|
|
|
/*
|
|
|
|
* consolemap.c
|
|
|
|
*
|
|
|
|
* Mapping from internal code (such as Latin-1 or Unicode or IBM PC code)
|
|
|
|
* to font positions.
|
|
|
|
*
|
|
|
|
* aeb, 950210
|
|
|
|
*
|
|
|
|
* Support for multiple unimaps by Jakub Jelinek <jj@ultra.linux.cz>, July 1998
|
|
|
|
*
|
|
|
|
* Fix bug in inverse translation. Stanislav Voronyi <stas@cnti.uanet.kharkov.ua>, Dec 1998
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/kd.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/tty.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <linux/consolemap.h>
|
|
|
|
#include <linux/vt_kern.h>
|
|
|
|
|
|
|
|
static unsigned short translations[][256] = {
|
|
|
|
/* 8-bit Latin-1 mapped to Unicode -- trivial mapping */
|
|
|
|
{
|
|
|
|
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
|
|
|
|
0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f,
|
|
|
|
0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017,
|
|
|
|
0x0018, 0x0019, 0x001a, 0x001b, 0x001c, 0x001d, 0x001e, 0x001f,
|
|
|
|
0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027,
|
|
|
|
0x0028, 0x0029, 0x002a, 0x002b, 0x002c, 0x002d, 0x002e, 0x002f,
|
|
|
|
0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037,
|
|
|
|
0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e, 0x003f,
|
|
|
|
0x0040, 0x0041, 0x0042, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047,
|
|
|
|
0x0048, 0x0049, 0x004a, 0x004b, 0x004c, 0x004d, 0x004e, 0x004f,
|
|
|
|
0x0050, 0x0051, 0x0052, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057,
|
|
|
|
0x0058, 0x0059, 0x005a, 0x005b, 0x005c, 0x005d, 0x005e, 0x005f,
|
|
|
|
0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067,
|
|
|
|
0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f,
|
|
|
|
0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077,
|
|
|
|
0x0078, 0x0079, 0x007a, 0x007b, 0x007c, 0x007d, 0x007e, 0x007f,
|
|
|
|
0x0080, 0x0081, 0x0082, 0x0083, 0x0084, 0x0085, 0x0086, 0x0087,
|
|
|
|
0x0088, 0x0089, 0x008a, 0x008b, 0x008c, 0x008d, 0x008e, 0x008f,
|
|
|
|
0x0090, 0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0097,
|
|
|
|
0x0098, 0x0099, 0x009a, 0x009b, 0x009c, 0x009d, 0x009e, 0x009f,
|
|
|
|
0x00a0, 0x00a1, 0x00a2, 0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7,
|
|
|
|
0x00a8, 0x00a9, 0x00aa, 0x00ab, 0x00ac, 0x00ad, 0x00ae, 0x00af,
|
|
|
|
0x00b0, 0x00b1, 0x00b2, 0x00b3, 0x00b4, 0x00b5, 0x00b6, 0x00b7,
|
|
|
|
0x00b8, 0x00b9, 0x00ba, 0x00bb, 0x00bc, 0x00bd, 0x00be, 0x00bf,
|
|
|
|
0x00c0, 0x00c1, 0x00c2, 0x00c3, 0x00c4, 0x00c5, 0x00c6, 0x00c7,
|
|
|
|
0x00c8, 0x00c9, 0x00ca, 0x00cb, 0x00cc, 0x00cd, 0x00ce, 0x00cf,
|
|
|
|
0x00d0, 0x00d1, 0x00d2, 0x00d3, 0x00d4, 0x00d5, 0x00d6, 0x00d7,
|
|
|
|
0x00d8, 0x00d9, 0x00da, 0x00db, 0x00dc, 0x00dd, 0x00de, 0x00df,
|
|
|
|
0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7,
|
|
|
|
0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef,
|
|
|
|
0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00f7,
|
|
|
|
0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00ff
|
|
|
|
},
|
|
|
|
/* VT100 graphics mapped to Unicode */
|
|
|
|
{
|
|
|
|
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
|
|
|
|
0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f,
|
|
|
|
0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017,
|
|
|
|
0x0018, 0x0019, 0x001a, 0x001b, 0x001c, 0x001d, 0x001e, 0x001f,
|
|
|
|
0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027,
|
|
|
|
0x0028, 0x0029, 0x002a, 0x2192, 0x2190, 0x2191, 0x2193, 0x002f,
|
|
|
|
0x2588, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037,
|
|
|
|
0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e, 0x003f,
|
|
|
|
0x0040, 0x0041, 0x0042, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047,
|
|
|
|
0x0048, 0x0049, 0x004a, 0x004b, 0x004c, 0x004d, 0x004e, 0x004f,
|
|
|
|
0x0050, 0x0051, 0x0052, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057,
|
|
|
|
0x0058, 0x0059, 0x005a, 0x005b, 0x005c, 0x005d, 0x005e, 0x00a0,
|
|
|
|
0x25c6, 0x2592, 0x2409, 0x240c, 0x240d, 0x240a, 0x00b0, 0x00b1,
|
|
|
|
0x2591, 0x240b, 0x2518, 0x2510, 0x250c, 0x2514, 0x253c, 0x23ba,
|
|
|
|
0x23bb, 0x2500, 0x23bc, 0x23bd, 0x251c, 0x2524, 0x2534, 0x252c,
|
|
|
|
0x2502, 0x2264, 0x2265, 0x03c0, 0x2260, 0x00a3, 0x00b7, 0x007f,
|
|
|
|
0x0080, 0x0081, 0x0082, 0x0083, 0x0084, 0x0085, 0x0086, 0x0087,
|
|
|
|
0x0088, 0x0089, 0x008a, 0x008b, 0x008c, 0x008d, 0x008e, 0x008f,
|
|
|
|
0x0090, 0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0097,
|
|
|
|
0x0098, 0x0099, 0x009a, 0x009b, 0x009c, 0x009d, 0x009e, 0x009f,
|
|
|
|
0x00a0, 0x00a1, 0x00a2, 0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7,
|
|
|
|
0x00a8, 0x00a9, 0x00aa, 0x00ab, 0x00ac, 0x00ad, 0x00ae, 0x00af,
|
|
|
|
0x00b0, 0x00b1, 0x00b2, 0x00b3, 0x00b4, 0x00b5, 0x00b6, 0x00b7,
|
|
|
|
0x00b8, 0x00b9, 0x00ba, 0x00bb, 0x00bc, 0x00bd, 0x00be, 0x00bf,
|
|
|
|
0x00c0, 0x00c1, 0x00c2, 0x00c3, 0x00c4, 0x00c5, 0x00c6, 0x00c7,
|
|
|
|
0x00c8, 0x00c9, 0x00ca, 0x00cb, 0x00cc, 0x00cd, 0x00ce, 0x00cf,
|
|
|
|
0x00d0, 0x00d1, 0x00d2, 0x00d3, 0x00d4, 0x00d5, 0x00d6, 0x00d7,
|
|
|
|
0x00d8, 0x00d9, 0x00da, 0x00db, 0x00dc, 0x00dd, 0x00de, 0x00df,
|
|
|
|
0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7,
|
|
|
|
0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef,
|
|
|
|
0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00f7,
|
|
|
|
0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00ff
|
|
|
|
},
|
|
|
|
/* IBM Codepage 437 mapped to Unicode */
|
|
|
|
{
|
|
|
|
0x0000, 0x263a, 0x263b, 0x2665, 0x2666, 0x2663, 0x2660, 0x2022,
|
|
|
|
0x25d8, 0x25cb, 0x25d9, 0x2642, 0x2640, 0x266a, 0x266b, 0x263c,
|
|
|
|
0x25b6, 0x25c0, 0x2195, 0x203c, 0x00b6, 0x00a7, 0x25ac, 0x21a8,
|
|
|
|
0x2191, 0x2193, 0x2192, 0x2190, 0x221f, 0x2194, 0x25b2, 0x25bc,
|
|
|
|
0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027,
|
|
|
|
0x0028, 0x0029, 0x002a, 0x002b, 0x002c, 0x002d, 0x002e, 0x002f,
|
|
|
|
0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037,
|
|
|
|
0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e, 0x003f,
|
|
|
|
0x0040, 0x0041, 0x0042, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047,
|
|
|
|
0x0048, 0x0049, 0x004a, 0x004b, 0x004c, 0x004d, 0x004e, 0x004f,
|
|
|
|
0x0050, 0x0051, 0x0052, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057,
|
|
|
|
0x0058, 0x0059, 0x005a, 0x005b, 0x005c, 0x005d, 0x005e, 0x005f,
|
|
|
|
0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067,
|
|
|
|
0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f,
|
|
|
|
0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077,
|
|
|
|
0x0078, 0x0079, 0x007a, 0x007b, 0x007c, 0x007d, 0x007e, 0x2302,
|
|
|
|
0x00c7, 0x00fc, 0x00e9, 0x00e2, 0x00e4, 0x00e0, 0x00e5, 0x00e7,
|
|
|
|
0x00ea, 0x00eb, 0x00e8, 0x00ef, 0x00ee, 0x00ec, 0x00c4, 0x00c5,
|
|
|
|
0x00c9, 0x00e6, 0x00c6, 0x00f4, 0x00f6, 0x00f2, 0x00fb, 0x00f9,
|
|
|
|
0x00ff, 0x00d6, 0x00dc, 0x00a2, 0x00a3, 0x00a5, 0x20a7, 0x0192,
|
|
|
|
0x00e1, 0x00ed, 0x00f3, 0x00fa, 0x00f1, 0x00d1, 0x00aa, 0x00ba,
|
|
|
|
0x00bf, 0x2310, 0x00ac, 0x00bd, 0x00bc, 0x00a1, 0x00ab, 0x00bb,
|
|
|
|
0x2591, 0x2592, 0x2593, 0x2502, 0x2524, 0x2561, 0x2562, 0x2556,
|
|
|
|
0x2555, 0x2563, 0x2551, 0x2557, 0x255d, 0x255c, 0x255b, 0x2510,
|
|
|
|
0x2514, 0x2534, 0x252c, 0x251c, 0x2500, 0x253c, 0x255e, 0x255f,
|
|
|
|
0x255a, 0x2554, 0x2569, 0x2566, 0x2560, 0x2550, 0x256c, 0x2567,
|
|
|
|
0x2568, 0x2564, 0x2565, 0x2559, 0x2558, 0x2552, 0x2553, 0x256b,
|
|
|
|
0x256a, 0x2518, 0x250c, 0x2588, 0x2584, 0x258c, 0x2590, 0x2580,
|
|
|
|
0x03b1, 0x00df, 0x0393, 0x03c0, 0x03a3, 0x03c3, 0x00b5, 0x03c4,
|
|
|
|
0x03a6, 0x0398, 0x03a9, 0x03b4, 0x221e, 0x03c6, 0x03b5, 0x2229,
|
|
|
|
0x2261, 0x00b1, 0x2265, 0x2264, 0x2320, 0x2321, 0x00f7, 0x2248,
|
|
|
|
0x00b0, 0x2219, 0x00b7, 0x221a, 0x207f, 0x00b2, 0x25a0, 0x00a0
|
|
|
|
},
|
|
|
|
/* User mapping -- default to codes for direct font mapping */
|
|
|
|
{
|
|
|
|
0xf000, 0xf001, 0xf002, 0xf003, 0xf004, 0xf005, 0xf006, 0xf007,
|
|
|
|
0xf008, 0xf009, 0xf00a, 0xf00b, 0xf00c, 0xf00d, 0xf00e, 0xf00f,
|
|
|
|
0xf010, 0xf011, 0xf012, 0xf013, 0xf014, 0xf015, 0xf016, 0xf017,
|
|
|
|
0xf018, 0xf019, 0xf01a, 0xf01b, 0xf01c, 0xf01d, 0xf01e, 0xf01f,
|
|
|
|
0xf020, 0xf021, 0xf022, 0xf023, 0xf024, 0xf025, 0xf026, 0xf027,
|
|
|
|
0xf028, 0xf029, 0xf02a, 0xf02b, 0xf02c, 0xf02d, 0xf02e, 0xf02f,
|
|
|
|
0xf030, 0xf031, 0xf032, 0xf033, 0xf034, 0xf035, 0xf036, 0xf037,
|
|
|
|
0xf038, 0xf039, 0xf03a, 0xf03b, 0xf03c, 0xf03d, 0xf03e, 0xf03f,
|
|
|
|
0xf040, 0xf041, 0xf042, 0xf043, 0xf044, 0xf045, 0xf046, 0xf047,
|
|
|
|
0xf048, 0xf049, 0xf04a, 0xf04b, 0xf04c, 0xf04d, 0xf04e, 0xf04f,
|
|
|
|
0xf050, 0xf051, 0xf052, 0xf053, 0xf054, 0xf055, 0xf056, 0xf057,
|
|
|
|
0xf058, 0xf059, 0xf05a, 0xf05b, 0xf05c, 0xf05d, 0xf05e, 0xf05f,
|
|
|
|
0xf060, 0xf061, 0xf062, 0xf063, 0xf064, 0xf065, 0xf066, 0xf067,
|
|
|
|
0xf068, 0xf069, 0xf06a, 0xf06b, 0xf06c, 0xf06d, 0xf06e, 0xf06f,
|
|
|
|
0xf070, 0xf071, 0xf072, 0xf073, 0xf074, 0xf075, 0xf076, 0xf077,
|
|
|
|
0xf078, 0xf079, 0xf07a, 0xf07b, 0xf07c, 0xf07d, 0xf07e, 0xf07f,
|
|
|
|
0xf080, 0xf081, 0xf082, 0xf083, 0xf084, 0xf085, 0xf086, 0xf087,
|
|
|
|
0xf088, 0xf089, 0xf08a, 0xf08b, 0xf08c, 0xf08d, 0xf08e, 0xf08f,
|
|
|
|
0xf090, 0xf091, 0xf092, 0xf093, 0xf094, 0xf095, 0xf096, 0xf097,
|
|
|
|
0xf098, 0xf099, 0xf09a, 0xf09b, 0xf09c, 0xf09d, 0xf09e, 0xf09f,
|
|
|
|
0xf0a0, 0xf0a1, 0xf0a2, 0xf0a3, 0xf0a4, 0xf0a5, 0xf0a6, 0xf0a7,
|
|
|
|
0xf0a8, 0xf0a9, 0xf0aa, 0xf0ab, 0xf0ac, 0xf0ad, 0xf0ae, 0xf0af,
|
|
|
|
0xf0b0, 0xf0b1, 0xf0b2, 0xf0b3, 0xf0b4, 0xf0b5, 0xf0b6, 0xf0b7,
|
|
|
|
0xf0b8, 0xf0b9, 0xf0ba, 0xf0bb, 0xf0bc, 0xf0bd, 0xf0be, 0xf0bf,
|
|
|
|
0xf0c0, 0xf0c1, 0xf0c2, 0xf0c3, 0xf0c4, 0xf0c5, 0xf0c6, 0xf0c7,
|
|
|
|
0xf0c8, 0xf0c9, 0xf0ca, 0xf0cb, 0xf0cc, 0xf0cd, 0xf0ce, 0xf0cf,
|
|
|
|
0xf0d0, 0xf0d1, 0xf0d2, 0xf0d3, 0xf0d4, 0xf0d5, 0xf0d6, 0xf0d7,
|
|
|
|
0xf0d8, 0xf0d9, 0xf0da, 0xf0db, 0xf0dc, 0xf0dd, 0xf0de, 0xf0df,
|
|
|
|
0xf0e0, 0xf0e1, 0xf0e2, 0xf0e3, 0xf0e4, 0xf0e5, 0xf0e6, 0xf0e7,
|
|
|
|
0xf0e8, 0xf0e9, 0xf0ea, 0xf0eb, 0xf0ec, 0xf0ed, 0xf0ee, 0xf0ef,
|
|
|
|
0xf0f0, 0xf0f1, 0xf0f2, 0xf0f3, 0xf0f4, 0xf0f5, 0xf0f6, 0xf0f7,
|
|
|
|
0xf0f8, 0xf0f9, 0xf0fa, 0xf0fb, 0xf0fc, 0xf0fd, 0xf0fe, 0xf0ff
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/* The standard kernel character-to-font mappings are not invertible
|
|
|
|
-- this is just a best effort. */
|
|
|
|
|
|
|
|
#define MAX_GLYPH 512 /* Max possible glyph value */
|
|
|
|
|
|
|
|
static int inv_translate[MAX_NR_CONSOLES];
|
|
|
|
|
|
|
|
struct uni_pagedir {
|
|
|
|
u16 **uni_pgdir[32];
|
|
|
|
unsigned long refcount;
|
|
|
|
unsigned long sum;
|
|
|
|
unsigned char *inverse_translations[4];
|
|
|
|
u16 *inverse_trans_unicode;
|
|
|
|
int readonly;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct uni_pagedir *dflt;
|
|
|
|
|
|
|
|
static void set_inverse_transl(struct vc_data *conp, struct uni_pagedir *p, int i)
|
|
|
|
{
|
|
|
|
int j, glyph;
|
|
|
|
unsigned short *t = translations[i];
|
|
|
|
unsigned char *q;
|
|
|
|
|
|
|
|
if (!p) return;
|
|
|
|
q = p->inverse_translations[i];
|
|
|
|
|
|
|
|
if (!q) {
|
|
|
|
q = p->inverse_translations[i] = (unsigned char *)
|
|
|
|
kmalloc(MAX_GLYPH, GFP_KERNEL);
|
|
|
|
if (!q) return;
|
|
|
|
}
|
|
|
|
memset(q, 0, MAX_GLYPH);
|
|
|
|
|
|
|
|
for (j = 0; j < E_TABSZ; j++) {
|
|
|
|
glyph = conv_uni_to_pc(conp, t[j]);
|
|
|
|
if (glyph >= 0 && glyph < MAX_GLYPH && q[glyph] < 32) {
|
|
|
|
/* prefer '-' above SHY etc. */
|
|
|
|
q[glyph] = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_inverse_trans_unicode(struct vc_data *conp,
|
|
|
|
struct uni_pagedir *p)
|
|
|
|
{
|
|
|
|
int i, j, k, glyph;
|
|
|
|
u16 **p1, *p2;
|
|
|
|
u16 *q;
|
|
|
|
|
|
|
|
if (!p) return;
|
|
|
|
q = p->inverse_trans_unicode;
|
|
|
|
if (!q) {
|
|
|
|
q = p->inverse_trans_unicode =
|
|
|
|
kmalloc(MAX_GLYPH * sizeof(u16), GFP_KERNEL);
|
|
|
|
if (!q)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
memset(q, 0, MAX_GLYPH * sizeof(u16));
|
|
|
|
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
p1 = p->uni_pgdir[i];
|
|
|
|
if (!p1)
|
|
|
|
continue;
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
|
|
p2 = p1[j];
|
|
|
|
if (!p2)
|
|
|
|
continue;
|
|
|
|
for (k = 0; k < 64; k++) {
|
|
|
|
glyph = p2[k];
|
|
|
|
if (glyph >= 0 && glyph < MAX_GLYPH
|
|
|
|
&& q[glyph] < 32)
|
|
|
|
q[glyph] = (i << 11) + (j << 6) + k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned short *set_translate(int m, struct vc_data *vc)
|
|
|
|
{
|
|
|
|
inv_translate[vc->vc_num] = m;
|
|
|
|
return translations[m];
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Inverse translation is impossible for several reasons:
|
|
|
|
* 1. The font<->character maps are not 1-1.
|
|
|
|
* 2. The text may have been written while a different translation map
|
|
|
|
* was active.
|
|
|
|
* Still, it is now possible to a certain extent to cut and paste non-ASCII.
|
|
|
|
*/
|
|
|
|
u16 inverse_translate(struct vc_data *conp, int glyph, int use_unicode)
|
|
|
|
{
|
|
|
|
struct uni_pagedir *p;
|
|
|
|
int m;
|
|
|
|
if (glyph < 0 || glyph >= MAX_GLYPH)
|
|
|
|
return 0;
|
|
|
|
else if (!(p = (struct uni_pagedir *)*conp->vc_uni_pagedir_loc))
|
|
|
|
return glyph;
|
|
|
|
else if (use_unicode) {
|
|
|
|
if (!p->inverse_trans_unicode)
|
|
|
|
return glyph;
|
|
|
|
else
|
|
|
|
return p->inverse_trans_unicode[glyph];
|
|
|
|
} else {
|
|
|
|
m = inv_translate[conp->vc_num];
|
|
|
|
if (!p->inverse_translations[m])
|
|
|
|
return glyph;
|
|
|
|
else
|
|
|
|
return p->inverse_translations[m][glyph];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void update_user_maps(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct uni_pagedir *p, *q = NULL;
|
|
|
|
|
|
|
|
for (i = 0; i < MAX_NR_CONSOLES; i++) {
|
|
|
|
if (!vc_cons_allocated(i))
|
|
|
|
continue;
|
|
|
|
p = (struct uni_pagedir *)*vc_cons[i].d->vc_uni_pagedir_loc;
|
|
|
|
if (p && p != q) {
|
|
|
|
set_inverse_transl(vc_cons[i].d, p, USER_MAP);
|
|
|
|
set_inverse_trans_unicode(vc_cons[i].d, p);
|
|
|
|
q = p;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Load customizable translation table
|
|
|
|
* arg points to a 256 byte translation table.
|
|
|
|
*
|
|
|
|
* The "old" variants are for translation directly to font (using the
|
|
|
|
* 0xf000-0xf0ff "transparent" Unicodes) whereas the "new" variants set
|
|
|
|
* Unicodes explicitly.
|
|
|
|
*/
|
|
|
|
int con_set_trans_old(unsigned char __user * arg)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
unsigned short *p = translations[USER_MAP];
|
|
|
|
|
|
|
|
if (!access_ok(VERIFY_READ, arg, E_TABSZ))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
for (i=0; i<E_TABSZ ; i++) {
|
|
|
|
unsigned char uc;
|
|
|
|
__get_user(uc, arg+i);
|
|
|
|
p[i] = UNI_DIRECT_BASE | uc;
|
|
|
|
}
|
|
|
|
|
|
|
|
update_user_maps();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int con_get_trans_old(unsigned char __user * arg)
|
|
|
|
{
|
|
|
|
int i, ch;
|
|
|
|
unsigned short *p = translations[USER_MAP];
|
|
|
|
|
|
|
|
if (!access_ok(VERIFY_WRITE, arg, E_TABSZ))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
for (i=0; i<E_TABSZ ; i++)
|
|
|
|
{
|
|
|
|
ch = conv_uni_to_pc(vc_cons[fg_console].d, p[i]);
|
|
|
|
__put_user((ch & ~0xff) ? 0 : ch, arg+i);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int con_set_trans_new(ushort __user * arg)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
unsigned short *p = translations[USER_MAP];
|
|
|
|
|
|
|
|
if (!access_ok(VERIFY_READ, arg, E_TABSZ*sizeof(unsigned short)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
for (i=0; i<E_TABSZ ; i++) {
|
|
|
|
unsigned short us;
|
|
|
|
__get_user(us, arg+i);
|
|
|
|
p[i] = us;
|
|
|
|
}
|
|
|
|
|
|
|
|
update_user_maps();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int con_get_trans_new(ushort __user * arg)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
unsigned short *p = translations[USER_MAP];
|
|
|
|
|
|
|
|
if (!access_ok(VERIFY_WRITE, arg, E_TABSZ*sizeof(unsigned short)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
for (i=0; i<E_TABSZ ; i++)
|
|
|
|
__put_user(p[i], arg+i);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unicode -> current font conversion
|
|
|
|
*
|
|
|
|
* A font has at most 512 chars, usually 256.
|
|
|
|
* But one font position may represent several Unicode chars.
|
|
|
|
* A hashtable is somewhat of a pain to deal with, so use a
|
|
|
|
* "paged table" instead. Simulation has shown the memory cost of
|
|
|
|
* this 3-level paged table scheme to be comparable to a hash table.
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern u8 dfont_unicount[]; /* Defined in console_defmap.c */
|
|
|
|
extern u16 dfont_unitable[];
|
|
|
|
|
|
|
|
static void con_release_unimap(struct uni_pagedir *p)
|
|
|
|
{
|
|
|
|
u16 **p1;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
if (p == dflt) dflt = NULL;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
if ((p1 = p->uni_pgdir[i]) != NULL) {
|
|
|
|
for (j = 0; j < 32; j++)
|
|
|
|
kfree(p1[j]);
|
|
|
|
kfree(p1);
|
|
|
|
}
|
|
|
|
p->uni_pgdir[i] = NULL;
|
|
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
kfree(p->inverse_translations[i]);
|
|
|
|
p->inverse_translations[i] = NULL;
|
|
|
|
}
|
|
|
|
if (p->inverse_trans_unicode) {
|
|
|
|
kfree(p->inverse_trans_unicode);
|
|
|
|
p->inverse_trans_unicode = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void con_free_unimap(struct vc_data *vc)
|
|
|
|
{
|
|
|
|
struct uni_pagedir *p;
|
|
|
|
|
|
|
|
p = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
if (!p)
|
|
|
|
return;
|
|
|
|
*vc->vc_uni_pagedir_loc = 0;
|
|
|
|
if (--p->refcount)
|
|
|
|
return;
|
|
|
|
con_release_unimap(p);
|
|
|
|
kfree(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int con_unify_unimap(struct vc_data *conp, struct uni_pagedir *p)
|
|
|
|
{
|
|
|
|
int i, j, k;
|
|
|
|
struct uni_pagedir *q;
|
|
|
|
|
|
|
|
for (i = 0; i < MAX_NR_CONSOLES; i++) {
|
|
|
|
if (!vc_cons_allocated(i))
|
|
|
|
continue;
|
|
|
|
q = (struct uni_pagedir *)*vc_cons[i].d->vc_uni_pagedir_loc;
|
|
|
|
if (!q || q == p || q->sum != p->sum)
|
|
|
|
continue;
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
|
|
u16 **p1, **q1;
|
|
|
|
p1 = p->uni_pgdir[j]; q1 = q->uni_pgdir[j];
|
|
|
|
if (!p1 && !q1)
|
|
|
|
continue;
|
|
|
|
if (!p1 || !q1)
|
|
|
|
break;
|
|
|
|
for (k = 0; k < 32; k++) {
|
|
|
|
if (!p1[k] && !q1[k])
|
|
|
|
continue;
|
|
|
|
if (!p1[k] || !q1[k])
|
|
|
|
break;
|
|
|
|
if (memcmp(p1[k], q1[k], 64*sizeof(u16)))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (k < 32)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (j == 32) {
|
|
|
|
q->refcount++;
|
|
|
|
*conp->vc_uni_pagedir_loc = (unsigned long)q;
|
|
|
|
con_release_unimap(p);
|
|
|
|
kfree(p);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
con_insert_unipair(struct uni_pagedir *p, u_short unicode, u_short fontpos)
|
|
|
|
{
|
|
|
|
int i, n;
|
|
|
|
u16 **p1, *p2;
|
|
|
|
|
|
|
|
if (!(p1 = p->uni_pgdir[n = unicode >> 11])) {
|
|
|
|
p1 = p->uni_pgdir[n] = kmalloc(32*sizeof(u16 *), GFP_KERNEL);
|
|
|
|
if (!p1) return -ENOMEM;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
|
|
p1[i] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(p2 = p1[n = (unicode >> 6) & 0x1f])) {
|
|
|
|
p2 = p1[n] = kmalloc(64*sizeof(u16), GFP_KERNEL);
|
|
|
|
if (!p2) return -ENOMEM;
|
|
|
|
memset(p2, 0xff, 64*sizeof(u16)); /* No glyphs for the characters (yet) */
|
|
|
|
}
|
|
|
|
|
|
|
|
p2[unicode & 0x3f] = fontpos;
|
|
|
|
|
|
|
|
p->sum += (fontpos << 20) + unicode;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ui is a leftover from using a hashtable, but might be used again */
|
|
|
|
int con_clear_unimap(struct vc_data *vc, struct unimapinit *ui)
|
|
|
|
{
|
|
|
|
struct uni_pagedir *p, *q;
|
|
|
|
|
|
|
|
p = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
if (p && p->readonly) return -EIO;
|
|
|
|
if (!p || --p->refcount) {
|
|
|
|
q = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
|
|
if (!q) {
|
|
|
|
if (p) p->refcount++;
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
q->refcount=1;
|
|
|
|
*vc->vc_uni_pagedir_loc = (unsigned long)q;
|
|
|
|
} else {
|
|
|
|
if (p == dflt) dflt = NULL;
|
|
|
|
p->refcount++;
|
|
|
|
p->sum = 0;
|
|
|
|
con_release_unimap(p);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int con_set_unimap(struct vc_data *vc, ushort ct, struct unipair __user *list)
|
|
|
|
{
|
|
|
|
int err = 0, err1, i;
|
|
|
|
struct uni_pagedir *p, *q;
|
|
|
|
|
|
|
|
p = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
if (p->readonly) return -EIO;
|
|
|
|
|
|
|
|
if (!ct) return 0;
|
|
|
|
|
|
|
|
if (p->refcount > 1) {
|
|
|
|
int j, k;
|
|
|
|
u16 **p1, *p2, l;
|
|
|
|
|
|
|
|
err1 = con_clear_unimap(vc, NULL);
|
|
|
|
if (err1) return err1;
|
|
|
|
|
|
|
|
q = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
for (i = 0, l = 0; i < 32; i++)
|
|
|
|
if ((p1 = p->uni_pgdir[i]))
|
|
|
|
for (j = 0; j < 32; j++)
|
|
|
|
if ((p2 = p1[j]))
|
|
|
|
for (k = 0; k < 64; k++, l++)
|
|
|
|
if (p2[k] != 0xffff) {
|
|
|
|
err1 = con_insert_unipair(q, l, p2[k]);
|
|
|
|
if (err1) {
|
|
|
|
p->refcount++;
|
|
|
|
*vc->vc_uni_pagedir_loc = (unsigned long)p;
|
|
|
|
con_release_unimap(q);
|
|
|
|
kfree(q);
|
|
|
|
return err1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p = q;
|
|
|
|
} else if (p == dflt)
|
|
|
|
dflt = NULL;
|
|
|
|
|
|
|
|
while (ct--) {
|
|
|
|
unsigned short unicode, fontpos;
|
|
|
|
__get_user(unicode, &list->unicode);
|
|
|
|
__get_user(fontpos, &list->fontpos);
|
|
|
|
if ((err1 = con_insert_unipair(p, unicode,fontpos)) != 0)
|
|
|
|
err = err1;
|
|
|
|
list++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (con_unify_unimap(vc, p))
|
|
|
|
return err;
|
|
|
|
|
|
|
|
for (i = 0; i <= 3; i++)
|
|
|
|
set_inverse_transl(vc, p, i); /* Update all inverse translations */
|
|
|
|
set_inverse_trans_unicode(vc, p);
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Loads the unimap for the hardware font, as defined in uni_hash.tbl.
|
|
|
|
The representation used was the most compact I could come up
|
|
|
|
with. This routine is executed at sys_setup time, and when the
|
|
|
|
PIO_FONTRESET ioctl is called. */
|
|
|
|
|
|
|
|
int con_set_default_unimap(struct vc_data *vc)
|
|
|
|
{
|
|
|
|
int i, j, err = 0, err1;
|
|
|
|
u16 *q;
|
|
|
|
struct uni_pagedir *p;
|
|
|
|
|
|
|
|
if (dflt) {
|
|
|
|
p = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
if (p == dflt)
|
|
|
|
return 0;
|
|
|
|
dflt->refcount++;
|
|
|
|
*vc->vc_uni_pagedir_loc = (unsigned long)dflt;
|
|
|
|
if (p && --p->refcount) {
|
|
|
|
con_release_unimap(p);
|
|
|
|
kfree(p);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The default font is always 256 characters */
|
|
|
|
|
|
|
|
err = con_clear_unimap(vc, NULL);
|
|
|
|
if (err) return err;
|
|
|
|
|
|
|
|
p = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
q = dfont_unitable;
|
|
|
|
|
|
|
|
for (i = 0; i < 256; i++)
|
|
|
|
for (j = dfont_unicount[i]; j; j--) {
|
|
|
|
err1 = con_insert_unipair(p, *(q++), i);
|
|
|
|
if (err1)
|
|
|
|
err = err1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (con_unify_unimap(vc, p)) {
|
|
|
|
dflt = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i <= 3; i++)
|
|
|
|
set_inverse_transl(vc, p, i); /* Update all inverse translations */
|
|
|
|
set_inverse_trans_unicode(vc, p);
|
|
|
|
dflt = p;
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(con_set_default_unimap);
|
|
|
|
|
|
|
|
int con_copy_unimap(struct vc_data *dst_vc, struct vc_data *src_vc)
|
|
|
|
{
|
|
|
|
struct uni_pagedir *q;
|
|
|
|
|
|
|
|
if (!*src_vc->vc_uni_pagedir_loc)
|
|
|
|
return -EINVAL;
|
|
|
|
if (*dst_vc->vc_uni_pagedir_loc == *src_vc->vc_uni_pagedir_loc)
|
|
|
|
return 0;
|
|
|
|
con_free_unimap(dst_vc);
|
|
|
|
q = (struct uni_pagedir *)*src_vc->vc_uni_pagedir_loc;
|
|
|
|
q->refcount++;
|
|
|
|
*dst_vc->vc_uni_pagedir_loc = (long)q;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int con_get_unimap(struct vc_data *vc, ushort ct, ushort __user *uct, struct unipair __user *list)
|
|
|
|
{
|
|
|
|
int i, j, k, ect;
|
|
|
|
u16 **p1, *p2;
|
|
|
|
struct uni_pagedir *p;
|
|
|
|
|
|
|
|
ect = 0;
|
|
|
|
if (*vc->vc_uni_pagedir_loc) {
|
|
|
|
p = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
|
|
if ((p1 = p->uni_pgdir[i]))
|
|
|
|
for (j = 0; j < 32; j++)
|
|
|
|
if ((p2 = *(p1++)))
|
|
|
|
for (k = 0; k < 64; k++) {
|
|
|
|
if (*p2 < MAX_GLYPH && ect++ < ct) {
|
|
|
|
__put_user((u_short)((i<<11)+(j<<6)+k),
|
|
|
|
&list->unicode);
|
|
|
|
__put_user((u_short) *p2,
|
|
|
|
&list->fontpos);
|
|
|
|
list++;
|
|
|
|
}
|
|
|
|
p2++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__put_user(ect, uct);
|
|
|
|
return ((ect <= ct) ? 0 : -ENOMEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
void con_protect_unimap(struct vc_data *vc, int rdonly)
|
|
|
|
{
|
|
|
|
struct uni_pagedir *p = (struct uni_pagedir *)*vc->vc_uni_pagedir_loc;
|
|
|
|
|
|
|
|
if (p)
|
|
|
|
p->readonly = rdonly;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Always use USER_MAP. These functions are used by the keyboard,
|
|
|
|
* which shouldn't be affected by G0/G1 switching, etc.
|
|
|
|
* If the user map still contains default values, i.e. the
|
|
|
|
* direct-to-font mapping, then assume user is using Latin1.
|
|
|
|
*/
|
|
|
|
/* may be called during an interrupt */
|
|
|
|
u32 conv_8bit_to_uni(unsigned char c)
|
|
|
|
{
|
|
|
|
unsigned short uni = translations[USER_MAP][c];
|
|
|
|
return uni == (0xf000 | c) ? c : uni;
|
|
|
|
}
|
|
|
|
|
|
|
|
int conv_uni_to_8bit(u32 uni)
|
|
|
|
{
|
|
|
|
int c;
|
|
|
|
for (c = 0; c < 0x100; c++)
|
|
|
|
if (translations[USER_MAP][c] == uni ||
|
|
|
|
(translations[USER_MAP][c] == (c | 0xf000) && uni == c))
|
|
|
|
return c;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
conv_uni_to_pc(struct vc_data *conp, long ucs)
|
|
|
|
{
|
|
|
|
int h;
|
|
|
|
u16 **p1, *p2;
|
|
|
|
struct uni_pagedir *p;
|
|
|
|
|
|
|
|
/* Only 16-bit codes supported at this time */
|
|
|
|
if (ucs > 0xffff)
|
console UTF-8 fixes
The UTF-8 part of the vt driver suffers from the following issues which are
addressed in my patch:
1) If there's no glyph found for a particular valid UTF-8 character, we try
to display U+FFFD. However if this one is not found either, here's what
the current kernel does:
- First, if the Unicode value is less than the number of glyphs, use the
glyph directly from that position of the glyph table. While it may be a
good idea in the 8-bit world, it has absolutely no sense with Unicode
in mind. For example, if a Latin-2 font is loaded and an application
prints U+00FB ("u with circumflex", not present in Latin-2) then as a
fallback solution the glyph from the 0xFB position of the Latin-2
fontset (which is an "u with double accent" - a different character) is
displayed.
- Second, if this fallback fails too, a simple ASCII question mark is
printed, which is visually undistinguishable from a real question mark.
I changed the code to skip the first step (except if in non-UTF-8 mode),
and changed the second step to print the question mark with inverse color
attributes, so it is visually clear that it's not a real question mark,
and resembles more to the common glyph of U+FFFD.
2) The UTF-8 decoder is buggy in many ways:
- Lone continuation bytes (section 3.1 of Markus Kuhn's UTF-8 stress
test) are not caught, they are displayed as some "random" (taken
directly form the font table, see above) glyphs instead the replacement
character.
- Incomplete sequences (sections 3.2 and 3.3 of the stress test) emit no
replacement character, but rather cause the subsequent valid character
to be displayed more times(!).
- The decoder is not safe: overlong sequences are not caught currently,
they are displayed as if these were valid representations. This may
even have security impacts.
- The decoder does not handle D800..DFFF and FFFE..FFFF specially, it
just emits these code points and lets it be looked up in the glyph
table. Since these are invalid code points, I replace them by U+FFFD
and hence give no chance for them to be looked up in the glyph table.
(Assuming no font ships glyphs for these code points, this change is
not visible to the users since the glyph shown will be the same.)
With my fixes to the decoder it now behaves exactly as Markus Kuhn's
stress test recommends.
3) It has no concept of double-width (CJK) characters. It's way beyond the
scope of my patch to try to display them, but at least I think it's
important for the cursor to jump two positions when printing such
characters, since this is what applications (such as text editors)
expect. Currently the cursor only jumps one position, and hence
applications suffer from displaying and refreshing problems, and editing
some English letters that are preceded by some CJK characters in the same
line is a nightmare. With my patch an additional space is inserted after
the CJK character has been printed (which usually means a replacement
symbol of course). (If U+FFFD isn't availble and hence an inverse
question mark is displayed in the first cell, I keep the inverted state
for the space in the 2nd column so it's quite easy to see that they are
tied together.)
4) There is a small built-in table of zero-width spaces that are not to be
printed but silently skipped. U+200A is included there, but it's not a
zero-width character, so I remove it from there.
Signed-off-by: Egmont Koblinger <egmont@uhulinux.hu>
Cc: Jan Engelhardt <jengelh@linux01.gwdg.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
return -4; /* Not found */
|
|
|
|
else if (ucs < 0x20)
|
|
|
|
return -1; /* Not a printable character */
|
console UTF-8 fixes
The UTF-8 part of the vt driver suffers from the following issues which are
addressed in my patch:
1) If there's no glyph found for a particular valid UTF-8 character, we try
to display U+FFFD. However if this one is not found either, here's what
the current kernel does:
- First, if the Unicode value is less than the number of glyphs, use the
glyph directly from that position of the glyph table. While it may be a
good idea in the 8-bit world, it has absolutely no sense with Unicode
in mind. For example, if a Latin-2 font is loaded and an application
prints U+00FB ("u with circumflex", not present in Latin-2) then as a
fallback solution the glyph from the 0xFB position of the Latin-2
fontset (which is an "u with double accent" - a different character) is
displayed.
- Second, if this fallback fails too, a simple ASCII question mark is
printed, which is visually undistinguishable from a real question mark.
I changed the code to skip the first step (except if in non-UTF-8 mode),
and changed the second step to print the question mark with inverse color
attributes, so it is visually clear that it's not a real question mark,
and resembles more to the common glyph of U+FFFD.
2) The UTF-8 decoder is buggy in many ways:
- Lone continuation bytes (section 3.1 of Markus Kuhn's UTF-8 stress
test) are not caught, they are displayed as some "random" (taken
directly form the font table, see above) glyphs instead the replacement
character.
- Incomplete sequences (sections 3.2 and 3.3 of the stress test) emit no
replacement character, but rather cause the subsequent valid character
to be displayed more times(!).
- The decoder is not safe: overlong sequences are not caught currently,
they are displayed as if these were valid representations. This may
even have security impacts.
- The decoder does not handle D800..DFFF and FFFE..FFFF specially, it
just emits these code points and lets it be looked up in the glyph
table. Since these are invalid code points, I replace them by U+FFFD
and hence give no chance for them to be looked up in the glyph table.
(Assuming no font ships glyphs for these code points, this change is
not visible to the users since the glyph shown will be the same.)
With my fixes to the decoder it now behaves exactly as Markus Kuhn's
stress test recommends.
3) It has no concept of double-width (CJK) characters. It's way beyond the
scope of my patch to try to display them, but at least I think it's
important for the cursor to jump two positions when printing such
characters, since this is what applications (such as text editors)
expect. Currently the cursor only jumps one position, and hence
applications suffer from displaying and refreshing problems, and editing
some English letters that are preceded by some CJK characters in the same
line is a nightmare. With my patch an additional space is inserted after
the CJK character has been printed (which usually means a replacement
symbol of course). (If U+FFFD isn't availble and hence an inverse
question mark is displayed in the first cell, I keep the inverted state
for the space in the 2nd column so it's quite easy to see that they are
tied together.)
4) There is a small built-in table of zero-width spaces that are not to be
printed but silently skipped. U+200A is included there, but it's not a
zero-width character, so I remove it from there.
Signed-off-by: Egmont Koblinger <egmont@uhulinux.hu>
Cc: Jan Engelhardt <jengelh@linux01.gwdg.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
else if (ucs == 0xfeff || (ucs >= 0x200b && ucs <= 0x200f))
|
|
|
|
return -2; /* Zero-width space */
|
|
|
|
/*
|
|
|
|
* UNI_DIRECT_BASE indicates the start of the region in the User Zone
|
|
|
|
* which always has a 1:1 mapping to the currently loaded font. The
|
|
|
|
* UNI_DIRECT_MASK indicates the bit span of the region.
|
|
|
|
*/
|
|
|
|
else if ((ucs & ~UNI_DIRECT_MASK) == UNI_DIRECT_BASE)
|
|
|
|
return ucs & UNI_DIRECT_MASK;
|
|
|
|
|
|
|
|
if (!*conp->vc_uni_pagedir_loc)
|
|
|
|
return -3;
|
|
|
|
|
|
|
|
p = (struct uni_pagedir *)*conp->vc_uni_pagedir_loc;
|
|
|
|
if ((p1 = p->uni_pgdir[ucs >> 11]) &&
|
|
|
|
(p2 = p1[(ucs >> 6) & 0x1f]) &&
|
|
|
|
(h = p2[ucs & 0x3f]) < MAX_GLYPH)
|
|
|
|
return h;
|
|
|
|
|
|
|
|
return -4; /* not found */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called at sys_setup time, after memory and the console are
|
|
|
|
* initialized. It must be possible to call kmalloc(..., GFP_KERNEL)
|
|
|
|
* from this function, hence the call from sys_setup.
|
|
|
|
*/
|
|
|
|
void __init
|
|
|
|
console_map_init(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < MAX_NR_CONSOLES; i++)
|
|
|
|
if (vc_cons_allocated(i) && !*vc_cons[i].d->vc_uni_pagedir_loc)
|
|
|
|
con_set_default_unimap(vc_cons[i].d);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(con_copy_unimap);
|