|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* Module Name: evmisc - Miscellaneous event manager support functions
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2000 - 2005, R. Byron Moore
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
|
|
* without modification.
|
|
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
|
|
* including a substantially similar Disclaimer requirement for further
|
|
|
|
* binary redistribution.
|
|
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
|
|
* of any contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
|
|
* Software Foundation.
|
|
|
|
*
|
|
|
|
* NO WARRANTY
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <acpi/acpi.h>
|
|
|
|
#include <acpi/acevents.h>
|
|
|
|
#include <acpi/acnamesp.h>
|
|
|
|
#include <acpi/acinterp.h>
|
|
|
|
|
|
|
|
#define _COMPONENT ACPI_EVENTS
|
|
|
|
ACPI_MODULE_NAME ("evmisc")
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef ACPI_DEBUG_OUTPUT
|
|
|
|
static const char *acpi_notify_value_names[] =
|
|
|
|
{
|
|
|
|
"Bus Check",
|
|
|
|
"Device Check",
|
|
|
|
"Device Wake",
|
|
|
|
"Eject request",
|
|
|
|
"Device Check Light",
|
|
|
|
"Frequency Mismatch",
|
|
|
|
"Bus Mode Mismatch",
|
|
|
|
"Power Fault"
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Local prototypes */
|
|
|
|
|
|
|
|
static void ACPI_SYSTEM_XFACE
|
|
|
|
acpi_ev_notify_dispatch (
|
|
|
|
void *context);
|
|
|
|
|
|
|
|
static void ACPI_SYSTEM_XFACE
|
|
|
|
acpi_ev_global_lock_thread (
|
|
|
|
void *context);
|
|
|
|
|
|
|
|
static u32
|
|
|
|
acpi_ev_global_lock_handler (
|
|
|
|
void *context);
|
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_is_notify_object
|
|
|
|
*
|
|
|
|
* PARAMETERS: Node - Node to check
|
|
|
|
*
|
|
|
|
* RETURN: TRUE if notifies allowed on this object
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Check type of node for a object that supports notifies.
|
|
|
|
*
|
|
|
|
* TBD: This could be replaced by a flag bit in the node.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
u8
|
|
|
|
acpi_ev_is_notify_object (
|
|
|
|
struct acpi_namespace_node *node)
|
|
|
|
{
|
|
|
|
switch (node->type) {
|
|
|
|
case ACPI_TYPE_DEVICE:
|
|
|
|
case ACPI_TYPE_PROCESSOR:
|
|
|
|
case ACPI_TYPE_POWER:
|
|
|
|
case ACPI_TYPE_THERMAL:
|
|
|
|
/*
|
|
|
|
* These are the ONLY objects that can receive ACPI notifications
|
|
|
|
*/
|
|
|
|
return (TRUE);
|
|
|
|
|
|
|
|
default:
|
|
|
|
return (FALSE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_queue_notify_request
|
|
|
|
*
|
|
|
|
* PARAMETERS: Node - NS node for the notified object
|
|
|
|
* notify_value - Value from the Notify() request
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Dispatch a device notification event to a previously
|
|
|
|
* installed handler.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
acpi_status
|
|
|
|
acpi_ev_queue_notify_request (
|
|
|
|
struct acpi_namespace_node *node,
|
|
|
|
u32 notify_value)
|
|
|
|
{
|
|
|
|
union acpi_operand_object *obj_desc;
|
|
|
|
union acpi_operand_object *handler_obj = NULL;
|
|
|
|
union acpi_generic_state *notify_info;
|
|
|
|
acpi_status status = AE_OK;
|
|
|
|
|
|
|
|
|
|
|
|
ACPI_FUNCTION_NAME ("ev_queue_notify_request");
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For value 3 (Ejection Request), some device method may need to be run.
|
|
|
|
* For value 2 (Device Wake) if _PRW exists, the _PS0 method may need
|
|
|
|
* to be run.
|
|
|
|
* For value 0x80 (Status Change) on the power button or sleep button,
|
|
|
|
* initiate soft-off or sleep operation?
|
|
|
|
*/
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
|
|
|
|
"Dispatching Notify(%X) on node %p\n", notify_value, node));
|
|
|
|
|
|
|
|
if (notify_value <= 7) {
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Notify value: %s\n",
|
|
|
|
acpi_notify_value_names[notify_value]));
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
|
|
|
|
"Notify value: 0x%2.2X **Device Specific**\n",
|
|
|
|
notify_value));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the notify object attached to the NS Node */
|
|
|
|
|
|
|
|
obj_desc = acpi_ns_get_attached_object (node);
|
|
|
|
if (obj_desc) {
|
|
|
|
/* We have the notify object, Get the right handler */
|
|
|
|
|
|
|
|
switch (node->type) {
|
|
|
|
case ACPI_TYPE_DEVICE:
|
|
|
|
case ACPI_TYPE_THERMAL:
|
|
|
|
case ACPI_TYPE_PROCESSOR:
|
|
|
|
case ACPI_TYPE_POWER:
|
|
|
|
|
|
|
|
if (notify_value <= ACPI_MAX_SYS_NOTIFY) {
|
|
|
|
handler_obj = obj_desc->common_notify.system_notify;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
handler_obj = obj_desc->common_notify.device_notify;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
/* All other types are not supported */
|
|
|
|
return (AE_TYPE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If there is any handler to run, schedule the dispatcher */
|
|
|
|
|
|
|
|
if ((acpi_gbl_system_notify.handler && (notify_value <= ACPI_MAX_SYS_NOTIFY)) ||
|
|
|
|
(acpi_gbl_device_notify.handler && (notify_value > ACPI_MAX_SYS_NOTIFY)) ||
|
|
|
|
handler_obj) {
|
|
|
|
notify_info = acpi_ut_create_generic_state ();
|
|
|
|
if (!notify_info) {
|
|
|
|
return (AE_NO_MEMORY);
|
|
|
|
}
|
|
|
|
|
|
|
|
notify_info->common.data_type = ACPI_DESC_TYPE_STATE_NOTIFY;
|
|
|
|
notify_info->notify.node = node;
|
|
|
|
notify_info->notify.value = (u16) notify_value;
|
|
|
|
notify_info->notify.handler_obj = handler_obj;
|
|
|
|
|
|
|
|
status = acpi_os_queue_for_execution (OSD_PRIORITY_HIGH,
|
|
|
|
acpi_ev_notify_dispatch, notify_info);
|
|
|
|
if (ACPI_FAILURE (status)) {
|
|
|
|
acpi_ut_delete_generic_state (notify_info);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!handler_obj) {
|
|
|
|
/*
|
|
|
|
* There is no per-device notify handler for this device.
|
|
|
|
* This may or may not be a problem.
|
|
|
|
*/
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_INFO,
|
|
|
|
"No notify handler for Notify(%4.4s, %X) node %p\n",
|
|
|
|
acpi_ut_get_node_name (node), notify_value, node));
|
|
|
|
}
|
|
|
|
|
|
|
|
return (status);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_notify_dispatch
|
|
|
|
*
|
|
|
|
* PARAMETERS: Context - To be passed to the notify handler
|
|
|
|
*
|
|
|
|
* RETURN: None.
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Dispatch a device notification event to a previously
|
|
|
|
* installed handler.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
static void ACPI_SYSTEM_XFACE
|
|
|
|
acpi_ev_notify_dispatch (
|
|
|
|
void *context)
|
|
|
|
{
|
|
|
|
union acpi_generic_state *notify_info = (union acpi_generic_state *) context;
|
|
|
|
acpi_notify_handler global_handler = NULL;
|
|
|
|
void *global_context = NULL;
|
|
|
|
union acpi_operand_object *handler_obj;
|
|
|
|
|
|
|
|
|
|
|
|
ACPI_FUNCTION_ENTRY ();
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We will invoke a global notify handler if installed.
|
|
|
|
* This is done _before_ we invoke the per-device handler attached
|
|
|
|
* to the device.
|
|
|
|
*/
|
|
|
|
if (notify_info->notify.value <= ACPI_MAX_SYS_NOTIFY) {
|
|
|
|
/* Global system notification handler */
|
|
|
|
|
|
|
|
if (acpi_gbl_system_notify.handler) {
|
|
|
|
global_handler = acpi_gbl_system_notify.handler;
|
|
|
|
global_context = acpi_gbl_system_notify.context;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* Global driver notification handler */
|
|
|
|
|
|
|
|
if (acpi_gbl_device_notify.handler) {
|
|
|
|
global_handler = acpi_gbl_device_notify.handler;
|
|
|
|
global_context = acpi_gbl_device_notify.context;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Invoke the system handler first, if present */
|
|
|
|
|
|
|
|
if (global_handler) {
|
|
|
|
global_handler (notify_info->notify.node, notify_info->notify.value,
|
|
|
|
global_context);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now invoke the per-device handler, if present */
|
|
|
|
|
|
|
|
handler_obj = notify_info->notify.handler_obj;
|
|
|
|
if (handler_obj) {
|
|
|
|
handler_obj->notify.handler (notify_info->notify.node,
|
|
|
|
notify_info->notify.value,
|
|
|
|
handler_obj->notify.context);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* All done with the info object */
|
|
|
|
|
|
|
|
acpi_ut_delete_generic_state (notify_info);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_global_lock_thread
|
|
|
|
*
|
|
|
|
* PARAMETERS: Context - From thread interface, not used
|
|
|
|
*
|
|
|
|
* RETURN: None
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Invoked by SCI interrupt handler upon acquisition of the
|
|
|
|
* Global Lock. Simply signal all threads that are waiting
|
|
|
|
* for the lock.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
static void ACPI_SYSTEM_XFACE
|
|
|
|
acpi_ev_global_lock_thread (
|
|
|
|
void *context)
|
|
|
|
{
|
|
|
|
acpi_status status;
|
|
|
|
|
|
|
|
|
|
|
|
/* Signal threads that are waiting for the lock */
|
|
|
|
|
|
|
|
if (acpi_gbl_global_lock_thread_count) {
|
|
|
|
/* Send sufficient units to the semaphore */
|
|
|
|
|
|
|
|
status = acpi_os_signal_semaphore (acpi_gbl_global_lock_semaphore,
|
|
|
|
acpi_gbl_global_lock_thread_count);
|
|
|
|
if (ACPI_FAILURE (status)) {
|
|
|
|
ACPI_REPORT_ERROR (("Could not signal Global Lock semaphore\n"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_global_lock_handler
|
|
|
|
*
|
|
|
|
* PARAMETERS: Context - From thread interface, not used
|
|
|
|
*
|
|
|
|
* RETURN: ACPI_INTERRUPT_HANDLED or ACPI_INTERRUPT_NOT_HANDLED
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Invoked directly from the SCI handler when a global lock
|
|
|
|
* release interrupt occurs. Grab the global lock and queue
|
|
|
|
* the global lock thread for execution
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
static u32
|
|
|
|
acpi_ev_global_lock_handler (
|
|
|
|
void *context)
|
|
|
|
{
|
|
|
|
u8 acquired = FALSE;
|
|
|
|
acpi_status status;
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Attempt to get the lock
|
|
|
|
* If we don't get it now, it will be marked pending and we will
|
|
|
|
* take another interrupt when it becomes free.
|
|
|
|
*/
|
|
|
|
ACPI_ACQUIRE_GLOBAL_LOCK (acpi_gbl_common_fACS.global_lock, acquired);
|
|
|
|
if (acquired) {
|
|
|
|
/* Got the lock, now wake all threads waiting for it */
|
|
|
|
|
|
|
|
acpi_gbl_global_lock_acquired = TRUE;
|
|
|
|
|
|
|
|
/* Run the Global Lock thread which will signal all waiting threads */
|
|
|
|
|
|
|
|
status = acpi_os_queue_for_execution (OSD_PRIORITY_HIGH,
|
|
|
|
acpi_ev_global_lock_thread, context);
|
|
|
|
if (ACPI_FAILURE (status)) {
|
|
|
|
ACPI_REPORT_ERROR (("Could not queue Global Lock thread, %s\n",
|
|
|
|
acpi_format_exception (status)));
|
|
|
|
|
|
|
|
return (ACPI_INTERRUPT_NOT_HANDLED);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (ACPI_INTERRUPT_HANDLED);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_init_global_lock_handler
|
|
|
|
*
|
|
|
|
* PARAMETERS: None
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Install a handler for the global lock release event
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
acpi_status
|
|
|
|
acpi_ev_init_global_lock_handler (
|
|
|
|
void)
|
|
|
|
{
|
|
|
|
acpi_status status;
|
|
|
|
|
|
|
|
|
|
|
|
ACPI_FUNCTION_TRACE ("ev_init_global_lock_handler");
|
|
|
|
|
|
|
|
|
|
|
|
acpi_gbl_global_lock_present = TRUE;
|
|
|
|
status = acpi_install_fixed_event_handler (ACPI_EVENT_GLOBAL,
|
|
|
|
acpi_ev_global_lock_handler, NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the global lock does not exist on this platform, the attempt
|
|
|
|
* to enable GBL_STATUS will fail (the GBL_ENABLE bit will not stick)
|
|
|
|
* Map to AE_OK, but mark global lock as not present.
|
|
|
|
* Any attempt to actually use the global lock will be flagged
|
|
|
|
* with an error.
|
|
|
|
*/
|
|
|
|
if (status == AE_NO_HARDWARE_RESPONSE) {
|
|
|
|
ACPI_REPORT_ERROR ((
|
|
|
|
"No response from Global Lock hardware, disabling lock\n"));
|
|
|
|
|
|
|
|
acpi_gbl_global_lock_present = FALSE;
|
|
|
|
status = AE_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
return_ACPI_STATUS (status);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_acquire_global_lock
|
|
|
|
*
|
|
|
|
* PARAMETERS: Timeout - Max time to wait for the lock, in millisec.
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Attempt to gain ownership of the Global Lock.
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
acpi_status
|
|
|
|
acpi_ev_acquire_global_lock (
|
|
|
|
u16 timeout)
|
|
|
|
{
|
|
|
|
acpi_status status = AE_OK;
|
|
|
|
u8 acquired = FALSE;
|
|
|
|
|
|
|
|
|
|
|
|
ACPI_FUNCTION_TRACE ("ev_acquire_global_lock");
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef ACPI_APPLICATION
|
|
|
|
/* Make sure that we actually have a global lock */
|
|
|
|
|
|
|
|
if (!acpi_gbl_global_lock_present) {
|
|
|
|
return_ACPI_STATUS (AE_NO_GLOBAL_LOCK);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* One more thread wants the global lock */
|
|
|
|
|
|
|
|
acpi_gbl_global_lock_thread_count++;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we (OS side vs. BIOS side) have the hardware lock already,
|
|
|
|
* we are done
|
|
|
|
*/
|
|
|
|
if (acpi_gbl_global_lock_acquired) {
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We must acquire the actual hardware lock */
|
|
|
|
|
|
|
|
ACPI_ACQUIRE_GLOBAL_LOCK (acpi_gbl_common_fACS.global_lock, acquired);
|
|
|
|
if (acquired) {
|
|
|
|
/* We got the lock */
|
|
|
|
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Acquired the HW Global Lock\n"));
|
|
|
|
|
|
|
|
acpi_gbl_global_lock_acquired = TRUE;
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Did not get the lock. The pending bit was set above, and we must now
|
|
|
|
* wait until we get the global lock released interrupt.
|
|
|
|
*/
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Waiting for the HW Global Lock\n"));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Acquire the global lock semaphore first.
|
|
|
|
* Since this wait will block, we must release the interpreter
|
|
|
|
*/
|
|
|
|
status = acpi_ex_system_wait_semaphore (acpi_gbl_global_lock_semaphore,
|
|
|
|
timeout);
|
|
|
|
return_ACPI_STATUS (status);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_release_global_lock
|
|
|
|
*
|
|
|
|
* PARAMETERS: None
|
|
|
|
*
|
|
|
|
* RETURN: Status
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Releases ownership of the Global Lock.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
acpi_status
|
|
|
|
acpi_ev_release_global_lock (
|
|
|
|
void)
|
|
|
|
{
|
|
|
|
u8 pending = FALSE;
|
|
|
|
acpi_status status = AE_OK;
|
|
|
|
|
|
|
|
|
|
|
|
ACPI_FUNCTION_TRACE ("ev_release_global_lock");
|
|
|
|
|
|
|
|
|
|
|
|
if (!acpi_gbl_global_lock_thread_count) {
|
|
|
|
ACPI_REPORT_WARNING((
|
|
|
|
"Cannot release HW Global Lock, it has not been acquired\n"));
|
|
|
|
return_ACPI_STATUS (AE_NOT_ACQUIRED);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* One fewer thread has the global lock */
|
|
|
|
|
|
|
|
acpi_gbl_global_lock_thread_count--;
|
|
|
|
if (acpi_gbl_global_lock_thread_count) {
|
|
|
|
/* There are still some threads holding the lock, cannot release */
|
|
|
|
|
|
|
|
return_ACPI_STATUS (AE_OK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No more threads holding lock, we can do the actual hardware
|
|
|
|
* release
|
|
|
|
*/
|
|
|
|
ACPI_RELEASE_GLOBAL_LOCK (acpi_gbl_common_fACS.global_lock, pending);
|
|
|
|
acpi_gbl_global_lock_acquired = FALSE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the pending bit was set, we must write GBL_RLS to the control
|
|
|
|
* register
|
|
|
|
*/
|
|
|
|
if (pending) {
|
|
|
|
status = acpi_set_register (ACPI_BITREG_GLOBAL_LOCK_RELEASE,
|
|
|
|
1, ACPI_MTX_LOCK);
|
|
|
|
}
|
|
|
|
|
|
|
|
return_ACPI_STATUS (status);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* FUNCTION: acpi_ev_terminate
|
|
|
|
*
|
|
|
|
* PARAMETERS: none
|
|
|
|
*
|
|
|
|
* RETURN: none
|
|
|
|
*
|
|
|
|
* DESCRIPTION: Disable events and free memory allocated for table storage.
|
|
|
|
*
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
void
|
|
|
|
acpi_ev_terminate (
|
|
|
|
void)
|
|
|
|
{
|
|
|
|
acpi_native_uint i;
|
|
|
|
acpi_status status;
|
|
|
|
|
|
|
|
|
|
|
|
ACPI_FUNCTION_TRACE ("ev_terminate");
|
|
|
|
|
|
|
|
|
|
|
|
if (acpi_gbl_events_initialized) {
|
|
|
|
/*
|
|
|
|
* Disable all event-related functionality.
|
|
|
|
* In all cases, on error, print a message but obviously we don't abort.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Disable all fixed events */
|
|
|
|
|
|
|
|
for (i = 0; i < ACPI_NUM_FIXED_EVENTS; i++) {
|
|
|
|
status = acpi_disable_event ((u32) i, 0);
|
|
|
|
if (ACPI_FAILURE (status)) {
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
|
|
|
|
"Could not disable fixed event %d\n", (u32) i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Disable all GPEs in all GPE blocks */
|
|
|
|
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
20 years ago
|
|
|
status = acpi_ev_walk_gpe_list (acpi_hw_disable_gpe_block);
|
|
|
|
|
|
|
|
/* Remove SCI handler */
|
|
|
|
|
|
|
|
status = acpi_ev_remove_sci_handler ();
|
|
|
|
if (ACPI_FAILURE(status)) {
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_ERROR,
|
|
|
|
"Could not remove SCI handler\n"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Deallocate all handler objects installed within GPE info structs */
|
|
|
|
|
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com>
ACPICA 20050617:
Moved the object cache operations into the OS interface
layer (OSL) to allow the host OS to handle these operations
if desired (for example, the Linux OSL will invoke the
slab allocator). This support is optional; the compile
time define ACPI_USE_LOCAL_CACHE may be used to utilize
the original cache code in the ACPI CA core. The new OSL
interfaces are shown below. See utalloc.c for an example
implementation, and acpiosxf.h for the exact interface
definitions. Thanks to Alexey Starikovskiy.
acpi_os_create_cache
acpi_os_delete_cache
acpi_os_purge_cache
acpi_os_acquire_object
acpi_os_release_object
Modified the interfaces to acpi_os_acquire_lock and
acpi_os_release_lock to return and restore a flags
parameter. This fits better with many OS lock models.
Note: the current execution state (interrupt handler
or not) is no longer passed to these interfaces. If
necessary, the OSL must determine this state by itself, a
simple and fast operation. Thanks to Alexey Starikovskiy.
Fixed a problem in the ACPI table handling where a valid
XSDT was assumed present if the revision of the RSDP
was 2 or greater. According to the ACPI specification,
the XSDT is optional in all cases, and the table manager
therefore now checks for both an RSDP >=2 and a valid
XSDT pointer. Otherwise, the RSDT pointer is used.
Some ACPI 2.0 compliant BIOSs contain only the RSDT.
Fixed an interpreter problem with the Mid() operator in the
case of an input string where the resulting output string
is of zero length. It now correctly returns a valid,
null terminated string object instead of a string object
with a null pointer.
Fixed a problem with the control method argument handling
to allow a store to an Arg object that already contains an
object of type Device. The Device object is now correctly
overwritten. Previously, an error was returned.
ACPICA 20050624:
Modified the new OSL cache interfaces to use ACPI_CACHE_T
as the type for the host-defined cache object. This allows
the OSL implementation to define and type this object in
any manner desired, simplifying the OSL implementation.
For example, ACPI_CACHE_T is defined as kmem_cache_t for
Linux, and should be defined in the OS-specific header
file for other operating systems as required.
Changed the interface to AcpiOsAcquireObject to directly
return the requested object as the function return (instead
of ACPI_STATUS.) This change was made for performance
reasons, since this is the purpose of the interface in the
first place. acpi_os_acquire_object is now similar to the
acpi_os_allocate interface. Thanks to Alexey Starikovskiy.
Modified the initialization sequence in
acpi_initialize_subsystem to call the OSL interface
acpi_osl_initialize first, before any local initialization.
This change was required because the global initialization
now calls OSL interfaces.
Restructured the code base to split some files because
of size and/or because the code logically belonged in a
separate file. New files are listed below.
utilities/utcache.c /* Local cache interfaces */
utilities/utmutex.c /* Local mutex support */
utilities/utstate.c /* State object support */
parser/psloop.c /* Main AML parse loop */
Signed-off-by: Len Brown <len.brown@intel.com>
20 years ago
|
|
|
status = acpi_ev_walk_gpe_list (acpi_ev_delete_gpe_handlers);
|
|
|
|
|
|
|
|
/* Return to original mode if necessary */
|
|
|
|
|
|
|
|
if (acpi_gbl_original_mode == ACPI_SYS_MODE_LEGACY) {
|
|
|
|
status = acpi_disable ();
|
|
|
|
if (ACPI_FAILURE (status)) {
|
|
|
|
ACPI_DEBUG_PRINT ((ACPI_DB_WARN, "acpi_disable failed\n"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return_VOID;
|
|
|
|
}
|
|
|
|
|