You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/spi/Kconfig

110 lines
3.6 KiB

[PATCH] spi: simple SPI framework This is the core of a small SPI framework, implementing the model of a queue of messages which complete asynchronously (with thin synchronous wrappers on top). - It's still less than 2KB of ".text" (ARM). If there's got to be a mid-layer for something so simple, that's the right size budget. :) - The guts use board-specific SPI device tables to build the driver model tree. (Hardware probing is rarely an option.) - This version of Kconfig includes no drivers. At this writing there are two known master controller drivers (PXA/SSP, OMAP MicroWire) and three protocol drivers (CS8415a, ADS7846, DataFlash) with LKML mentions of other drivers in development. - No userspace API. There are several implementations to compare. Implement them like any other driver, and bind them with sysfs. The changes from last version posted to LKML (on 11-Nov-2005) are minor, and include: - One bugfix (removes a FIXME), with the visible effect of making device names be "spiB.C" where B is the bus number and C is the chipselect. - The "caller provides DMA mappings" mechanism now has kerneldoc, for DMA drivers that want to be fancy. - Hey, the framework init can be subsys_init. Even though board init logic fires earlier, at arch_init ... since the framework init is for driver support, and the board init support uses static init. - Various additional spec/doc clarifications based on discussions with other folk. It adds a brief "thank you" at the end, for folk who've helped nudge this framework into existence. As I've said before, I think that "protocol tweaking" is the main support that this driver framework will need to evolve. From: Mark Underwood <basicmark@yahoo.com> Update the SPI framework to remove a potential priority inversion case by reverting to kmalloc if the pre-allocated DMA-safe buffer isn't available. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
19 years ago
#
# SPI driver configuration
#
# NOTE: the reason this doesn't show SPI slave support is mostly that
# nobody's needed a slave side API yet. The master-role API is not
# fully appropriate there, so it'd need some thought to do well.
#
menu "SPI support"
config SPI
bool "SPI support"
help
The "Serial Peripheral Interface" is a low level synchronous
protocol. Chips that support SPI can have data transfer rates
up to several tens of Mbit/sec. Chips are addressed with a
controller and a chipselect. Most SPI slaves don't support
dynamic device discovery; some are even write-only or read-only.
SPI is widely used by microcontollers to talk with sensors,
eeprom and flash memory, codecs and various other controller
chips, analog to digital (and d-to-a) converters, and more.
MMC and SD cards can be accessed using SPI protocol; and for
DataFlash cards used in MMC sockets, SPI must always be used.
SPI is one of a family of similar protocols using a four wire
interface (select, clock, data in, data out) including Microwire
(half duplex), SSP, SSI, and PSP. This driver framework should
work with most such devices and controllers.
config SPI_DEBUG
boolean "Debug support for SPI drivers"
depends on SPI && DEBUG_KERNEL
help
Say "yes" to enable debug messaging (like dev_dbg and pr_debug),
sysfs, and debugfs support in SPI controller and protocol drivers.
#
# MASTER side ... talking to discrete SPI slave chips including microcontrollers
#
config SPI_MASTER
# boolean "SPI Master Support"
boolean
default SPI
help
If your system has an master-capable SPI controller (which
provides the clock and chipselect), you can enable that
controller and the protocol drivers for the SPI slave chips
that are connected.
comment "SPI Master Controller Drivers"
depends on SPI_MASTER
config SPI_BITBANG
tristate "Bitbanging SPI master"
depends on SPI_MASTER && EXPERIMENTAL
help
With a few GPIO pins, your system can bitbang the SPI protocol.
Select this to get SPI support through I/O pins (GPIO, parallel
port, etc). Or, some systems' SPI master controller drivers use
this code to manage the per-word or per-transfer accesses to the
hardware shift registers.
This is library code, and is automatically selected by drivers that
need it. You only need to select this explicitly to support driver
modules that aren't part of this kernel tree.
[PATCH] spi: simple SPI framework This is the core of a small SPI framework, implementing the model of a queue of messages which complete asynchronously (with thin synchronous wrappers on top). - It's still less than 2KB of ".text" (ARM). If there's got to be a mid-layer for something so simple, that's the right size budget. :) - The guts use board-specific SPI device tables to build the driver model tree. (Hardware probing is rarely an option.) - This version of Kconfig includes no drivers. At this writing there are two known master controller drivers (PXA/SSP, OMAP MicroWire) and three protocol drivers (CS8415a, ADS7846, DataFlash) with LKML mentions of other drivers in development. - No userspace API. There are several implementations to compare. Implement them like any other driver, and bind them with sysfs. The changes from last version posted to LKML (on 11-Nov-2005) are minor, and include: - One bugfix (removes a FIXME), with the visible effect of making device names be "spiB.C" where B is the bus number and C is the chipselect. - The "caller provides DMA mappings" mechanism now has kerneldoc, for DMA drivers that want to be fancy. - Hey, the framework init can be subsys_init. Even though board init logic fires earlier, at arch_init ... since the framework init is for driver support, and the board init support uses static init. - Various additional spec/doc clarifications based on discussions with other folk. It adds a brief "thank you" at the end, for folk who've helped nudge this framework into existence. As I've said before, I think that "protocol tweaking" is the main support that this driver framework will need to evolve. From: Mark Underwood <basicmark@yahoo.com> Update the SPI framework to remove a potential priority inversion case by reverting to kmalloc if the pre-allocated DMA-safe buffer isn't available. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
19 years ago
config SPI_BUTTERFLY
tristate "Parallel port adapter for AVR Butterfly (DEVELOPMENT)"
depends on SPI_MASTER && PARPORT && EXPERIMENTAL
select SPI_BITBANG
help
This uses a custom parallel port cable to connect to an AVR
Butterfly <http://www.atmel.com/products/avr/butterfly>, an
inexpensive battery powered microcontroller evaluation board.
This same cable can be used to flash new firmware.
config SPI_BUTTERFLY
tristate "Parallel port adapter for AVR Butterfly (DEVELOPMENT)"
depends on SPI_MASTER && PARPORT && EXPERIMENTAL
select SPI_BITBANG
help
This uses a custom parallel port cable to connect to an AVR
Butterfly <http://www.atmel.com/products/avr/butterfly>, an
inexpensive battery powered microcontroller evaluation board.
This same cable can be used to flash new firmware.
[PATCH] spi: simple SPI framework This is the core of a small SPI framework, implementing the model of a queue of messages which complete asynchronously (with thin synchronous wrappers on top). - It's still less than 2KB of ".text" (ARM). If there's got to be a mid-layer for something so simple, that's the right size budget. :) - The guts use board-specific SPI device tables to build the driver model tree. (Hardware probing is rarely an option.) - This version of Kconfig includes no drivers. At this writing there are two known master controller drivers (PXA/SSP, OMAP MicroWire) and three protocol drivers (CS8415a, ADS7846, DataFlash) with LKML mentions of other drivers in development. - No userspace API. There are several implementations to compare. Implement them like any other driver, and bind them with sysfs. The changes from last version posted to LKML (on 11-Nov-2005) are minor, and include: - One bugfix (removes a FIXME), with the visible effect of making device names be "spiB.C" where B is the bus number and C is the chipselect. - The "caller provides DMA mappings" mechanism now has kerneldoc, for DMA drivers that want to be fancy. - Hey, the framework init can be subsys_init. Even though board init logic fires earlier, at arch_init ... since the framework init is for driver support, and the board init support uses static init. - Various additional spec/doc clarifications based on discussions with other folk. It adds a brief "thank you" at the end, for folk who've helped nudge this framework into existence. As I've said before, I think that "protocol tweaking" is the main support that this driver framework will need to evolve. From: Mark Underwood <basicmark@yahoo.com> Update the SPI framework to remove a potential priority inversion case by reverting to kmalloc if the pre-allocated DMA-safe buffer isn't available. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
19 years ago
#
# Add new SPI master controllers in alphabetical order above this line
#
#
# There are lots of SPI device types, with sensors and memory
# being probably the most widely used ones.
#
comment "SPI Protocol Masters"
depends on SPI_MASTER
#
# Add new SPI protocol masters in alphabetical order above this line
#
# (slave support would go here)
endmenu # "SPI support"