You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
11 KiB
372 lines
11 KiB
20 years ago
|
/*
|
||
|
* include/asm-ppc/dma.h: Defines for using and allocating dma channels.
|
||
|
* Written by Hennus Bergman, 1992.
|
||
|
* High DMA channel support & info by Hannu Savolainen
|
||
|
* and John Boyd, Nov. 1992.
|
||
|
* Changes for ppc sound by Christoph Nadig
|
||
|
*/
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <asm/system.h>
|
||
|
|
||
|
/*
|
||
|
* Note: Adapted for PowerPC by Gary Thomas
|
||
|
* Modified by Cort Dougan <cort@cs.nmt.edu>
|
||
|
*
|
||
|
* None of this really applies for Power Macintoshes. There is
|
||
|
* basically just enough here to get kernel/dma.c to compile.
|
||
|
*
|
||
|
* There may be some comments or restrictions made here which are
|
||
|
* not valid for the PReP platform. Take what you read
|
||
|
* with a grain of salt.
|
||
|
*/
|
||
|
|
||
|
#ifndef _ASM_DMA_H
|
||
|
#define _ASM_DMA_H
|
||
|
|
||
|
#ifndef MAX_DMA_CHANNELS
|
||
|
#define MAX_DMA_CHANNELS 8
|
||
|
#endif
|
||
|
|
||
|
/* The maximum address that we can perform a DMA transfer to on this platform */
|
||
|
/* Doesn't really apply... */
|
||
|
#define MAX_DMA_ADDRESS 0xFFFFFFFF
|
||
|
|
||
|
/* in arch/ppc/kernel/setup.c -- Cort */
|
||
|
extern unsigned long DMA_MODE_WRITE, DMA_MODE_READ;
|
||
|
extern unsigned long ISA_DMA_THRESHOLD;
|
||
|
|
||
|
#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
|
||
|
#define dma_outb outb_p
|
||
|
#else
|
||
|
#define dma_outb outb
|
||
|
#endif
|
||
|
|
||
|
#define dma_inb inb
|
||
|
|
||
|
/*
|
||
|
* NOTES about DMA transfers:
|
||
|
*
|
||
|
* controller 1: channels 0-3, byte operations, ports 00-1F
|
||
|
* controller 2: channels 4-7, word operations, ports C0-DF
|
||
|
*
|
||
|
* - ALL registers are 8 bits only, regardless of transfer size
|
||
|
* - channel 4 is not used - cascades 1 into 2.
|
||
|
* - channels 0-3 are byte - addresses/counts are for physical bytes
|
||
|
* - channels 5-7 are word - addresses/counts are for physical words
|
||
|
* - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
|
||
|
* - transfer count loaded to registers is 1 less than actual count
|
||
|
* - controller 2 offsets are all even (2x offsets for controller 1)
|
||
|
* - page registers for 5-7 don't use data bit 0, represent 128K pages
|
||
|
* - page registers for 0-3 use bit 0, represent 64K pages
|
||
|
*
|
||
|
* On PReP, DMA transfers are limited to the lower 16MB of _physical_ memory.
|
||
|
* On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
|
||
|
* Note that addresses loaded into registers must be _physical_ addresses,
|
||
|
* not logical addresses (which may differ if paging is active).
|
||
|
*
|
||
|
* Address mapping for channels 0-3:
|
||
|
*
|
||
|
* A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
|
||
|
* | ... | | ... | | ... |
|
||
|
* | ... | | ... | | ... |
|
||
|
* | ... | | ... | | ... |
|
||
|
* P7 ... P0 A7 ... A0 A7 ... A0
|
||
|
* | Page | Addr MSB | Addr LSB | (DMA registers)
|
||
|
*
|
||
|
* Address mapping for channels 5-7:
|
||
|
*
|
||
|
* A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
|
||
|
* | ... | \ \ ... \ \ \ ... \ \
|
||
|
* | ... | \ \ ... \ \ \ ... \ (not used)
|
||
|
* | ... | \ \ ... \ \ \ ... \
|
||
|
* P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
|
||
|
* | Page | Addr MSB | Addr LSB | (DMA registers)
|
||
|
*
|
||
|
* Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
|
||
|
* and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
|
||
|
* the hardware level, so odd-byte transfers aren't possible).
|
||
|
*
|
||
|
* Transfer count (_not # bytes_) is limited to 64K, represented as actual
|
||
|
* count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
|
||
|
* and up to 128K bytes may be transferred on channels 5-7 in one operation.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* see prep_setup_arch() for detailed informations */
|
||
|
#if defined(CONFIG_SOUND_CS4232) && defined(CONFIG_PPC_PREP)
|
||
|
extern long ppc_cs4232_dma, ppc_cs4232_dma2;
|
||
|
#define SND_DMA1 ppc_cs4232_dma
|
||
|
#define SND_DMA2 ppc_cs4232_dma2
|
||
|
#else
|
||
|
#define SND_DMA1 -1
|
||
|
#define SND_DMA2 -1
|
||
|
#endif
|
||
|
|
||
|
/* 8237 DMA controllers */
|
||
|
#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
|
||
|
#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
|
||
|
|
||
|
/* DMA controller registers */
|
||
|
#define DMA1_CMD_REG 0x08 /* command register (w) */
|
||
|
#define DMA1_STAT_REG 0x08 /* status register (r) */
|
||
|
#define DMA1_REQ_REG 0x09 /* request register (w) */
|
||
|
#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
|
||
|
#define DMA1_MODE_REG 0x0B /* mode register (w) */
|
||
|
#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
|
||
|
#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
|
||
|
#define DMA1_RESET_REG 0x0D /* Master Clear (w) */
|
||
|
#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
|
||
|
#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
|
||
|
|
||
|
#define DMA2_CMD_REG 0xD0 /* command register (w) */
|
||
|
#define DMA2_STAT_REG 0xD0 /* status register (r) */
|
||
|
#define DMA2_REQ_REG 0xD2 /* request register (w) */
|
||
|
#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
|
||
|
#define DMA2_MODE_REG 0xD6 /* mode register (w) */
|
||
|
#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
|
||
|
#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
|
||
|
#define DMA2_RESET_REG 0xDA /* Master Clear (w) */
|
||
|
#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
|
||
|
#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
|
||
|
|
||
|
#define DMA_ADDR_0 0x00 /* DMA address registers */
|
||
|
#define DMA_ADDR_1 0x02
|
||
|
#define DMA_ADDR_2 0x04
|
||
|
#define DMA_ADDR_3 0x06
|
||
|
#define DMA_ADDR_4 0xC0
|
||
|
#define DMA_ADDR_5 0xC4
|
||
|
#define DMA_ADDR_6 0xC8
|
||
|
#define DMA_ADDR_7 0xCC
|
||
|
|
||
|
#define DMA_CNT_0 0x01 /* DMA count registers */
|
||
|
#define DMA_CNT_1 0x03
|
||
|
#define DMA_CNT_2 0x05
|
||
|
#define DMA_CNT_3 0x07
|
||
|
#define DMA_CNT_4 0xC2
|
||
|
#define DMA_CNT_5 0xC6
|
||
|
#define DMA_CNT_6 0xCA
|
||
|
#define DMA_CNT_7 0xCE
|
||
|
|
||
|
#define DMA_LO_PAGE_0 0x87 /* DMA page registers */
|
||
|
#define DMA_LO_PAGE_1 0x83
|
||
|
#define DMA_LO_PAGE_2 0x81
|
||
|
#define DMA_LO_PAGE_3 0x82
|
||
|
#define DMA_LO_PAGE_5 0x8B
|
||
|
#define DMA_LO_PAGE_6 0x89
|
||
|
#define DMA_LO_PAGE_7 0x8A
|
||
|
|
||
|
#define DMA_HI_PAGE_0 0x487 /* DMA page registers */
|
||
|
#define DMA_HI_PAGE_1 0x483
|
||
|
#define DMA_HI_PAGE_2 0x481
|
||
|
#define DMA_HI_PAGE_3 0x482
|
||
|
#define DMA_HI_PAGE_5 0x48B
|
||
|
#define DMA_HI_PAGE_6 0x489
|
||
|
#define DMA_HI_PAGE_7 0x48A
|
||
|
|
||
|
#define DMA1_EXT_REG 0x40B
|
||
|
#define DMA2_EXT_REG 0x4D6
|
||
|
|
||
|
#define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
|
||
|
#define DMA_AUTOINIT 0x10
|
||
|
|
||
|
extern spinlock_t dma_spin_lock;
|
||
|
|
||
|
static __inline__ unsigned long claim_dma_lock(void)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
spin_lock_irqsave(&dma_spin_lock, flags);
|
||
|
return flags;
|
||
|
}
|
||
|
|
||
|
static __inline__ void release_dma_lock(unsigned long flags)
|
||
|
{
|
||
|
spin_unlock_irqrestore(&dma_spin_lock, flags);
|
||
|
}
|
||
|
|
||
|
/* enable/disable a specific DMA channel */
|
||
|
static __inline__ void enable_dma(unsigned int dmanr)
|
||
|
{
|
||
|
unsigned char ucDmaCmd = 0x00;
|
||
|
|
||
|
if (dmanr != 4) {
|
||
|
dma_outb(0, DMA2_MASK_REG); /* This may not be enabled */
|
||
|
dma_outb(ucDmaCmd, DMA2_CMD_REG); /* Enable group */
|
||
|
}
|
||
|
if (dmanr <= 3) {
|
||
|
dma_outb(dmanr, DMA1_MASK_REG);
|
||
|
dma_outb(ucDmaCmd, DMA1_CMD_REG); /* Enable group */
|
||
|
} else
|
||
|
dma_outb(dmanr & 3, DMA2_MASK_REG);
|
||
|
}
|
||
|
|
||
|
static __inline__ void disable_dma(unsigned int dmanr)
|
||
|
{
|
||
|
if (dmanr <= 3)
|
||
|
dma_outb(dmanr | 4, DMA1_MASK_REG);
|
||
|
else
|
||
|
dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
|
||
|
}
|
||
|
|
||
|
/* Clear the 'DMA Pointer Flip Flop'.
|
||
|
* Write 0 for LSB/MSB, 1 for MSB/LSB access.
|
||
|
* Use this once to initialize the FF to a known state.
|
||
|
* After that, keep track of it. :-)
|
||
|
* --- In order to do that, the DMA routines below should ---
|
||
|
* --- only be used while interrupts are disabled! ---
|
||
|
*/
|
||
|
static __inline__ void clear_dma_ff(unsigned int dmanr)
|
||
|
{
|
||
|
if (dmanr <= 3)
|
||
|
dma_outb(0, DMA1_CLEAR_FF_REG);
|
||
|
else
|
||
|
dma_outb(0, DMA2_CLEAR_FF_REG);
|
||
|
}
|
||
|
|
||
|
/* set mode (above) for a specific DMA channel */
|
||
|
static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
|
||
|
{
|
||
|
if (dmanr <= 3)
|
||
|
dma_outb(mode | dmanr, DMA1_MODE_REG);
|
||
|
else
|
||
|
dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
|
||
|
}
|
||
|
|
||
|
/* Set only the page register bits of the transfer address.
|
||
|
* This is used for successive transfers when we know the contents of
|
||
|
* the lower 16 bits of the DMA current address register, but a 64k boundary
|
||
|
* may have been crossed.
|
||
|
*/
|
||
|
static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
|
||
|
{
|
||
|
switch (dmanr) {
|
||
|
case 0:
|
||
|
dma_outb(pagenr, DMA_LO_PAGE_0);
|
||
|
dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
|
||
|
break;
|
||
|
case 1:
|
||
|
dma_outb(pagenr, DMA_LO_PAGE_1);
|
||
|
dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
|
||
|
break;
|
||
|
case 2:
|
||
|
dma_outb(pagenr, DMA_LO_PAGE_2);
|
||
|
dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
|
||
|
break;
|
||
|
case 3:
|
||
|
dma_outb(pagenr, DMA_LO_PAGE_3);
|
||
|
dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
|
||
|
break;
|
||
|
case 5:
|
||
|
if (SND_DMA1 == 5 || SND_DMA2 == 5)
|
||
|
dma_outb(pagenr, DMA_LO_PAGE_5);
|
||
|
else
|
||
|
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
|
||
|
dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
|
||
|
break;
|
||
|
case 6:
|
||
|
if (SND_DMA1 == 6 || SND_DMA2 == 6)
|
||
|
dma_outb(pagenr, DMA_LO_PAGE_6);
|
||
|
else
|
||
|
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
|
||
|
dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
|
||
|
break;
|
||
|
case 7:
|
||
|
if (SND_DMA1 == 7 || SND_DMA2 == 7)
|
||
|
dma_outb(pagenr, DMA_LO_PAGE_7);
|
||
|
else
|
||
|
dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
|
||
|
dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set transfer address & page bits for specific DMA channel.
|
||
|
* Assumes dma flipflop is clear.
|
||
|
*/
|
||
|
static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
|
||
|
{
|
||
|
if (dmanr <= 3) {
|
||
|
dma_outb(phys & 0xff, ((dmanr & 3) << 1) + IO_DMA1_BASE);
|
||
|
dma_outb((phys >> 8) & 0xff, ((dmanr & 3) << 1) + IO_DMA1_BASE);
|
||
|
} else if (dmanr == SND_DMA1 || dmanr == SND_DMA2) {
|
||
|
dma_outb(phys & 0xff, ((dmanr & 3) << 2) + IO_DMA2_BASE);
|
||
|
dma_outb((phys >> 8) & 0xff, ((dmanr & 3) << 2) + IO_DMA2_BASE);
|
||
|
dma_outb((dmanr & 3), DMA2_EXT_REG);
|
||
|
} else {
|
||
|
dma_outb((phys >> 1) & 0xff, ((dmanr & 3) << 2) + IO_DMA2_BASE);
|
||
|
dma_outb((phys >> 9) & 0xff, ((dmanr & 3) << 2) + IO_DMA2_BASE);
|
||
|
}
|
||
|
set_dma_page(dmanr, phys >> 16);
|
||
|
}
|
||
|
|
||
|
/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
|
||
|
* a specific DMA channel.
|
||
|
* You must ensure the parameters are valid.
|
||
|
* NOTE: from a manual: "the number of transfers is one more
|
||
|
* than the initial word count"! This is taken into account.
|
||
|
* Assumes dma flip-flop is clear.
|
||
|
* NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
|
||
|
*/
|
||
|
static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
|
||
|
{
|
||
|
count--;
|
||
|
if (dmanr <= 3) {
|
||
|
dma_outb(count & 0xff, ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
|
||
|
dma_outb((count >> 8) & 0xff, ((dmanr & 3) << 1) + 1 +
|
||
|
IO_DMA1_BASE);
|
||
|
} else if (dmanr == SND_DMA1 || dmanr == SND_DMA2) {
|
||
|
dma_outb(count & 0xff, ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
|
||
|
dma_outb((count >> 8) & 0xff, ((dmanr & 3) << 2) + 2 +
|
||
|
IO_DMA2_BASE);
|
||
|
} else {
|
||
|
dma_outb((count >> 1) & 0xff, ((dmanr & 3) << 2) + 2 +
|
||
|
IO_DMA2_BASE);
|
||
|
dma_outb((count >> 9) & 0xff, ((dmanr & 3) << 2) + 2 +
|
||
|
IO_DMA2_BASE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Get DMA residue count. After a DMA transfer, this
|
||
|
* should return zero. Reading this while a DMA transfer is
|
||
|
* still in progress will return unpredictable results.
|
||
|
* If called before the channel has been used, it may return 1.
|
||
|
* Otherwise, it returns the number of _bytes_ left to transfer.
|
||
|
*
|
||
|
* Assumes DMA flip-flop is clear.
|
||
|
*/
|
||
|
static __inline__ int get_dma_residue(unsigned int dmanr)
|
||
|
{
|
||
|
unsigned int io_port = (dmanr <= 3) ?
|
||
|
((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
|
||
|
: ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
|
||
|
|
||
|
/* using short to get 16-bit wrap around */
|
||
|
unsigned short count;
|
||
|
|
||
|
count = 1 + dma_inb(io_port);
|
||
|
count += dma_inb(io_port) << 8;
|
||
|
|
||
|
return (dmanr <= 3 || dmanr == SND_DMA1 || dmanr == SND_DMA2)
|
||
|
? count : (count << 1);
|
||
|
|
||
|
}
|
||
|
|
||
|
/* These are in kernel/dma.c: */
|
||
|
|
||
|
/* reserve a DMA channel */
|
||
|
extern int request_dma(unsigned int dmanr, const char *device_id);
|
||
|
/* release it again */
|
||
|
extern void free_dma(unsigned int dmanr);
|
||
|
|
||
|
#ifdef CONFIG_PCI
|
||
|
extern int isa_dma_bridge_buggy;
|
||
|
#else
|
||
|
#define isa_dma_bridge_buggy (0)
|
||
|
#endif
|
||
|
#endif /* _ASM_DMA_H */
|
||
|
#endif /* __KERNEL__ */
|