|
|
|
/*
|
|
|
|
* Adaptec AAC series RAID controller driver
|
|
|
|
* (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
|
|
|
|
*
|
|
|
|
* based on the old aacraid driver that is..
|
|
|
|
* Adaptec aacraid device driver for Linux.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
|
|
* any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; see the file COPYING. If not, write to
|
|
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*
|
|
|
|
* Module Name:
|
|
|
|
* dpcsup.c
|
|
|
|
*
|
|
|
|
* Abstract: All DPC processing routines for the cyclone board occur here.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/completion.h>
|
|
|
|
#include <linux/blkdev.h>
|
|
|
|
#include <asm/semaphore.h>
|
|
|
|
|
|
|
|
#include "aacraid.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* aac_response_normal - Handle command replies
|
|
|
|
* @q: Queue to read from
|
|
|
|
*
|
|
|
|
* This DPC routine will be run when the adapter interrupts us to let us
|
|
|
|
* know there is a response on our normal priority queue. We will pull off
|
|
|
|
* all QE there are and wake up all the waiters before exiting. We will
|
|
|
|
* take a spinlock out on the queue before operating on it.
|
|
|
|
*/
|
|
|
|
|
|
|
|
unsigned int aac_response_normal(struct aac_queue * q)
|
|
|
|
{
|
|
|
|
struct aac_dev * dev = q->dev;
|
|
|
|
struct aac_entry *entry;
|
|
|
|
struct hw_fib * hwfib;
|
|
|
|
struct fib * fib;
|
|
|
|
int consumed = 0;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(q->lock, flags);
|
|
|
|
/*
|
|
|
|
* Keep pulling response QEs off the response queue and waking
|
|
|
|
* up the waiters until there are no more QEs. We then return
|
|
|
|
* back to the system. If no response was requesed we just
|
|
|
|
* deallocate the Fib here and continue.
|
|
|
|
*/
|
|
|
|
while(aac_consumer_get(dev, q, &entry))
|
|
|
|
{
|
|
|
|
int fast;
|
|
|
|
u32 index = le32_to_cpu(entry->addr);
|
|
|
|
fast = index & 0x01;
|
|
|
|
fib = &dev->fibs[index >> 1];
|
|
|
|
hwfib = fib->hw_fib;
|
|
|
|
|
|
|
|
aac_consumer_free(dev, q, HostNormRespQueue);
|
|
|
|
/*
|
|
|
|
* Remove this fib from the Outstanding I/O queue.
|
|
|
|
* But only if it has not already been timed out.
|
|
|
|
*
|
|
|
|
* If the fib has been timed out already, then just
|
|
|
|
* continue. The caller has already been notified that
|
|
|
|
* the fib timed out.
|
|
|
|
*/
|
|
|
|
if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
|
|
|
|
list_del(&fib->queue);
|
|
|
|
dev->queues->queue[AdapNormCmdQueue].numpending--;
|
|
|
|
} else {
|
|
|
|
printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
|
|
|
|
printk(KERN_DEBUG"aacraid: hwfib=%p fib index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(q->lock, flags);
|
|
|
|
|
|
|
|
if (fast) {
|
|
|
|
/*
|
|
|
|
* Doctor the fib
|
|
|
|
*/
|
|
|
|
*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
|
|
|
|
hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
|
|
|
|
}
|
|
|
|
|
|
|
|
FIB_COUNTER_INCREMENT(aac_config.FibRecved);
|
|
|
|
|
|
|
|
if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
|
|
|
|
{
|
|
|
|
__le32 *pstatus = (__le32 *)hwfib->data;
|
|
|
|
if (*pstatus & cpu_to_le32(0xffff0000))
|
|
|
|
*pstatus = cpu_to_le32(ST_OK);
|
|
|
|
}
|
|
|
|
if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
|
|
|
|
{
|
|
|
|
if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
|
|
|
|
FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
|
|
|
|
else
|
|
|
|
FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
|
|
|
|
/*
|
|
|
|
* NOTE: we cannot touch the fib after this
|
|
|
|
* call, because it may have been deallocated.
|
|
|
|
*/
|
|
|
|
fib->callback(fib->callback_data, fib);
|
|
|
|
} else {
|
|
|
|
unsigned long flagv;
|
|
|
|
spin_lock_irqsave(&fib->event_lock, flagv);
|
|
|
|
fib->done = 1;
|
|
|
|
up(&fib->event_wait);
|
|
|
|
spin_unlock_irqrestore(&fib->event_lock, flagv);
|
|
|
|
FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
|
|
|
|
}
|
|
|
|
consumed++;
|
|
|
|
spin_lock_irqsave(q->lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (consumed > aac_config.peak_fibs)
|
|
|
|
aac_config.peak_fibs = consumed;
|
|
|
|
if (consumed == 0)
|
|
|
|
aac_config.zero_fibs++;
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(q->lock, flags);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* aac_command_normal - handle commands
|
|
|
|
* @q: queue to process
|
|
|
|
*
|
|
|
|
* This DPC routine will be queued when the adapter interrupts us to
|
|
|
|
* let us know there is a command on our normal priority queue. We will
|
|
|
|
* pull off all QE there are and wake up all the waiters before exiting.
|
|
|
|
* We will take a spinlock out on the queue before operating on it.
|
|
|
|
*/
|
|
|
|
|
|
|
|
unsigned int aac_command_normal(struct aac_queue *q)
|
|
|
|
{
|
|
|
|
struct aac_dev * dev = q->dev;
|
|
|
|
struct aac_entry *entry;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(q->lock, flags);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Keep pulling response QEs off the response queue and waking
|
|
|
|
* up the waiters until there are no more QEs. We then return
|
|
|
|
* back to the system.
|
|
|
|
*/
|
|
|
|
while(aac_consumer_get(dev, q, &entry))
|
|
|
|
{
|
|
|
|
struct fib fibctx;
|
|
|
|
struct hw_fib * hw_fib;
|
|
|
|
u32 index;
|
|
|
|
struct fib *fib = &fibctx;
|
|
|
|
|
|
|
|
index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
|
|
|
|
hw_fib = &dev->aif_base_va[index];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate a FIB at all costs. For non queued stuff
|
|
|
|
* we can just use the stack so we are happy. We need
|
|
|
|
* a fib object in order to manage the linked lists
|
|
|
|
*/
|
|
|
|
if (dev->aif_thread)
|
|
|
|
if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
|
|
|
|
fib = &fibctx;
|
|
|
|
|
|
|
|
memset(fib, 0, sizeof(struct fib));
|
|
|
|
INIT_LIST_HEAD(&fib->fiblink);
|
|
|
|
fib->type = FSAFS_NTC_FIB_CONTEXT;
|
|
|
|
fib->size = sizeof(struct fib);
|
|
|
|
fib->hw_fib = hw_fib;
|
|
|
|
fib->data = hw_fib->data;
|
|
|
|
fib->dev = dev;
|
|
|
|
|
|
|
|
|
|
|
|
if (dev->aif_thread && fib != &fibctx) {
|
|
|
|
list_add_tail(&fib->fiblink, &q->cmdq);
|
|
|
|
aac_consumer_free(dev, q, HostNormCmdQueue);
|
|
|
|
wake_up_interruptible(&q->cmdready);
|
|
|
|
} else {
|
|
|
|
aac_consumer_free(dev, q, HostNormCmdQueue);
|
|
|
|
spin_unlock_irqrestore(q->lock, flags);
|
|
|
|
/*
|
|
|
|
* Set the status of this FIB
|
|
|
|
*/
|
|
|
|
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
|
|
|
|
fib_adapter_complete(fib, sizeof(u32));
|
|
|
|
spin_lock_irqsave(q->lock, flags);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(q->lock, flags);
|
|
|
|
return 0;
|
|
|
|
}
|