You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/battery_qc/sec_battery_ttf.c

337 lines
11 KiB

/*
* sec_battery_ttf.c
* Samsung Mobile Battery Driver
*
* Copyright (C) 2019 Samsung Electronics
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "include/sec_battery_qc.h"
#include "include/sec_battery_ttf.h"
#if IS_ENABLED(CONFIG_CALC_TIME_TO_FULL)
int sec_calc_ttf(struct sec_battery_info *battery, unsigned int ttf_curr)
{
struct sec_cv_slope *cv_data = battery->ttf_d->cv_data;
int i, cc_time = 0, cv_time = 0;
int rc = 0;
int soc = battery->soc; // battery->capacity
int charge_current = ttf_curr;
int design_cap = battery->ttf_d->ttf_capacity;
union power_supply_propval val = {0, };
if (!battery->ttf_d)
return -ENODEV;
rc = power_supply_get_property(battery->psy_bms,
(enum power_supply_property)POWER_SUPPLY_EXT_PROP_RAW_CAP, &val);
soc = val.intval;
if (!cv_data || (ttf_curr <= 0)) {
pr_info("%s: no cv_data or val: %d\n", __func__, ttf_curr);
return -1;
}
for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
if (charge_current >= cv_data[i].fg_current)
break;
}
i = i >= battery->ttf_d->cv_data_length ? battery->ttf_d->cv_data_length - 1 : i;
if (cv_data[i].soc < soc) {
for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
if (soc <= cv_data[i].soc)
break;
}
cv_time =
((cv_data[i - 1].time - cv_data[i].time) * (cv_data[i].soc - soc)
/ (cv_data[i].soc - cv_data[i - 1].soc)) + cv_data[i].time;
} else { /* CC mode || NONE */
cv_time = cv_data[i].time;
cc_time =
design_cap * (cv_data[i].soc - soc) / ttf_curr * 3600 / 1000;
pr_debug("%s: cc_time: %d\n", __func__, cc_time);
if (cc_time < 0)
cc_time = 0;
}
pr_info("%s: cap: %d, soc: %4d, T: %6d, avg: %4d, cv soc: %4d, i: %4d, val: %d\n",
__func__, design_cap, soc, cv_time + cc_time,
battery->i_now, cv_data[i].soc, i, ttf_curr); //battery->current_avg
if (cv_time + cc_time >= 0)
return cv_time + cc_time + 60;
else
return 60; /* minimum 1minutes */
}
void sec_bat_calc_time_to_full(struct sec_battery_info *battery)
{
int pd_enable, pd_max_charge_power;
union power_supply_propval val = {0, };
int rc = 0;
int input_voltage = 0;
int max_icl = 0, settled_icl = 0;
if (!battery->ttf_d)
return;
pd_enable = get_pd_active(battery);
pd_max_charge_power = get_pd_max_power();
rc = power_supply_get_property(battery->psy_usb,
POWER_SUPPLY_PROP_INPUT_CURRENT_SETTLED, &val);
if (rc < 0) {
dev_err(battery->dev, "%s: Fail to get POWER_SUPPLY_PROP_INPUT_CURRENT_SETTLED. rc=%d\n", __func__, rc);
settled_icl = 500; /* in mA */
} else {
settled_icl = val.intval / 1000; /* uA -> mA */
}
rc = power_supply_get_property(battery->psy_usb,
POWER_SUPPLY_PROP_CURRENT_MAX, &val);
if (rc < 0) {
dev_err(battery->dev, "%s: Fail to get input current. rc=%d\n", __func__, rc);
max_icl = 500; /* in mA */
} else {
max_icl = val.intval / 1000; /* uA -> mA */
}
rc = power_supply_get_property(battery->psy_usb,
POWER_SUPPLY_PROP_VOLTAGE_MAX, &val);
if (rc < 0) {
dev_err(battery->dev, "%s: Fail to get input voltage. rc=%d\n", __func__, rc);
input_voltage = 5; /* in V */
} else {
input_voltage = val.intval / 1000000; /* in V */
}
if (max_icl > settled_icl)
battery->ttf_d->max_charge_power = settled_icl * input_voltage;
else
battery->ttf_d->max_charge_power =
battery->charging_current[battery->cable_real_type].input_current_limit * input_voltage;
if (delayed_work_pending(&battery->ttf_d->timetofull_work)) {
pr_info("%s: keep time_to_full(%5d sec)\n", __func__, battery->ttf_d->timetofull);
} else if ((battery->status == POWER_SUPPLY_STATUS_CHARGING ||
(battery->status == POWER_SUPPLY_STATUS_FULL && battery->soc != 100))) { //battery->capacity
int charge = 0;
if (battery->cable_real_type == POWER_SUPPLY_TYPE_USB_HVDCP || //hv_wire_type_case
battery->cable_real_type == POWER_SUPPLY_TYPE_AFC) {
charge = battery->ttf_d->ttf_hv_charge_current;
} else if (battery->cable_real_type == POWER_SUPPLY_TYPE_USB_HVDCP_3 ||
(battery->cable_real_type == POWER_SUPPLY_TYPE_USB_PD && pd_enable)) {
if (pd_max_charge_power > HV_CHARGER_STATUS_STANDARD4) {
charge = battery->ttf_d->ttf_dc45_charge_current;
} else if (pd_max_charge_power > HV_CHARGER_STATUS_STANDARD3) {
charge = battery->ttf_d->ttf_dc25_charge_current;
} else if (pd_max_charge_power <= battery->ttf_d->pd_charging_charge_power &&
battery->charging_current[battery->cable_real_type].fast_charging_current >=
battery->ttf_d->max_charging_current) { //same PD power with AFC
charge = battery->ttf_d->ttf_hv_charge_current;
} else { //other PD charging
charge = (pd_max_charge_power / 5) > battery->charging_current[battery->cable_real_type].fast_charging_current ?
battery->charging_current[battery->cable_real_type].fast_charging_current : (pd_max_charge_power / 5);
}
} else {
charge = (battery->ttf_d->max_charge_power / 5) > battery->charging_current[battery->cable_real_type].fast_charging_current ?
battery->charging_current[battery->cable_real_type].fast_charging_current : (battery->ttf_d->max_charge_power / 5);
}
battery->ttf_d->timetofull = sec_calc_ttf(battery, charge);
dev_info(battery->dev, "%s: T: %5d sec, current: %d\n",
__func__, battery->ttf_d->timetofull, charge); //passed_time
} else {
battery->ttf_d->timetofull = -1;
}
}
#ifdef CONFIG_OF
int sec_ttf_parse_dt(struct sec_battery_info *battery)
{
struct device_node *np;
struct sec_ttf_data *pdata = battery->ttf_d;
int ret = 0, len = 0;
const u32 *p;
if (!battery->ttf_d)
return -ENODEV;
pdata->pdev = battery;
np = of_find_node_by_name(NULL, "battery");
if (!np) {
pr_info("%s: np NULL\n", __func__);
return 1;
}
ret = of_property_read_u32(np, "battery,ttf_hv_12v_charge_current",
&pdata->ttf_hv_12v_charge_current);
if (ret) {
pdata->ttf_hv_12v_charge_current =
battery->charging_current[POWER_SUPPLY_TYPE_USB_HVDCP_3].fast_charging_current;
pr_info("%s: ttf_hv_12v_charge_current is Empty, Default value %d\n",
__func__, pdata->ttf_hv_12v_charge_current);
}
ret = of_property_read_u32(np, "battery,ttf_hv_charge_current",
&pdata->ttf_hv_charge_current);
if (ret) {
pdata->ttf_hv_charge_current =
battery->charging_current[POWER_SUPPLY_TYPE_AFC].fast_charging_current;
pr_info("%s: ttf_hv_charge_current is Empty, Default value %d\n",
__func__, pdata->ttf_hv_charge_current);
}
ret = of_property_read_u32(np, "battery,ttf_dc25_charge_current",
&pdata->ttf_dc25_charge_current);
if (ret) {
pr_info("%s: ttf_dc25_charge_current is Empty, Default value 0\n", __func__);
pdata->ttf_dc25_charge_current =
battery->charging_current[POWER_SUPPLY_TYPE_AFC].fast_charging_current;
}
ret = of_property_read_u32(np, "battery,ttf_dc45_charge_current",
&pdata->ttf_dc45_charge_current);
if (ret) {
pr_info("%s: ttf_dc45_charge_current is Empty, Default value 0\n", __func__);
pdata->ttf_dc45_charge_current = pdata->ttf_dc25_charge_current;
}
ret = of_property_read_u32(np, "battery,max_charging_current",
&pdata->max_charging_current);
if (ret < 0) {
pr_err("%s error reading max_charging_current %d\n", __func__, ret);
pdata->max_charging_current =
battery->charging_current[POWER_SUPPLY_TYPE_AFC].fast_charging_current;
}
ret = of_property_read_u32(np, "battery,pd_charging_charge_power",
&pdata->pd_charging_charge_power);
if (ret < 0) {
pr_err("%s error reading pd_charging_charge_power %d\n", __func__, ret);
pdata->pd_charging_charge_power = 15000;
}
ret = of_property_read_u32(np, "battery,ttf_capacity",
&pdata->ttf_capacity);
if (ret < 0) {
pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret);
pdata->ttf_capacity = battery->battery_full_capacity;
}
p = of_get_property(np, "battery,cv_data", &len);
if (p) {
pdata->cv_data = kzalloc(len, GFP_KERNEL);
pdata->cv_data_length = len / sizeof(struct sec_cv_slope);
pr_err("%s: len= %ld, length= %d, %d\n", __func__,
sizeof(int) * len, len, pdata->cv_data_length);
ret = of_property_read_u32_array(np, "battery,cv_data",
(u32 *)pdata->cv_data, len / sizeof(u32));
if (ret) {
pr_err("%s: failed to read battery->cv_data: %d\n",
__func__, ret);
kfree(pdata->cv_data);
pdata->cv_data = NULL;
}
} else {
pr_err("%s: there is not cv_data\n", __func__);
}
return 0;
}
#endif
void sec_bat_time_to_full_work(struct work_struct *work)
{
struct sec_ttf_data *dev = container_of(work,
struct sec_ttf_data, timetofull_work.work);
struct sec_battery_info *battery = dev->pdev;
union power_supply_propval val = {0, };
int rc = 0;
rc = power_supply_get_property(battery->psy_bat,
POWER_SUPPLY_PROP_CURRENT_NOW, &val);
if (rc < 0) {
dev_err(battery->dev, "%s: Fail to get current now prop. rc=%d\n", __func__, rc);
battery->i_now = 0;
} else {
battery->i_now = val.intval / 1000; /* uA -> mA */
}
rc = power_supply_get_property(battery->psy_usb,
(enum power_supply_property)POWER_SUPPLY_EXT_PROP_SW_CURRENT_MAX, &val);
if (rc < 0) {
dev_err(battery->dev, "%s: Fail to get sw current max prop. rc=%d\n", __func__, rc);
battery->i_max = 500;
} else {
battery->i_max = val.intval / 1000; /* uA -> mA */
}
rc = power_supply_get_property(battery->psy_usb,
POWER_SUPPLY_PROP_CURRENT_MAX, &val);
if (rc < 0) {
dev_err(battery->dev, "%s: Fail to get hw current max prop. rc=%d\n", __func__, rc);
battery->hw_max = 500;
} else {
battery->hw_max = val.intval / 1000; /* uA -> mA */
}
sec_bat_calc_time_to_full(battery);
dev_info(battery->dev, "%s:\n", __func__);
if (battery->voltage_now > 0)
battery->voltage_now--;
power_supply_changed(battery->psy_bat);
}
void ttf_work_start(struct sec_battery_info *battery)
{
if (!battery->ttf_d)
return;
if (lpcharge) {
cancel_delayed_work(&battery->ttf_d->timetofull_work);
queue_delayed_work(battery->monitor_wqueue,
&battery->ttf_d->timetofull_work, msecs_to_jiffies(1500));
}
}
int ttf_display(struct sec_battery_info *battery)
{
if (battery->soc == 100 || !battery->ttf_d) //battery->capacity
return 0;
if (((battery->status == POWER_SUPPLY_STATUS_CHARGING) ||
(battery->status == POWER_SUPPLY_STATUS_FULL && battery->soc != 100)) && //battery->capacity
!(battery->current_event & SEC_BAT_CURRENT_EVENT_HIGH_TEMP_SWELLING))
return battery->ttf_d->timetofull;
else
return 0;
}
void ttf_init(struct sec_battery_info *battery)
{
battery->ttf_d = kzalloc(sizeof(struct sec_ttf_data),
GFP_KERNEL);
if (!battery->ttf_d) {
pr_err("%s: Failed to allocate memory\n", __func__);
return;
}
sec_ttf_parse_dt(battery);
battery->ttf_d->timetofull = -1;
INIT_DELAYED_WORK(&battery->ttf_d->timetofull_work, sec_bat_time_to_full_work);
}
#else
int sec_calc_ttf(struct sec_battery_info *battery, unsigned int ttf_curr) { return -ENODEV; }
void sec_bat_calc_time_to_full(struct sec_battery_info *battery) { }
void sec_bat_time_to_full_work(struct work_struct *work) { }
void ttf_init(struct sec_battery_info *battery) { }
void ttf_work_start(struct sec_battery_info *battery) { }
int ttf_display(struct sec_battery_info *battery) { return 0; }
#ifdef CONFIG_OF
int sec_ttf_parse_dt(struct sec_battery_info *battery) { return -ENODEV; }
#endif
#endif