_REALTIME)
flags |= XFS_XFLAG_REALTIME;
if (di_flags & XFS_DIFLAG_PREALLOC)
flags |= XFS_XFLAG_PREALLOC;
if (di_flags & XFS_DIFLAG_IMMUTABLE)
flags |= XFS_XFLAG_IMMUTABLE;
if (di_flags & XFS_DIFLAG_APPEND)
flags |= XFS_XFLAG_APPEND;
if (di_flags & XFS_DIFLAG_SYNC)
flags |= XFS_XFLAG_SYNC;
if (di_flags & XFS_DIFLAG_NOATIME)
flags |= XFS_XFLAG_NOATIME;
if (di_flags & XFS_DIFLAG_NODUMP)
flags |= XFS_XFLAG_NODUMP;
if (di_flags & XFS_DIFLAG_RTINHERIT)
flags |= XFS_XFLAG_RTINHERIT;
if (di_flags & XFS_DIFLAG_PROJINHERIT)
flags |= XFS_XFLAG_PROJINHERIT;
if (di_flags & XFS_DIFLAG_NOSYMLINKS)
flags |= XFS_XFLAG_NOSYMLINKS;
}
return flags;
}
uint
xfs_ip2xflags(
xfs_inode_t *ip)
{
xfs_dinode_core_t *dic = &ip->i_d;
return _xfs_dic2xflags(dic, dic->di_flags) |
(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
}
uint
xfs_dic2xflags(
xfs_dinode_core_t *dic)
{
return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
}
/*
* Given a mount structure and an inode number, return a pointer
* to a newly allocated in-core inode coresponding to the given
* inode number.
*
* Initialize the inode's attributes and extent pointers if it
* already has them (it will not if the inode has no links).
*/
int
xfs_iread(
xfs_mount_t *mp,
xfs_trans_t *tp,
xfs_ino_t ino,
xfs_inode_t **ipp,
xfs_daddr_t bno)
{
xfs_buf_t *bp;
xfs_dinode_t *dip;
xfs_inode_t *ip;
int error;
ASSERT(xfs_inode_zone != NULL);
ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
ip->i_ino = ino;
ip->i_mount = mp;
/*
* Get pointer's to the on-disk inode and the buffer containing it.
* If the inode number refers to a block outside the file system
* then xfs_itobp() will return NULL. In this case we should
* return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
* know that this is a new incore inode.
*/
error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
if (error != 0) {
kmem_zone_free(xfs_inode_zone, ip);
return error;
}
/*
* Initialize inode's trace buffers.
* Do this before xfs_iformat in case it adds entries.
*/
#ifdef XFS_BMAP_TRACE
ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_BMBT_TRACE
ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_RW_TRACE
ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_ILOCK_TRACE
ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
#endif
#ifdef XFS_DIR2_TRACE
ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
#endif
/*
* If we got something that isn't an inode it means someone
* (nfs or dmi) has a stale handle.
*/
if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
kmem_zone_free(xfs_inode_zone, ip);
xfs_trans_brelse(tp, bp);
#ifdef DEBUG
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
"dip->di_core.di_magic (0x%x) != "
"XFS_DINODE_MAGIC (0x%x)",
INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
XFS_DINODE_MAGIC);
#endif /* DEBUG */
return XFS_ERROR(EINVAL);
}
/*
* If the on-disk inode is already linked to a directory
* entry, copy all of the inode into the in-core inode.
* xfs_iformat() handles copying in the inode format
* specific information.
* Otherwise, just get the truly permanent information.
*/
if (dip->di_core.di_mode) {
xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
&(ip->i_d), 1);
error = xfs_iformat(ip, dip);
if (error) {
kmem_zone_free(xfs_inode_zone, ip);
xfs_trans_brelse(tp, bp);
#ifdef DEBUG
xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
"xfs_iformat() returned error %d",
error);
#endif /* DEBUG */
return error;
}
} else {
ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
/*
* Make sure to pull in the mode here as well in
* case the inode is released without being used.
* This ensures that xfs_inactive() will see that
* the inode is already free and not try to mess
* with the uninitialized part of it.
*/
ip->i_d.di_mode = 0;
/*
* Initialize the per-fork minima and maxima for a new
* inode here. xfs_iformat will do it for old inodes.
*/
ip->i_df.if_ext_max =
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
}
INIT_LIST_HEAD(&ip->i_reclaim);
/*
* The inode format changed when we moved the link count and
* made it 32 bits long. If this is an old format inode,
* convert it in memory to look like a new one. If it gets
* flushed to disk we will convert back before flushing or
* logging it. We zero out the new projid field and the old link
* count field. We'll handle clearing the pad field (the remains
* of the old uuid field) when we actually convert the inode to
* the new format. We don't change the version number so that we
* can distinguish this from a real new format inode.
*/
if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
ip->i_d.di_nlink = ip->i_d.di_onlink;
ip->i_d.di_onlink = 0;
ip->i_d.di_projid = 0;
}
ip->i_delayed_blks = 0;
/*
* Mark the buffer containing the inode as something to keep
* around for a while. This helps to keep recently accessed
* meta-data in-core longer.
*/
XFS_BUF_SET_REF(bp, XFS_INO_REF);
/*
* Use xfs_trans_brelse() to release the buffer containing the
* on-disk inode, because it was acquired with xfs_trans_read_buf()
* in xfs_itobp() above. If tp is NULL, this is just a normal
* brelse(). If we're within a transaction, then xfs_trans_brelse()
* will only release the buffer if it is not dirty within the
* transaction. It will be OK to release the buffer in this case,
* because inodes on disk are never destroyed and we will be
* locking the new in-core inode before putting it in the hash
* table where other processes can find it. Thus we don't have
* to worry about the inode being changed just because we released
* the buffer.
*/
xfs_trans_brelse(tp, bp);
*ipp = ip;
return 0;
}
/*
* Read in extents from a btree-format inode.
* Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
*/
int
xfs_iread_extents(
xfs_trans_t *tp,
xfs_inode_t *ip,
int whichfork)
{
int error;
xfs_ifork_t *ifp;
size_t size;
if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
ip->i_mount);
return XFS_ERROR(EFSCORRUPTED);
}
size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
ifp = XFS_IFORK_PTR(ip, whichfork);
/*
* We know that the size is valid (it's checked in iformat_btree)
*/
ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
ASSERT(ifp->if_u1.if_extents != NULL);
ifp->if_lastex = NULLEXTNUM;
ifp->if_bytes = ifp->if_real_bytes = (int)size;
ifp->if_flags |= XFS_IFEXTENTS;
error = xfs_bmap_read_extents(tp, ip, whichfork);
if (error) {
kmem_free(ifp->if_u1.if_extents, size);
ifp->if_u1.if_extents = NULL;
ifp->if_bytes = ifp->if_real_bytes = 0;
ifp->if_flags &= ~XFS_IFEXTENTS;
return error;
}
xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
return 0;
}
/*
* Allocate an inode on disk and return a copy of its in-core version.
* The in-core inode is locked exclusively. Set mode, nlink, and rdev
* appropriately within the inode. The uid and gid for the inode are
* set according to the contents of the given cred structure.
*
* Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
* has a free inode available, call xfs_iget()
* to obtain the in-core version of the allocated inode. Finally,
* fill in the inode and log its initial contents. In this case,
* ialloc_context would be set to NULL and call_again set to false.
*
* If xfs_dialloc() does not have an available inode,
* it will replenish its supply by doing an allocation. Since we can
* only do one allocation within a transaction without deadlocks, we
* must commit the current transaction before returning the inode itself.
* In this case, therefore, we will set call_again to true and return.
* The caller should then commit the current transaction, start a new
* transaction, and call xfs_ialloc() again to actually get the inode.
*
* To ensure that some other process does not grab the inode that
* was allocated during the first call to xfs_ialloc(), this routine
* also returns the [locked] bp pointing to the head of the freelist
* as ialloc_context. The caller should hold this buffer across
* the commit and pass it back into this routine on the second call.
*/
int
xfs_ialloc(
xfs_trans_t *tp,
xfs_inode_t *pip,
mode_t mode,
xfs_nlink_t nlink,
xfs_dev_t rdev,
cred_t *cr,
xfs_prid_t prid,
int okalloc,
xfs_buf_t **ialloc_context,
boolean_t *call_again,
xfs_inode_t **ipp)
{
xfs_ino_t ino;
xfs_inode_t *ip;
vnode_t *vp;
uint flags;
int error;
/*
* Call the space management code to pick
* the on-disk inode to be allocated.
*/
error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
ialloc_context, call_again, &ino);
if (error != 0) {
return error;
}
if (*call_again || ino == NULLFSINO) {
*ipp = NULL;
return 0;
}
ASSERT(*ialloc_context == NULL);
/*
* Get the in-core inode with the lock held exclusively.
* This is because we're setting fields here we need
* to prevent others from looking at until we're done.
*/
error = xfs_trans_iget(tp->t_mountp, tp, ino,
IGET_CREATE, XFS_ILOCK_EXCL, &ip);
if (error != 0) {
return error;
}
ASSERT(ip != NULL);
vp = XFS_ITOV(ip);
vp->v_type = IFTOVT(mode);
ip->i_d.di_mode = (__uint16_t)mode;
ip->i_d.di_onlink = 0;
ip->i_d.di_nlink = nlink;
ASSERT(ip->i_d.di_nlink == nlink);
ip->i_d.di_uid = current_fsuid(cr);
ip->i_d.di_gid = current_fsgid(cr);
ip->i_d.di_projid = prid;
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
/*
* If the superblock version is up to where we support new format
* inodes and this is currently an old format inode, then change
* the inode version number now. This way we only do the conversion
* here rather than here and in the flush/logging code.
*/
if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
ip->i_d.di_version == XFS_DINODE_VERSION_1) {
ip->i_d.di_version = XFS_DINODE_VERSION_2;
/*
* We've already zeroed the old link count, the projid field,
* and the pad field.
*/
}
/*
* Project ids won't be stored on disk if we are using a version 1 inode.
*/
if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
xfs_bump_ino_vers2(tp, ip);
if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
ip->i_d.di_gid = pip->i_d.di_gid;
if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
ip->i_d.di_mode |= S_ISGID;
}
}
/*
* If the group ID of the new file does not match the effective group
* ID or one of the supplementary group IDs, the S_ISGID bit is cleared
* (and only if the irix_sgid_inherit compatibility variable is set).
*/
if ((irix_sgid_inherit) &&
(ip->i_d.di_mode & S_ISGID) &&
(!in_group_p((gid_t)ip->i_d.di_gid))) {
ip->i_d.di_mode &= ~S_ISGID;
}
ip->i_d.di_size = 0;
ip->i_d.di_nextents = 0;
ASSERT(ip->i_d.di_nblocks == 0);
xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
/*
* di_gen will have been taken care of in xfs_iread.
*/
ip->i_d.di_extsize = 0;
ip->i_d.di_dmevmask = 0;
ip->i_d.di_dmstate = 0;
ip->i_d.di_flags = 0;
flags = XFS_ILOG_CORE;
switch (mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
ip->i_d.di_format = XFS_DINODE_FMT_DEV;
ip->i_df.if_u2.if_rdev = rdev;
ip->i_df.if_flags = 0;
flags |= XFS_ILOG_DEV;
break;
case S_IFREG:
case S_IFDIR:
if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
uint di_flags = 0;
if ((mode & S_IFMT) == S_IFDIR) {
if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
di_flags |= XFS_DIFLAG_RTINHERIT;
} else {
if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
di_flags |= XFS_DIFLAG_REALTIME;
ip->i_iocore.io_flags |= XFS_IOCORE_RT;
}
}
if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
xfs_inherit_noatime)
di_flags |= XFS_DIFLAG_NOATIME;
if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
xfs_inherit_nodump)
di_flags |= XFS_DIFLAG_NODUMP;
if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
xfs_inherit_sync)
di_flags |= XFS_DIFLAG_SYNC;
if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
xfs_inherit_nosymlinks)
di_flags |= XFS_DIFLAG_NOSYMLINKS;
if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
di_flags |= XFS_DIFLAG_PROJINHERIT;
ip->i_d.di_flags |= di_flags;
}
/* FALLTHROUGH */
case S_IFLNK:
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
ip->i_df.if_flags = XFS_IFEXTENTS;
ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
ip->i_df.if_u1.if_extents = NULL;
break;
default:
ASSERT(0);
}
/*
* Attribute fork settings for new inode.
*/
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
ip->i_d.di_anextents = 0;
/*
* Log the new values stuffed into the inode.
*/
xfs_trans_log_inode(tp, ip, flags);
/* now that we have a v_type we can set Linux inode ops (& unlock) */
VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
*ipp = ip;
return 0;
}
/*
* Check to make sure that there are no blocks allocated to the
* file beyond the size of the file. We don't check this for
* files with fixed size extents or real time extents, but we
* at least do it for regular files.
*/
#ifdef DEBUG
void
xfs_isize_check(
xfs_mount_t *mp,
xfs_inode_t *ip,
xfs_fsize_t isize)
{
xfs_fileoff_t map_first;
int nimaps;
xfs_bmbt_irec_t imaps[2];
if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
return;
if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
return;
nimaps = 2;
map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
/*
* The filesystem could be shutting down, so bmapi may return
* an error.
*/
if (xfs_bmapi(NULL, ip, map_first,
(XFS_B_TO_FSB(mp,
(xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
map_first),
XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
NULL))
return;
ASSERT(nimaps == 1);
ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
}
#endif /* DEBUG */
/*
* Calculate the last possible buffered byte in a file. This must
* include data that was buffered beyond the EOF by the write code.
* This also needs to deal with overflowing the xfs_fsize_t type
* which can happen for sizes near the limit.
*
* We also need to take into account any blocks beyond the EOF. It
* may be the case that they were buffered by a write which failed.
* In that case the pages will still be in memory, but the inode size
* will never have been updated.
*/
xfs_fsize_t
xfs_file_last_byte(
xfs_inode_t *ip)
{
xfs_mount_t *mp;
xfs_fsize_t last_byte;
xfs_fileoff_t last_block;
xfs_fileoff_t size_last_block;
int error;
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
mp = ip->i_mount;
/*
* Only check for blocks beyond the EOF if the extents have
* been read in. This eliminates the need for the inode lock,
* and it also saves us from looking when it really isn't
* necessary.
*/
if (ip->i_df.if_flags & XFS_IFEXTENTS) {
error = xfs_bmap_last_offset(NULL, ip, &last_block,
XFS_DATA_FORK);
if (error) {
last_block = 0;
}
} else {
last_block = 0;
}
size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
last_byte = XFS_FSB_TO_B(mp, last_block);
if (last_byte < 0) {
return XFS_MAXIOFFSET(mp);
}
last_byte += (1 << mp->m_writeio_log);
if (last_byte < 0) {
return XFS_MAXIOFFSET(mp);
}
return last_byte;
}
#if defined(XFS_RW_TRACE)
STATIC void
xfs_itrunc_trace(
int tag,
xfs_inode_t *ip,
int flag,
xfs_fsize_t new_size,
xfs_off_t toss_start,
xfs_off_t toss_finish)
{
if (ip->i_rwtrace == NULL) {
return;
}
ktrace_enter(ip->i_rwtrace,
(void*)((long)tag),
(void*)ip,
(void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
(void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
(void*)((long)flag),
(void*)(unsigned long)((new_size >> 32) & 0xffffffff),
(void*)(unsigned long)(new_size & 0xffffffff),
(void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
(void*)(unsigned long)(toss_start & 0xffffffff),
(void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
(void*)(unsigned long)(toss_finish & 0xffffffff),
(void*)(unsigned long)current_cpu(),
(void*)0,
(void*)0,
(void*)0,
(void*)0);
}
#else
#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
#endif
/*
* Start the truncation of the file to new_size. The new size
* must be smaller than the current size. This routine will
* clear the buffer and page caches of file data in the removed
* range, and xfs_itruncate_finish() will remove the underlying
* disk blocks.
*
* The inode must have its I/O lock locked EXCLUSIVELY, and it
* must NOT have the inode lock held at all. This is because we're
* calling into the buffer/page cache code and we can't hold the
* inode lock when we do so.
*
* The flags parameter can have either the value XFS_ITRUNC_DEFINITE
* or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
* in the case that the caller is locking things out of order and
* may not be able to call xfs_itruncate_finish() with the inode lock
* held without dropping the I/O lock. If the caller must drop the
* I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
* must be called again with all the same restrictions as the initial
* call.
*/
void
xfs_itruncate_start(
xfs_inode_t *ip,
uint flags,
xfs_fsize_t new_size)
{
xfs_fsize_t last_byte;
xfs_off_t toss_start;
xfs_mount_t *mp;
vnode_t *vp;
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
(flags == XFS_ITRUNC_MAYBE));
mp = ip->i_mount;
vp = XFS_ITOV(ip);
/*
* Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
* overlapping the region being removed. We have to use
* the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
* caller may not be able to finish the truncate without
* dropping the inode's I/O lock. Make sure
* to catch any pages brought in by buffers overlapping
* the EOF by searching out beyond the isize by our
* block size. We round new_size up to a block boundary
* so that we don't toss things on the same block as
* new_size but before it.
*
* Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
* call remapf() over the same region if the file is mapped.
* This frees up mapped file references to the pages in the
* given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
* that we get the latest mapped changes flushed out.
*/
toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
toss_start = XFS_FSB_TO_B(mp, toss_start);
if (toss_start < 0) {
/*
* The place to start tossing is beyond our maximum
* file size, so there is no way that the data extended
* out there.
*/
return;
}
last_byte = xfs_file_last_byte(ip);
xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
last_byte);
if (last_byte > toss_start) {
if (flags & XFS_ITRUNC_DEFINITE) {
VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
} else {
VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
}
}
#ifdef DEBUG
if (new_size == 0) {
ASSERT(VN_CACHED(vp) == 0);
}
#endif
}
/*
* Shrink the file to the given new_size. The new
* size must be smaller than the current size.
* This will free up the underlying blocks
* in the removed range after a call to xfs_itruncate_start()
* or xfs_atruncate_start().
*
* The transaction passed to this routine must have made
* a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
* This routine may commit the given transaction and
* start new ones, so make sure everything involved in
* the transaction is tidy before calling here.
* Some transaction will be returned to the caller to be
* committed. The incoming transaction must already include
* the inode, and both inode locks must be held exclusively.
* The inode must also be "held" within the transaction. On
* return the inode will be "held" within the returned transaction.
* This routine does NOT require any disk space to be reserved
* for it within the transaction.
*
* The fork parameter must be either xfs_attr_fork or xfs_data_fork,
* and it indicates the fork which is to be truncated. For the
* attribute fork we only support truncation to size 0.
*
* We use the sync parameter to indicate whether or not the first
* transaction we perform might have to be synchronous. For the attr fork,
* it needs to be so if the unlink of the inode is not yet known to be
* permanent in the log. This keeps us from freeing and reusing the
* blocks of the attribute fork before the unlink of the inode becomes
* permanent.
*
* For the data fork, we normally have to run synchronously if we're
* being called out of the inactive path or we're being called
* out of the create path where we're truncating an existing file.
* Either way, the truncate needs to be sync so blocks don't reappear
* in the file with altered data in case of a crash. wsync filesystems
* can run the first case async because anything that shrinks the inode
* has to run sync so by the time we're called here from inactive, the
* inode size is permanently set to 0.
*
* Calls from the truncate path always need to be sync unless we're
* in a wsync filesystem and the file has already been unlinked.
*
* The caller is responsible for correctly setting the sync parameter.
* It gets too hard for us to guess here which path we're being called
* out of just based on inode state.
*/
int
xfs_itruncate_finish(
xfs_trans_t **tp,
xfs_inode_t *ip,
xfs_fsize_t new_size,
int fork,
int sync)
{
xfs_fsblock_t first_block;
xfs_fileoff_t first_unmap_block;
xfs_fileoff_t last_block;
xfs_filblks_t unmap_len=0;
xfs_mount_t *mp;
xfs_trans_t *ntp;
int done;
int committed;
xfs_bmap_free_t free_list;
int error;
ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
ASSERT(*tp != NULL);
ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
ASSERT(ip->i_transp == *tp);
ASSERT(ip->i_itemp != NULL);
ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
ntp = *tp;
mp = (ntp)->t_mountp;
ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
/*
* We only support truncating the entire attribute fork.
*/
if (fork == XFS_ATTR_FORK) {
new_size = 0LL;
}
first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
/*
* The first thing we do is set the size to new_size permanently
* on disk. This way we don't have to worry about anyone ever
* being able to look at the data being freed even in the face
* of a crash. What we're getting around here is the case where
* we free a block, it is allocated to another file, it is written
* to, and then we crash. If the new data gets written to the
* file but the log buffers containing the free and reallocation
* don't, then we'd end up with garbage in the blocks being freed.
* As long as we make the new_size permanent before actually
* freeing any blocks it doesn't matter if they get writtten to.
*
* The callers must signal into us whether or not the size
* setting here must be synchronous. There are a few cases
* where it doesn't have to be synchronous. Those cases
* occur if the file is unlinked and we know the unlink is
* permanent or if the blocks being truncated are guaranteed
* to be beyond the inode eof (regardless of the link count)
* and the eof value is permanent. Both of these cases occur
* only on wsync-mounted filesystems. In those cases, we're
* guaranteed that no user will ever see the data in the blocks
* that are being truncated so the truncate can run async.
* In the free beyond eof case, the file may wind up with
* more blocks allocated to it than it needs if we crash
* and that won't get fixed until the next time the file
* is re-opened and closed but that's ok as that shouldn't
* be too many blocks.
*
* However, we can't just make all wsync xactions run async
* because there's one call out of the create path that needs
* to run sync where it's truncating an existing file to size
* 0 whose size is > 0.
*
* It's probably possible to come up with a test in this
* routine that would correctly distinguish all the above
* cases from the values of the function parameters and the
* inode state but for sanity's sake, I've decided to let the
* layers above just tell us. It's simpler to correctly figure
* out in the layer above exactly under what conditions we
* can run async and I think it's easier for others read and
* follow the logic in case something has to be changed.
* cscope is your friend -- rcc.
*
* The attribute fork is much simpler.
*
* For the attribute fork we allow the caller to tell us whether
* the unlink of the inode that led to this call is yet permanent
* in the on disk log. If it is not and we will be freeing extents
* in this inode then we make the first transaction synchronous
* to make sure that the unlink is permanent by the time we free
* the blocks.
*/
if (fork == XFS_DATA_FORK) {
if (ip->i_d.di_nextents > 0) {
ip->i_d.di_size = new_size;
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
}
} else if (sync) {
ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
if (ip->i_d.di_anextents > 0)
xfs_trans_set_sync(ntp);
}
ASSERT(fork == XFS_DATA_FORK ||
(fork == XFS_ATTR_FORK &&
((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
(sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
/*
* Since it is possible for space to become allocated beyond
* the end of the file (in a crash where the space is allocated
* but the inode size is not yet updated), simply remove any
* blocks which show up between the new EOF and the maximum
* possible file size. If the first block to be removed is
* beyond the maximum file size (ie it is the same as last_block),
* then there is nothing to do.
*/
last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
ASSERT(first_unmap_block <= last_block);
done = 0;
if (last_block == first_unmap_block) {
done = 1;
} else {
unmap_len = last_block - first_unmap_block + 1;
}
while (!done) {
/*
* Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
* will tell us whether it freed the entire range or
* not. If this is a synchronous mount (wsync),
* then we can tell bunmapi to keep all the
* transactions asynchronous since the unlink
* transaction that made this inode inactive has
* already hit the disk. There's no danger of
* the freed blocks being reused, there being a
* crash, and the reused blocks suddenly reappearing
* in this file with garbage in them once recovery
* runs.
*/
XFS_BMAP_INIT(&free_list, &first_block);
error = xfs_bunmapi(ntp, ip, first_unmap_block,
unmap_len,
XFS_BMAPI_AFLAG(fork) |
(sync ? 0 : XFS_BMAPI_ASYNC),
XFS_ITRUNC_MAX_EXTENTS,
&first_block, &free_list, &done);
if (error) {
/*
* If the bunmapi call encounters an error,
* return to the caller where the transaction
* can be properly aborted. We just need to
* make sure we're not holding any resources
* that we were not when we came in.
*/
xfs_bmap_cancel(&free_list);
return error;
}
/*
* Duplicate the transaction that has the permanent
* reservation and commit the old transaction.
*/
error = xfs_bmap_finish(tp, &free_list, first_block,
&committed);
ntp = *tp;
if (error) {
/*
* If the bmap finish call encounters an error,
* return to the caller where the transaction
* can be properly aborted. We just need to
* make sure we're not holding any resources
* that we were not when we came in.
*
* Aborting from this point might lose some
* blocks in the file system, but oh well.
*/
xfs_bmap_cancel(&free_list);
if (committed) {
/*
* If the passed in transaction committed
* in xfs_bmap_finish(), then we want to
* add the inode to this one before returning.
* This keeps things simple for the higher
* level code, because it always knows that
* the inode is locked and held in the
* transaction that returns to it whether
* errors occur or not. We don't mark the
* inode dirty so that this transaction can
* be easily aborted if possible.
*/
xfs_trans_ijoin(ntp, ip,
XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
xfs_trans_ihold(ntp, ip);
}
return error;
}
if (committed) {
/*
* The first xact was committed,
* so add the inode to the new one.
* Mark it dirty so it will be logged
* and moved forward in the log as
* part of every commit.
*/
xfs_trans_ijoin(ntp, ip,
XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
xfs_trans_ihold(ntp, ip);
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
}
ntp = xfs_trans_dup(ntp);
(void) xfs_trans_commit(*tp, 0, NULL);
*tp = ntp;
error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES,
XFS_ITRUNCATE_LOG_COUNT);
/*
* Add the inode being truncated to the next chained
* transaction.
*/
xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
xfs_trans_ihold(ntp, ip);
if (error)
return (error);
}
/*
* Only update the size in the case of the data fork, but
* always re-log the inode so that our permanent transaction
* can keep on rolling it forward in the log.
*/
if (fork == XFS_DATA_FORK) {
xfs_isize_check(mp, ip, new_size);
ip->i_d.di_size = new_size;
}
xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
ASSERT((new_size != 0) ||
(fork == XFS_ATTR_FORK) ||
(ip->i_delayed_blks == 0));
ASSERT((new_size != 0) ||
(fork == XFS_ATTR_FORK) ||
(ip->i_d.di_nextents == 0));
xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
return 0;
}
/*
* xfs_igrow_start
*
* Do the first part of growing a file: zero any data in the last
* block that is beyond the old EOF. We need to do this before
* the inode is joined to the transaction to modify the i_size.
* That way we can drop the inode lock and call into the buffer
* cache to get the buffer mapping the EOF.
*/
int
xfs_igrow_start(
xfs_inode_t *ip,
xfs_fsize_t new_size,
cred_t *credp)
{
xfs_fsize_t isize;
int error;
ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
ASSERT(new_size > ip->i_d.di_size);
error = 0;
isize = ip->i_d.di_size;
/*
* Zero any pages that may have been created by
* xfs_write_file() beyond the end of the file
* and any blocks between the old and new file sizes.
*/
error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
new_size);
return error;
}
/*
* xfs_igrow_finish
*
* This routine is called to extend the size of a file.
* The inode must have both the iolock and the ilock locked
* for update and it must be a part of the current transaction.
* The xfs_igrow_start() function must have been called previously.
* If the change_flag is not zero, the inode change timestamp will
* be updated.
*/
void
xfs_igrow_finish(
xfs_trans_t *tp,
xfs_inode_t *ip,
xfs_fsize_t new_size,
int change_flag)
{
ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
ASSERT(ip->i_transp == tp);
ASSERT(new_size > ip->i_d.di_size);
/*
* Update the file size. Update the inode change timestamp
* if change_flag set.
*/
ip->i_d.di_size = new_size;
if (change_flag)
xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
}
/*
* This is called when the inode's link count goes to 0.
* We place the on-disk inode on a list in the AGI. It
* will be pulled from this list when the inode is freed.
*/
int
xfs_iunlink(
xfs_trans_t *tp,
xfs_inode_t *ip)
{
xfs_mount_t *mp;
xfs_agi_t *agi;
xfs_dinode_t *dip;
xfs_buf_t *agibp;
xfs_buf_t *ibp;
xfs_agnumber_t agno;
xfs_daddr_t agdaddr;
xfs_agino_t agino;
short bucket_index;
int offset;
int error;
int agi_ok;
ASSERT(ip->i_d.di_nlink == 0);
ASSERT(ip->i_d.di_mode != 0);
ASSERT(ip->i_transp == tp);
mp = tp->t_mountp;
agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
/*
* Get the agi buffer first. It ensures lock ordering
* on the list.
*/
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
XFS_FSS_TO_BB(mp, 1), 0, &agibp);
if (error) {
return error;
}
/*
* Validate the magic number of the agi block.
*/
agi = XFS_BUF_TO_AGI(agibp);
agi_ok =
INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
XFS_RANDOM_IUNLINK))) {
XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
xfs_trans_brelse(tp, agibp);
return XFS_ERROR(EFSCORRUPTED);
}
/*
* Get the index into the agi hash table for the
* list this inode will go on.
*/
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
ASSERT(agino != 0);
bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
ASSERT(agi->agi_unlinked[bucket_index]);
ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
/*
* There is already another inode in the bucket we need
* to add ourselves to. Add us at the front of the list.
* Here we put the head pointer into our next pointer,
* and then we fall through to point the head at us.
*/
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
if (error) {
return error;
}
ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
ASSERT(dip->di_next_unlinked);
/* both on-disk, don't endian flip twice */
dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
offset = ip->i_boffset +
offsetof(xfs_dinode_t, di_next_unlinked);
xfs_trans_inode_buf(tp, ibp);
xfs_trans_log_buf(tp, ibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
xfs_inobp_check(mp, ibp);
}
/*
* Point the bucket head pointer at the inode being inserted.
*/
ASSERT(agino != 0);
INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
offset = offsetof(xfs_agi_t, agi_unlinked) +
(sizeof(xfs_agino_t) * bucket_index);
xfs_trans_log_buf(tp, agibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
return 0;
}
/*
* Pull the on-disk inode from the AGI unlinked list.
*/
STATIC int
xfs_iunlink_remove(
xfs_trans_t *tp,
xfs_inode_t *ip)
{
xfs_ino_t next_ino;
xfs_mount_t *mp;
xfs_agi_t *agi;
xfs_dinode_t *dip;
xfs_buf_t *agibp;
xfs_buf_t *ibp;
xfs_agnumber_t agno;
xfs_daddr_t agdaddr;
xfs_agino_t agino;
xfs_agino_t next_agino;
xfs_buf_t *last_ibp;
xfs_dinode_t *last_dip;
short bucket_index;
int offset, last_offset;
int error;
int agi_ok;
/*
* First pull the on-disk inode from the AGI unlinked list.
*/
mp = tp->t_mountp;
agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
/*
* Get the agi buffer first. It ensures lock ordering
* on the list.
*/
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
XFS_FSS_TO_BB(mp, 1), 0, &agibp);
if (error) {
cmn_err(CE_WARN,
"xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
error, mp->m_fsname);
return error;
}
/*
* Validate the magic number of the agi block.
*/
agi = XFS_BUF_TO_AGI(agibp);
agi_ok =
INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
XFS_RANDOM_IUNLINK_REMOVE))) {
XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
mp, agi);
xfs_trans_brelse(tp, agibp);
cmn_err(CE_WARN,
"xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
mp->m_fsname);
return XFS_ERROR(EFSCORRUPTED);
}
/*
* Get the index into the agi hash table for the
* list this inode will go on.
*/
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
ASSERT(agino != 0);
bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
ASSERT(agi->agi_unlinked[bucket_index]);
if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
/*
* We're at the head of the list. Get the inode's
* on-disk buffer to see if there is anyone after us
* on the list. Only modify our next pointer if it
* is not already NULLAGINO. This saves us the overhead
* of dealing with the buffer when there is no need to
* change it.
*/
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
if (error) {
cmn_err(CE_WARN,
"xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
error, mp->m_fsname);
return error;
}
next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
ASSERT(next_agino != 0);
if (next_agino != NULLAGINO) {
INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
offset = ip->i_boffset +
offsetof(xfs_dinode_t, di_next_unlinked);
xfs_trans_inode_buf(tp, ibp);
xfs_trans_log_buf(tp, ibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
xfs_inobp_check(mp, ibp);
} else {
xfs_trans_brelse(tp, ibp);
}
/*
* Point the bucket head pointer at the next inode.
*/
ASSERT(next_agino != 0);
ASSERT(next_agino != agino);
INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
offset = offsetof(xfs_agi_t, agi_unlinked) +
(sizeof(xfs_agino_t) * bucket_index);
xfs_trans_log_buf(tp, agibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
} else {
/*
* We need to search the list for the inode being freed.
*/
next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
last_ibp = NULL;
while (next_agino != agino) {
/*
* If the last inode wasn't the one pointing to
* us, then release its buffer since we're not
* going to do anything with it.
*/
if (last_ibp != NULL) {
xfs_trans_brelse(tp, last_ibp);
}
next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
error = xfs_inotobp(mp, tp, next_ino, &last_dip,
&last_ibp, &last_offset);
if (error) {
cmn_err(CE_WARN,
"xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
error, mp->m_fsname);
return error;
}
next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
ASSERT(next_agino != NULLAGINO);
ASSERT(next_agino != 0);
}
/*
* Now last_ibp points to the buffer previous to us on
* the unlinked list. Pull us from the list.
*/
error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
if (error) {
cmn_err(CE_WARN,
"xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
error, mp->m_fsname);
return error;
}
next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
ASSERT(next_agino != 0);
ASSERT(next_agino != agino);
if (next_agino != NULLAGINO) {
INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
offset = ip->i_boffset +
offsetof(xfs_dinode_t, di_next_unlinked);
xfs_trans_inode_buf(tp, ibp);
xfs_trans_log_buf(tp, ibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
xfs_inobp_check(mp, ibp);
} else {
xfs_trans_brelse(tp, ibp);
}
/*
* Point the previous inode on the list to the next inode.
*/
INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
ASSERT(next_agino != 0);
offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
xfs_trans_inode_buf(tp, last_ibp);
xfs_trans_log_buf(tp, last_ibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
xfs_inobp_check(mp, last_ibp);
}
return 0;
}
static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
{
return (((ip->i_itemp == NULL) ||
!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
(ip->i_update_core == 0));
}
STATIC void
xfs_ifree_cluster(
xfs_inode_t *free_ip,
xfs_trans_t *tp,
xfs_ino_t inum)
{
xfs_mount_t *mp = free_ip->i_mount;
int blks_per_cluster;
int nbufs;
int ninodes;
int i, j, found, pre_flushed;
xfs_daddr_t blkno;
xfs_buf_t *bp;
xfs_ihash_t *ih;
xfs_inode_t *ip, **ip_found;
xfs_inode_log_item_t *iip;
xfs_log_item_t *lip;
SPLDECL(s);
if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
blks_per_cluster = 1;
ninodes = mp->m_sb.sb_inopblock;
nbufs = XFS_IALLOC_BLOCKS(mp);
} else {
blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
mp->m_sb.sb_blocksize;
ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
}
ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
for (j = 0; j < nbufs; j++, inum += ninodes) {
blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
XFS_INO_TO_AGBNO(mp, inum));
/*
* Look for each inode in memory and attempt to lock it,
* we can be racing with flush and tail pushing here.
* any inode we get the locks on, add to an array of
* inode items to process later.
*
* The get the buffer lock, we could beat a flush
* or tail pushing thread to the lock here, in which
* case they will go looking for the inode buffer
* and fail, we need some other form of interlock
* here.
*/
found = 0;
for (i = 0; i < ninodes; i++) {
ih = XFS_IHASH(mp, inum + i);
read_lock(&ih->ih_lock);
for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
if (ip->i_ino == inum + i)
break;
}
/* Inode not in memory or we found it already,
* nothing to do
*/
if (!ip || (ip->i_flags & XFS_ISTALE)) {
read_unlock(&ih->ih_lock);
continue;
}
if (xfs_inode_clean(ip)) {
read_unlock(&ih->ih_lock);
continue;
}
/* If we can get the locks then add it to the
* list, otherwise by the time we get the bp lock
* below it will already be attached to the
* inode buffer.
*/
/* This inode will already be locked - by us, lets
* keep it that way.
*/
if (ip == free_ip) {
if (xfs_iflock_nowait(ip)) {
ip->i_flags |= XFS_ISTALE;
if (xfs_inode_clean(ip)) {
xfs_ifunlock(ip);
} else {
ip_found[found++] = ip;
}
}
read_unlock(&ih->ih_lock);
continue;
}
if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
if (xfs_iflock_nowait(ip)) {
ip->i_flags |= XFS_ISTALE;
if (xfs_inode_clean(ip)) {
xfs_ifunlock(ip);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
} else {
ip_found[found++] = ip;
}
} else {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
}
read_unlock(&ih->ih_lock);
}
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
mp->m_bsize * blks_per_cluster,
XFS_BUF_LOCK);
pre_flushed = 0;
lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
while (lip) {
if (lip->li_type == XFS_LI_INODE) {
iip = (xfs_inode_log_item_t *)lip;
ASSERT(iip->ili_logged == 1);
lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
AIL_LOCK(mp,s);
iip->ili_flush_lsn = iip->ili_item.li_lsn;
AIL_UNLOCK(mp, s);
iip->ili_inode->i_flags |= XFS_ISTALE;
pre_flushed++;
}
lip = lip->li_bio_list;
}
for (i = 0; i < found; i++) {
ip = ip_found[i];
iip = ip->i_itemp;
if (!iip) {
ip->i_update_core = 0;
xfs_ifunlock(ip);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
continue;
}
iip->ili_last_fields = iip->ili_format.ilf_fields;
iip->ili_format.ilf_fields = 0;
iip->ili_logged = 1;
AIL_LOCK(mp,s);
iip->ili_flush_lsn = iip->ili_item.li_lsn;
AIL_UNLOCK(mp, s);
xfs_buf_attach_iodone(bp,
(void(*)(xfs_buf_t*,xfs_log_item_t*))
xfs_istale_done, (xfs_log_item_t *)iip);
if (ip != free_ip) {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
}
if (found || pre_flushed)
xfs_trans_stale_inode_buf(tp, bp);
xfs_trans_binval(tp, bp);
}
kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
}
/*
* This is called to return an inode to the inode free list.
* The inode should already be truncated to 0 length and have
* no pages associated with it. This routine also assumes that
* the inode is already a part of the transaction.
*
* The on-disk copy of the inode will have been added to the list
* of unlinked inodes in the AGI. We need to remove the inode from
* that list atomically with respect to freeing it here.
*/
int
xfs_ifree(
xfs_trans_t *tp,
xfs_inode_t *ip,
xfs_bmap_free_t *flist)
{
int error;
int delete;
xfs_ino_t first_ino;
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
ASSERT(ip->i_transp == tp);
ASSERT(ip->i_d.di_nlink == 0);
ASSERT(ip->i_d.di_nextents == 0);
ASSERT(ip->i_d.di_anextents == 0);
ASSERT((ip->i_d.di_size == 0) ||
((ip->i_d.di_mode & S_IFMT) != S_IFREG));
ASSERT(ip->i_d.di_nblocks == 0);
/*
* Pull the on-disk inode from the AGI unlinked list.
*/
error = xfs_iunlink_remove(tp, ip);
if (error != 0) {
return error;
}
error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
if (error != 0) {
return error;
}
ip->i_d.di_mode = 0; /* mark incore inode as free */
ip->i_d.di_flags = 0;
ip->i_d.di_dmevmask = 0;
ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
ip->i_df.if_ext_max =
XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
/*
* Bump the generation count so no one will be confused
* by reincarnations of this inode.
*/
ip->i_d.di_gen++;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
if (delete) {
xfs_ifree_cluster(ip, tp, first_ino);
}
return 0;
}
/*
* Reallocate the space for if_broot based on the number of records
* being added or deleted as indicated in rec_diff. Move the records
* and pointers in if_broot to fit the new size. When shrinking this
* will eliminate holes between the records and pointers created by
* the caller. When growing this will create holes to be filled in
* by the caller.
*
* The caller must not request to add more records than would fit in
* the on-disk inode root. If the if_broot is currently NULL, then
* if we adding records one will be allocated. The caller must also
* not request that the number of records go below zero, although
* it can go to zero.
*
* ip -- the inode whose if_broot area is changing
* ext_diff -- the change in the number of records, positive or negative,
* requested for the if_broot array.
*/
void
xfs_iroot_realloc(
xfs_inode_t *ip,
int rec_diff,
int whichfork)
{
int cur_max;
xfs_ifork_t *ifp;
xfs_bmbt_block_t *new_broot;
int new_max;
size_t new_size;
char *np;
char *op;
/*
* Handle the degenerate case quietly.
*/
if (rec_diff == 0) {
return;
}
ifp = XFS_IFORK_PTR(ip, whichfork);
if (rec_diff > 0) {
/*
* If there wasn't any memory allocated before, just
* allocate it now and get out.
*/
if (ifp->if_broot_bytes == 0) {
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
KM_SLEEP);
ifp->if_broot_bytes = (int)new_size;
return;
}
/*
* If there is already an existing if_broot, then we need
* to realloc() it and shift the pointers to their new
* location. The records don't change location because
* they are kept butted up against the btree block header.
*/
cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
new_max = cur_max + rec_diff;
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
ifp->if_broot = (xfs_bmbt_block_t *)
kmem_realloc(ifp->if_broot,
new_size,
(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
KM_SLEEP);
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
(int)new_size);
ifp->if_broot_bytes = (int)new_size;
ASSERT(ifp->if_broot_bytes <=
XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
return;
}
/*
* rec_diff is less than 0. In this case, we are shrinking the
* if_broot buffer. It must already exist. If we go to zero
* records, just get rid of the root and clear the status bit.
*/
ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
new_max = cur_max + rec_diff;
ASSERT(new_max >= 0);
if (new_max > 0)
new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
else
new_size = 0;
if (new_size > 0) {
new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
/*
* First copy over the btree block header.
*/
memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
} else {
new_broot = NULL;
ifp->if_flags &= ~XFS_IFBROOT;
}
/*
* Only copy the records and pointers if there are any.
*/
if (new_max > 0) {
/*
* First copy the records.
*/
op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
(int)new_size);
memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
/*
* Then copy the pointers.
*/
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
(int)new_size);
memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
}
kmem_free(ifp->if_broot, ifp->if_broot_bytes);
ifp->if_broot = new_broot;
ifp->if_broot_bytes = (int)new_size;
ASSERT(ifp->if_broot_bytes <=
XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
return;
}
/*
* This is called when the amount of space needed for if_extents
* is increased or decreased. The change in size is indicated by
* the number of extents that need to be added or deleted in the
* ext_diff parameter.
*
* If the amount of space needed has decreased below the size of the
* inline buffer, then switch to using the inline buffer. Otherwise,
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
* to what is needed.
*
* ip -- the inode whose if_extents area is changing
* ext_diff -- the change in the number of extents, positive or negative,
* requested for the if_extents array.
*/
void
xfs_iext_realloc(
xfs_inode_t *ip,
int ext_diff,
int whichfork)
{
int byte_diff;
xfs_ifork_t *ifp;
int new_size;
uint rnew_size;
if (ext_diff == 0) {
return;
}
ifp = XFS_IFORK_PTR(ip, whichfork);
byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
new_size = (int)ifp->if_bytes + byte_diff;
ASSERT(new_size >= 0);
if (new_size == 0) {
if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
ASSERT(ifp->if_real_bytes != 0);
kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
}
ifp->if_u1.if_extents = NULL;
rnew_size = 0;
} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
/*
* If the valid extents can fit in if_inline_ext,
* copy them from the malloc'd vector and free it.
*/
if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
/*
* For now, empty files are format EXTENTS,
* so the if_extents pointer is null.
*/
if (ifp->if_u1.if_extents) {
memcpy(ifp->if_u2.if_inline_ext,
ifp->if_u1.if_extents, new_size);
kmem_free(ifp->if_u1.if_extents,
ifp->if_real_bytes);
}
ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
}
rnew_size = 0;
} else {
rnew_size = new_size;
if ((rnew_size & (rnew_size - 1)) != 0)
rnew_size = xfs_iroundup(rnew_size);
/*
* Stuck with malloc/realloc.
*/
if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
kmem_alloc(rnew_size, KM_SLEEP);
memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
sizeof(ifp->if_u2.if_inline_ext));
} else if (rnew_size != ifp->if_real_bytes) {
ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
kmem_realloc(ifp->if_u1.if_extents,
rnew_size,
ifp->if_real_bytes,
KM_NOFS);
}
}
ifp->if_real_bytes = rnew_size;
ifp->if_bytes = new_size;
}
/*
* This is called when the amount of space needed for if_data
* is increased or decreased. The change in size is indicated by
* the number of bytes that need to be added or deleted in the
* byte_diff parameter.
*
* If the amount of space needed has decreased below the size of the
* inline buffer, then switch to using the inline buffer. Otherwise,
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
* to what is needed.
*
* ip -- the inode whose if_data area is changing
* byte_diff -- the change in the number of bytes, positive or negative,
* requested for the if_data array.
*/
void
xfs_idata_realloc(
xfs_inode_t *ip,
int byte_diff,
int whichfork)
{
xfs_ifork_t *ifp;
int new_size;
int real_size;
if (byte_diff == 0) {
return;
}
ifp = XFS_IFORK_PTR(ip, whichfork);
new_size = (int)ifp->if_bytes + byte_diff;
ASSERT(new_size >= 0);
if (new_size == 0) {
if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
}
ifp->if_u1.if_data = NULL;
real_size = 0;
} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
/*
* If the valid extents/data can fit in if_inline_ext/data,
* copy them from the malloc'd vector and free it.
*/
if (ifp->if_u1.if_data == NULL) {
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
ASSERT(ifp->if_real_bytes != 0);
memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
new_size);
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
}
real_size = 0;
} else {
/*
* Stuck with malloc/realloc.
* For inline data, the underlying buffer must be
* a multiple of 4 bytes in size so that it can be
* logged and stay on word boundaries. We enforce
* that here.
*/
real_size = roundup(new_size, 4);
if (ifp->if_u1.if_data == NULL) {
ASSERT(ifp->if_real_bytes == 0);
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
/*
* Only do the realloc if the underlying size
* is really changing.
*/
if (ifp->if_real_bytes != real_size) {
ifp->if_u1.if_data =
kmem_realloc(ifp->if_u1.if_data,
real_size,
ifp->if_real_bytes,
KM_SLEEP);
}
} else {
ASSERT(ifp->if_real_bytes == 0);
ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
ifp->if_bytes);
}
}
ifp->if_real_bytes = real_size;
ifp->if_bytes = new_size;
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
}
/*
* Map inode to disk block and offset.
*
* mp -- the mount point structure for the current file system
* tp -- the current transaction
* ino -- the inode number of the inode to be located
* imap -- this structure is filled in with the information necessary
* to retrieve the given inode from disk
* flags -- flags to pass to xfs_dilocate indicating whether or not
* lookups in the inode btree were OK or not
*/
int
xfs_imap(
xfs_mount_t *mp,
xfs_trans_t *tp,
xfs_ino_t ino,
xfs_imap_t *imap,
uint flags)
{
xfs_fsblock_t fsbno;
int len;
int off;
int error;
fsbno = imap->im_blkno ?
XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
if (error != 0) {
return error;
}
imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
imap->im_len = XFS_FSB_TO_BB(mp, len);
imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
imap->im_ioffset = (ushort)off;
imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
return 0;
}
void
xfs_idestroy_fork(
xfs_inode_t *ip,
int whichfork)
{
xfs_ifork_t *ifp;
ifp = XFS_IFORK_PTR(ip, whichfork);
if (ifp->if_broot != NULL) {
kmem_free(ifp->if_broot, ifp->if_broot_bytes);
ifp->if_broot = NULL;
}
/*
* If the format is local, then we can't have an extents
* array so just look for an inline data array. If we're
* not local then we may or may not have an extents list,
* so check and free it up if we do.
*/
if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
(ifp->if_u1.if_data != NULL)) {
ASSERT(ifp->if_real_bytes != 0);
kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
ifp->if_u1.if_data = NULL;
ifp->if_real_bytes = 0;
}
} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
(ifp->if_u1.if_extents != NULL) &&
(ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
ASSERT(ifp->if_real_bytes != 0);
kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
ifp->if_u1.if_extents = NULL;
ifp->if_real_bytes = 0;
}
ASSERT(ifp->if_u1.if_extents == NULL ||
ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
ASSERT(ifp->if_real_bytes == 0);
if (whichfork == XFS_ATTR_FORK) {
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
ip->i_afp = NULL;
}
}
/*
* This is called free all the memory associated with an inode.
* It must free the inode itself and any buffers allocated for
* if_extents/if_data and if_broot. It must also free the lock
* associated with the inode.
*/
void
xfs_idestroy(
xfs_inode_t *ip)
{
switch (ip->i_d.di_mode & S_IFMT) {
case S_IFREG:
case S_IFDIR:
case S_IFLNK:
xfs_idestroy_fork(ip, XFS_DATA_FORK);
break;
}
if (ip->i_afp)
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
mrfree(&ip->i_lock);
mrfree(&ip->i_iolock);
freesema(&ip->i_flock);
#ifdef XFS_BMAP_TRACE
ktrace_free(ip->i_xtrace);
#endif
#ifdef XFS_BMBT_TRACE
ktrace_free(ip->i_btrace);
#endif
#ifdef XFS_RW_TRACE
ktrace_free(ip->i_rwtrace);
#endif
#ifdef XFS_ILOCK_TRACE
ktrace_free(ip->i_lock_trace);
#endif
#ifdef XFS_DIR2_TRACE
ktrace_free(ip->i_dir_trace);
#endif
if (ip->i_itemp) {
/* XXXdpd should be able to assert this but shutdown
* is leaving the AIL behind. */
ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
XFS_FORCED_SHUTDOWN(ip->i_mount));
xfs_inode_item_destroy(ip);
}
kmem_zone_free(xfs_inode_zone, ip);
}
/*
* Increment the pin count of the given buffer.
* This value is protected by ipinlock spinlock in the mount structure.
*/
void
xfs_ipin(
xfs_inode_t *ip)
{
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
atomic_inc(&ip->i_pincount);
}
/*
* Decrement the pin count of the given inode, and wake up
* anyone in xfs_iwait_unpin() if the count goes to 0. The
* inode must have been previoulsy pinned with a call to xfs_ipin().
*/
void
xfs_iunpin(
xfs_inode_t *ip)
{
ASSERT(atomic_read(&ip->i_pincount) > 0);
if (atomic_dec_and_test(&ip->i_pincount)) {
vnode_t *vp = XFS_ITOV_NULL(ip);
/* make sync come back and flush this inode */
if (vp) {
struct inode *inode = LINVFS_GET_IP(vp);
if (!(inode->i_state & I_NEW))
mark_inode_dirty_sync(inode);
}
wake_up(&ip->i_ipin_wait);
}
}
/*
* This is called to wait for the given inode to be unpinned.
* It will sleep until this happens. The caller must have the
* inode locked in at least shared mode so that the buffer cannot
* be subsequently pinned once someone is waiting for it to be
* unpinned.
*/
STATIC void
xfs_iunpin_wait(
xfs_inode_t *ip)
{
xfs_inode_log_item_t *iip;
xfs_lsn_t lsn;
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
if (atomic_read(&ip->i_pincount) == 0) {
return;
}
iip = ip->i_itemp;
if (iip && iip->ili_last_lsn) {
lsn = iip->ili_last_lsn;
} else {
lsn = (xfs_lsn_t)0;
}
/*
* Give the log a push so we don't wait here too long.
*/
xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
}
/*
* xfs_iextents_copy()
*
* This is called to copy the REAL extents (as opposed to the delayed
* allocation extents) from the inode into the given buffer. It
* returns the number of bytes copied into the buffer.
*
* If there are no delayed allocation extents, then we can just
* memcpy() the extents into the buffer. Otherwise, we need to
* examine each extent in turn and skip those which are delayed.
*/
int
xfs_iextents_copy(
xfs_inode_t *ip,
xfs_bmbt_rec_t *buffer,
int whichfork)
{
int copied;
xfs_bmbt_rec_t *dest_ep;
xfs_bmbt_rec_t *ep;
#ifdef XFS_BMAP_TRACE
static char fname[] = "xfs_iextents_copy";
#endif
int i;
xfs_ifork_t *ifp;
int nrecs;
xfs_fsblock_t start_block;
ifp = XFS_IFORK_PTR(ip, whichfork);
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
ASSERT(ifp->if_bytes > 0);
nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
ASSERT(nrecs > 0);
/*
* There are some delayed allocation extents in the
* inode, so copy the extents one at a time and skip
* the delayed ones. There must be at least one
* non-delayed extent.
*/
ep = ifp->if_u1.if_extents;
dest_ep = buffer;
copied = 0;
for (i = 0; i < nrecs; i++) {
start_block = xfs_bmbt_get_startblock(ep);
if (ISNULLSTARTBLOCK(start_block)) {
/*
* It's a delayed allocation extent, so skip it.
*/
ep++;
continue;
}
/* Translate to on disk format */
put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
(__uint64_t*)&dest_ep->l0);
put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
(__uint64_t*)&dest_ep->l1);
dest_ep++;
ep++;
copied++;
}
ASSERT(copied != 0);
xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
return (copied * (uint)sizeof(xfs_bmbt_rec_t));
}
/*
* Each of the following cases stores data into the same region
* of the on-disk inode, so only one of them can be valid at
* any given time. While it is possible to have conflicting formats
* and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
* in EXTENTS format, this can only happen when the fork has
* changed formats after being modified but before being flushed.
* In these cases, the format always takes precedence, because the
* format indicates the current state of the fork.
*/
/*ARGSUSED*/
STATIC int
xfs_iflush_fork(
xfs_inode_t *ip,
xfs_dinode_t *dip,
xfs_inode_log_item_t *iip,
int whichfork,
xfs_buf_t *bp)
{
char *cp;
xfs_ifork_t *ifp;
xfs_mount_t *mp;
#ifdef XFS_TRANS_DEBUG
int first;
#endif
static const short brootflag[2] =
{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
static const short dataflag[2] =
{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
static const short extflag[2] =
{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
if (iip == NULL)
return 0;
ifp = XFS_IFORK_PTR(ip, whichfork);
/*
* This can happen if we gave up in iformat in an error path,
* for the attribute fork.
*/
if (ifp == NULL) {
ASSERT(whichfork == XFS_ATTR_FORK);
return 0;
}
cp = XFS_DFORK_PTR(dip, whichfork);
mp = ip->i_mount;
switch (XFS_IFORK_FORMAT(ip, whichfork)) {
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
(ifp->if_bytes > 0)) {
ASSERT(ifp->if_u1.if_data != NULL);
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
}
if (whichfork == XFS_DATA_FORK) {
if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
XFS_ERROR_REPORT("xfs_iflush_fork",
XFS_ERRLEVEL_LOW, mp);
return XFS_ERROR(EFSCORRUPTED);
}
}
break;
case XFS_DINODE_FMT_EXTENTS:
ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
!(iip->ili_format.ilf_fields & extflag[whichfork]));
ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
(ifp->if_bytes > 0)) {
ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
whichfork);
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
(ifp->if_broot_bytes > 0)) {
ASSERT(ifp->if_broot != NULL);
ASSERT(ifp->if_broot_bytes <=
(XFS_IFORK_SIZE(ip, whichfork) +
XFS_BROOT_SIZE_ADJ));
xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
(xfs_bmdr_block_t *)cp,
XFS_DFORK_SIZE(dip, mp, whichfork));
}
break;
case XFS_DINODE_FMT_DEV:
if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
ASSERT(whichfork == XFS_DATA_FORK);
INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
}
break;
case XFS_DINODE_FMT_UUID:
if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
ASSERT(whichfork == XFS_DATA_FORK);
memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
sizeof(uuid_t));
}
break;
default:
ASSERT(0);
break;
}
return 0;
}
/*
* xfs_iflush() will write a modified inode's changes out to the
* inode's on disk home. The caller must have the inode lock held
* in at least shared mode and the inode flush semaphore must be
* held as well. The inode lock will still be held upon return from
* the call and the caller is free to unlock it.
* The inode flush lock will be unlocked when the inode reaches the disk.
* The flags indicate how the inode's buffer should be written out.
*/
int
xfs_iflush(
xfs_inode_t *ip,
uint flags)
{
xfs_inode_log_item_t *iip;
xfs_buf_t *bp;
xfs_dinode_t *dip;
xfs_mount_t *mp;
int error;
/* REFERENCED */
xfs_chash_t *ch;
xfs_inode_t *iq;
int clcount; /* count of inodes clustered */
int bufwasdelwri;
enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
SPLDECL(s);
XFS_STATS_INC(xs_iflush_count);
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
ASSERT(valusema(&ip->i_flock) <= 0);
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
ip->i_d.di_nextents > ip->i_df.if_ext_max);
iip = ip->i_itemp;
mp = ip->i_mount;
/*
* If the inode isn't dirty, then just release the inode
* flush lock and do nothing.
*/
if ((ip->i_update_core == 0) &&
((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
ASSERT((iip != NULL) ?
!(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
xfs_ifunlock(ip);
return 0;
}
/*
* We can't flush the inode until it is unpinned, so
* wait for it. We know noone new can pin it, because
* we are holding the inode lock shared and you need
* to hold it exclusively to pin the inode.
*/
xfs_iunpin_wait(ip);
/*
* This may have been unpinned because the filesystem is shutting
* down forcibly. If that's the case we must not write this inode
* to disk, because the log record didn't make it to disk!
*/
if (XFS_FORCED_SHUTDOWN(mp)) {
ip->i_update_core = 0;
if (iip)
iip->ili_format.ilf_fields = 0;
xfs_ifunlock(ip);
return XFS_ERROR(EIO);
}
/*
* Get the buffer containing the on-disk inode.
*/
error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
if (error != 0) {
xfs_ifunlock(ip);
return error;
}
/*
* Decide how buffer will be flushed out. This is done before
* the call to xfs_iflush_int because this field is zeroed by it.
*/
if (iip != NULL && iip->ili_format.ilf_fields != 0) {
/*
* Flush out the inode buffer according to the directions
* of the caller. In the cases where the caller has given
* us a choice choose the non-delwri case. This is because
* the inode is in the AIL and we need to get it out soon.
*/
switch (flags) {
case XFS_IFLUSH_SYNC:
case XFS_IFLUSH_DELWRI_ELSE_SYNC:
flags = 0;
break;
case XFS_IFLUSH_ASYNC:
case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
flags = INT_ASYNC;
break;
case XFS_IFLUSH_DELWRI:
flags = INT_DELWRI;
break;
default:
ASSERT(0);
flags = 0;
break;
}
} else {
switch (flags) {
case XFS_IFLUSH_DELWRI_ELSE_SYNC:
case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
case XFS_IFLUSH_DELWRI:
flags = INT_DELWRI;
break;
case XFS_IFLUSH_ASYNC:
flags = INT_ASYNC;
break;
case XFS_IFLUSH_SYNC:
flags = 0;
break;
default:
ASSERT(0);
flags = 0;
break;
}
}
/*
* First flush out the inode that xfs_iflush was called with.
*/
error = xfs_iflush_int(ip, bp);
if (error) {
goto corrupt_out;
}
/*
* inode clustering:
* see if other inodes can be gathered into this write
*/
ip->i_chash->chl_buf = bp;
ch = XFS_CHASH(mp, ip->i_blkno);
s = mutex_spinlock(&ch->ch_lock);
clcount = 0;
for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
/*
* Do an un-protected check to see if the inode is dirty and
* is a candidate for flushing. These checks will be repeated
* later after the appropriate locks are acquired.
*/
iip = iq->i_itemp;
if ((iq->i_update_core == 0) &&
((iip == NULL) ||
!(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
xfs_ipincount(iq) == 0) {
continue;
}
/*
* Try to get locks. If any are unavailable,
* then this inode cannot be flushed and is skipped.
*/
/* get inode locks (just i_lock) */
if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
/* get inode flush lock */
if (xfs_iflock_nowait(iq)) {
/* check if pinned */
if (xfs_ipincount(iq) == 0) {
/* arriving here means that
* this inode can be flushed.
* first re-check that it's
* dirty
*/
iip = iq->i_itemp;
if ((iq->i_update_core != 0)||
((iip != NULL) &&
(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
clcount++;
error = xfs_iflush_int(iq, bp);
if (error) {
xfs_iunlock(iq,
XFS_ILOCK_SHARED);
goto cluster_corrupt_out;
}
} else {
xfs_ifunlock(iq);
}
} else {
xfs_ifunlock(iq);
}
}
xfs_iunlock(iq, XFS_ILOCK_SHARED);
}
}
mutex_spinunlock(&ch->ch_lock, s);
if (clcount) {
XFS_STATS_INC(xs_icluster_flushcnt);
XFS_STATS_ADD(xs_icluster_flushinode, clcount);
}
/*
* If the buffer is pinned then push on the log so we won't
* get stuck waiting in the write for too long.
*/
if (XFS_BUF_ISPINNED(bp)){
xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
}
if (flags & INT_DELWRI) {
xfs_bdwrite(mp, bp);
} else if (flags & INT_ASYNC) {
xfs_bawrite(mp, bp);
} else {
error = xfs_bwrite(mp, bp);
}
return error;
corrupt_out:
xfs_buf_relse(bp);
xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
xfs_iflush_abort(ip);
/*
* Unlocks the flush lock
*/
return XFS_ERROR(EFSCORRUPTED);
cluster_corrupt_out:
/* Corruption detected in the clustering loop. Invalidate the
* inode buffer and shut down the filesystem.
*/
mutex_spinunlock(&ch->ch_lock, s);
/*
* Clean up the buffer. If it was B_DELWRI, just release it --
* brelse can handle it with no problems. If not, shut down the
* filesystem before releasing the buffer.
*/
if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
xfs_buf_relse(bp);
}
xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
if(!bufwasdelwri) {
/*
* Just like incore_relse: if we have b_iodone functions,
* mark the buffer as an error and call them. Otherwise
* mark it as stale and brelse.
*/
if (XFS_BUF_IODONE_FUNC(bp)) {
XFS_BUF_CLR_BDSTRAT_FUNC(bp);
XFS_BUF_UNDONE(bp);
XFS_BUF_STALE(bp);
XFS_BUF_SHUT(bp);
XFS_BUF_ERROR(bp,EIO);
xfs_biodone(bp);
} else {
XFS_BUF_STALE(bp);
xfs_buf_relse(bp);
}
}
xfs_iflush_abort(iq);
/*
* Unlocks the flush lock
*/
return XFS_ERROR(EFSCORRUPTED);
}
STATIC int
xfs_iflush_int(
xfs_inode_t *ip,
xfs_buf_t *bp)
{
xfs_inode_log_item_t *iip;
xfs_dinode_t *dip;
xfs_mount_t *mp;
#ifdef XFS_TRANS_DEBUG
int first;
#endif
SPLDECL(s);
ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
ASSERT(valusema(&ip->i_flock) <= 0);
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
ip->i_d.di_nextents > ip->i_df.if_ext_max);
iip = ip->i_itemp;
mp = ip->i_mount;
/*
* If the inode isn't dirty, then just release the inode
* flush lock and do nothing.
*/
if ((ip->i_update_core == 0) &&
((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
xfs_ifunlock(ip);
return 0;
}
/* set *dip = inode's place in the buffer */
dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
/*
* Clear i_update_core before copying out the data.
* This is for coordination with our timestamp updates
* that don't hold the inode lock. They will always
* update the timestamps BEFORE setting i_update_core,
* so if we clear i_update_core after they set it we
* are guaranteed to see their updates to the timestamps.
* I believe that this depends on strongly ordered memory
* semantics, but we have that. We use the SYNCHRONIZE
* macro to make sure that the compiler does not reorder
* the i_update_core access below the data copy below.
*/
ip->i_update_core = 0;
SYNCHRONIZE();
if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
"xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
goto corrupt_out;
}
if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
ip->i_ino, ip, ip->i_d.di_magic);
goto corrupt_out;
}
if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
if (XFS_TEST_ERROR(
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
ip->i_ino, ip);
goto corrupt_out;
}
} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
if (XFS_TEST_ERROR(
(ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
(ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
(ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
ip->i_ino, ip);
goto corrupt_out;
}
}
if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
XFS_RANDOM_IFLUSH_5)) {
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
ip->i_ino,
ip->i_d.di_nextents + ip->i_d.di_anextents,
ip->i_d.di_nblocks,
ip);
goto corrupt_out;
}
if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
ip->i_ino, ip->i_d.di_forkoff, ip);
goto corrupt_out;
}
/*
* bump the flush iteration count, used to detect flushes which
* postdate a log record during recovery.
*/
ip->i_d.di_flushiter++;
/*
* Copy the dirty parts of the inode into the on-disk
* inode. We always copy out the core of the inode,
* because if the inode is dirty at all the core must
* be.
*/
xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
/* Wrap, we never let the log put out DI_MAX_FLUSH */
if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
ip->i_d.di_flushiter = 0;
/*
* If this is really an old format inode and the superblock version
* has not been updated to support only new format inodes, then
* convert back to the old inode format. If the superblock version
* has been updated, then make the conversion permanent.
*/
ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
XFS_SB_VERSION_HASNLINK(&mp->m_sb));
if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
/*
* Convert it back.
*/
ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
} else {
/*
* The superblock version has already been bumped,
* so just make the conversion to the new inode
* format permanent.
*/
ip->i_d.di_version = XFS_DINODE_VERSION_2;
INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
ip->i_d.di_onlink = 0;
dip->di_core.di_onlink = 0;
memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
memset(&(dip->di_core.di_pad[0]), 0,
sizeof(dip->di_core.di_pad));
ASSERT(ip->i_d.di_projid == 0);
}
}
if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
goto corrupt_out;
}
if (XFS_IFORK_Q(ip)) {
/*
* The only error from xfs_iflush_fork is on the data fork.
*/
(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
}
xfs_inobp_check(mp, bp);
/*
* We've recorded everything logged in the inode, so we'd
* like to clear the ilf_fields bits so we don't log and
* flush things unnecessarily. However, we can't stop
* logging all this information until the data we've copied
* into the disk buffer is written to disk. If we did we might
* overwrite the copy of the inode in the log with all the
* data after re-logging only part of it, and in the face of
* a crash we wouldn't have all the data we need to recover.
*
* What we do is move the bits to the ili_last_fields field.
* When logging the inode, these bits are moved back to the
* ilf_fields field. In the xfs_iflush_done() routine we
* clear ili_last_fields, since we know that the information
* those bits represent is permanently on disk. As long as
* the flush completes before the inode is logged again, then
* both ilf_fields and ili_last_fields will be cleared.
*
* We can play with the ilf_fields bits here, because the inode
* lock must be held exclusively in order to set bits there
* and the flush lock protects the ili_last_fields bits.
* Set ili_logged so the flush done
* routine can tell whether or not to look in the AIL.
* Also, store the current LSN of the inode so that we can tell
* whether the item has moved in the AIL from xfs_iflush_done().
* In order to read the lsn we need the AIL lock, because
* it is a 64 bit value that cannot be read atomically.
*/
if (iip != NULL && iip->ili_format.ilf_fields != 0) {
iip->ili_last_fields = iip->ili_format.ilf_fields;
iip->ili_format.ilf_fields = 0;
iip->ili_logged = 1;
ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
AIL_LOCK(mp,s);
iip->ili_flush_lsn = iip->ili_item.li_lsn;
AIL_UNLOCK(mp, s);
/*
* Attach the function xfs_iflush_done to the inode's
* buffer. This will remove the inode from the AIL
* and unlock the inode's flush lock when the inode is
* completely written to disk.
*/
xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
xfs_iflush_done, (xfs_log_item_t *)iip);
ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
} else {
/*
* We're flushing an inode which is not in the AIL and has
* not been logged but has i_update_core set. For this
* case we can use a B_DELWRI flush and immediately drop
* the inode flush lock because we can avoid the whole
* AIL state thing. It's OK to drop the flush lock now,
* because we've already locked the buffer and to do anything
* you really need both.
*/
if (iip != NULL) {
ASSERT(iip->ili_logged == 0);
ASSERT(iip->ili_last_fields == 0);
ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
}
xfs_ifunlock(ip);
}
return 0;
corrupt_out:
return XFS_ERROR(EFSCORRUPTED);
}
/*
* Flush all inactive inodes in mp.
*/
void
xfs_iflush_all(
xfs_mount_t *mp)
{
xfs_inode_t *ip;
vnode_t *vp;
again:
XFS_MOUNT_ILOCK(mp);
ip = mp->m_inodes;
if (ip == NULL)
goto out;
do {
/* Make sure we skip markers inserted by sync */
if (ip->i_mount == NULL) {
ip = ip->i_mnext;
continue;
}
vp = XFS_ITOV_NULL(ip);
if (!vp) {
XFS_MOUNT_IUNLOCK(mp);
xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
goto again;
}
ASSERT(vn_count(vp) == 0);
ip = ip->i_mnext;
} while (ip != mp->m_inodes);
out:
XFS_MOUNT_IUNLOCK(mp);
}
/*
* xfs_iaccess: check accessibility of inode for mode.
*/
int
xfs_iaccess(
xfs_inode_t *ip,
mode_t mode,
cred_t *cr)
{
int error;
mode_t orgmode = mode;
struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
if (mode & S_IWUSR) {
umode_t imode = inode->i_mode;
if (IS_RDONLY(inode) &&
(S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
return XFS_ERROR(EROFS);
if (IS_IMMUTABLE(inode))
return XFS_ERROR(EACCES);
}
/*
* If there's an Access Control List it's used instead of
* the mode bits.
*/
if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
return error ? XFS_ERROR(error) : 0;
if (current_fsuid(cr) != ip->i_d.di_uid) {
mode >>= 3;
if (!in_group_p((gid_t)ip->i_d.di_gid))
mode >>= 3;
}
/*
* If the DACs are ok we don't need any capability check.
*/
if ((ip->i_d.di_mode & mode) == mode)
return 0;
/*
* Read/write DACs are always overridable.
* Executable DACs are overridable if at least one exec bit is set.
*/
if (!(orgmode & S_IXUSR) ||
(inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
if (capable_cred(cr, CAP_DAC_OVERRIDE))
return 0;
if ((orgmode == S_IRUSR) ||
(S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
if (capable_cred(cr, CAP_DAC_READ_SEARCH))
return 0;
#ifdef NOISE
cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
#endif /* NOISE */
return XFS_ERROR(EACCES);
}
return XFS_ERROR(EACCES);
}
/*
* xfs_iroundup: round up argument to next power of two
*/
uint
xfs_iroundup(
uint v)
{
int i;
uint m;
if ((v & (v - 1)) == 0)
return v;
ASSERT((v & 0x80000000) == 0);
if ((v & (v + 1)) == 0)
return v + 1;
for (i = 0, m = 1; i < 31; i++, m <<= 1) {
if (v & m)
continue;
v |= m;
if ((v & (v + 1)) == 0)
return v + 1;
}
ASSERT(0);
return( 0 );
}
/*
* Change the requested timestamp in the given inode.
* We don't lock across timestamp updates, and we don't log them but
* we do record the fact that there is dirty information in core.
*
* NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
* with XFS_ICHGTIME_ACC to be sure that access time
* update will take. Calling first with XFS_ICHGTIME_ACC
* and then XFS_ICHGTIME_MOD may fail to modify the access
* timestamp if the filesystem is mounted noacctm.
*/
void
xfs_ichgtime(xfs_inode_t *ip,
int flags)
{
timespec_t tv;
vnode_t *vp = XFS_ITOV(ip);
struct inode *inode = LINVFS_GET_IP(vp);
/*
* We're not supposed to change timestamps in readonly-mounted
* filesystems. Throw it away if anyone asks us.
*/
if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
return;
/*
* Don't update access timestamps on reads if mounted "noatime"
* Throw it away if anyone asks us.
*/
if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
== XFS_ICHGTIME_ACC))
return;
nanotime(&tv);
if (flags & XFS_ICHGTIME_MOD) {
VN_MTIMESET(vp, &tv);
ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
}
if (flags & XFS_ICHGTIME_ACC) {
VN_ATIMESET(vp, &tv);
ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
}
if (flags & XFS_ICHGTIME_CHG) {
VN_CTIMESET(vp, &tv);
ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
}
/*
* We update the i_update_core field _after_ changing
* the timestamps in order to coordinate properly with
* xfs_iflush() so that we don't lose timestamp updates.
* This keeps us from having to hold the inode lock
* while doing this. We use the SYNCHRONIZE macro to
* ensure that the compiler does not reorder the update
* of i_update_core above the timestamp updates above.
*/
SYNCHRONIZE();
ip->i_update_core = 1;
if (!(inode->i_state & I_LOCK))
mark_inode_dirty_sync(inode);
}
#ifdef XFS_ILOCK_TRACE
ktrace_t *xfs_ilock_trace_buf;
void
xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
{
ktrace_enter(ip->i_lock_trace,
(void *)ip,
(void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
(void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
(void *)ra, /* caller of ilock */
(void *)(unsigned long)current_cpu(),
(void *)(unsigned long)current_pid(),
NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
}
#endif