|
|
|
/*
|
|
|
|
* linux/include/asm-arm/arch-ixp2000/io.h
|
|
|
|
*
|
|
|
|
* Original Author: Naeem M Afzal <naeem.m.afzal@intel.com>
|
|
|
|
* Maintainer: Deepak Saxena <dsaxena@plexity.net>
|
|
|
|
*
|
|
|
|
* Copyright (C) 2002 Intel Corp.
|
|
|
|
* Copyrgiht (C) 2003-2004 MontaVista Software, Inc.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __ASM_ARM_ARCH_IO_H
|
|
|
|
#define __ASM_ARM_ARCH_IO_H
|
|
|
|
|
|
|
|
#include <asm/hardware.h>
|
|
|
|
|
|
|
|
#define IO_SPACE_LIMIT 0xffffffff
|
|
|
|
#define __mem_pci(a) (a)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The A? revisions of the IXP2000s assert byte lanes for PCI I/O
|
|
|
|
* transactions the other way round (MEM transactions don't have this
|
|
|
|
* issue), so if we want to support those models, we need to override
|
|
|
|
* the standard I/O functions.
|
|
|
|
*
|
|
|
|
* B0 and later have a bit that can be set to 1 to get the proper
|
|
|
|
* behavior for I/O transactions, which then allows us to use the
|
|
|
|
* standard I/O functions. This is what we do if the user does not
|
|
|
|
* explicitly ask for support for pre-B0.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_IXP2000_SUPPORT_BROKEN_PCI_IO
|
|
|
|
#define ___io(p) ((void __iomem *)((p)+IXP2000_PCI_IO_VIRT_BASE))
|
|
|
|
|
|
|
|
#define alignb(addr) (void __iomem *)((unsigned long)(addr) ^ 3)
|
|
|
|
#define alignw(addr) (void __iomem *)((unsigned long)(addr) ^ 2)
|
|
|
|
|
|
|
|
#define outb(v,p) __raw_writeb((v),alignb(___io(p)))
|
|
|
|
#define outw(v,p) __raw_writew((v),alignw(___io(p)))
|
|
|
|
#define outl(v,p) __raw_writel((v),___io(p))
|
|
|
|
|
|
|
|
#define inb(p) ({ unsigned int __v = __raw_readb(alignb(___io(p))); __v; })
|
|
|
|
#define inw(p) \
|
|
|
|
({ unsigned int __v = (__raw_readw(alignw(___io(p)))); __v; })
|
|
|
|
#define inl(p) \
|
|
|
|
({ unsigned int __v = (__raw_readl(___io(p))); __v; })
|
|
|
|
|
|
|
|
#define outsb(p,d,l) __raw_writesb(alignb(___io(p)),d,l)
|
|
|
|
#define outsw(p,d,l) __raw_writesw(alignw(___io(p)),d,l)
|
|
|
|
#define outsl(p,d,l) __raw_writesl(___io(p),d,l)
|
|
|
|
|
|
|
|
#define insb(p,d,l) __raw_readsb(alignb(___io(p)),d,l)
|
|
|
|
#define insw(p,d,l) __raw_readsw(alignw(___io(p)),d,l)
|
|
|
|
#define insl(p,d,l) __raw_readsl(___io(p),d,l)
|
|
|
|
|
|
|
|
#define __is_io_address(p) ((((unsigned long)(p)) & ~(IXP2000_PCI_IO_SIZE - 1)) == IXP2000_PCI_IO_VIRT_BASE)
|
|
|
|
|
|
|
|
#define ioread8(p) \
|
|
|
|
({ \
|
|
|
|
unsigned int __v; \
|
|
|
|
\
|
|
|
|
if (__is_io_address(p)) { \
|
|
|
|
__v = __raw_readb(alignb(p)); \
|
|
|
|
} else { \
|
|
|
|
__v = __raw_readb(p); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
__v; \
|
|
|
|
}) \
|
|
|
|
|
|
|
|
#define ioread16(p) \
|
|
|
|
({ \
|
|
|
|
unsigned int __v; \
|
|
|
|
\
|
|
|
|
if (__is_io_address(p)) { \
|
|
|
|
__v = __raw_readw(alignw(p)); \
|
|
|
|
} else { \
|
|
|
|
__v = le16_to_cpu(__raw_readw(p)); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
__v; \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define ioread32(p) \
|
|
|
|
({ \
|
|
|
|
unsigned int __v; \
|
|
|
|
\
|
|
|
|
if (__is_io_address(p)) { \
|
|
|
|
__v = __raw_readl(p); \
|
|
|
|
} else { \
|
|
|
|
__v = le32_to_cpu(__raw_readl(p)); \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
__v; \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define iowrite8(v,p) \
|
|
|
|
({ \
|
|
|
|
if (__is_io_address(p)) { \
|
|
|
|
__raw_writeb((v), alignb(p)); \
|
|
|
|
} else { \
|
|
|
|
__raw_writeb((v), p); \
|
|
|
|
} \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define iowrite16(v,p) \
|
|
|
|
({ \
|
|
|
|
if (__is_io_address(p)) { \
|
|
|
|
__raw_writew((v), alignw(p)); \
|
|
|
|
} else { \
|
|
|
|
__raw_writew(cpu_to_le16(v), p); \
|
|
|
|
} \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define iowrite32(v,p) \
|
|
|
|
({ \
|
|
|
|
if (__is_io_address(p)) { \
|
|
|
|
__raw_writel((v), p); \
|
|
|
|
} else { \
|
|
|
|
__raw_writel(cpu_to_le32(v), p); \
|
|
|
|
} \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define ioport_map(port, nr) ___io(port)
|
|
|
|
|
|
|
|
#define ioport_unmap(addr)
|
|
|
|
#else
|
|
|
|
#define __io(p) ((void __iomem *)((p)+IXP2000_PCI_IO_VIRT_BASE))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_ARCH_IXDP2X01
|
|
|
|
/*
|
|
|
|
* This is an ugly hack but the CS8900 on the 2x01's does not sit in any sort
|
|
|
|
* of "I/O space" and is just direct mapped into a 32-bit-only addressable
|
|
|
|
* bus. The address space for this bus is such that we can't really easily
|
|
|
|
* make it contiguous to the PCI I/O address range, and it also does not
|
|
|
|
* need swapping like PCI addresses do (IXDP2x01 is a BE platform).
|
|
|
|
* B/C of this we can't use the standard in/out functions and need to
|
|
|
|
* runtime check if the incoming address is a PCI address or for
|
|
|
|
* the CS89x0.
|
|
|
|
*/
|
|
|
|
#undef inw
|
|
|
|
#undef outw
|
|
|
|
#undef insw
|
|
|
|
#undef outsw
|
|
|
|
|
|
|
|
#include <asm/mach-types.h>
|
|
|
|
|
|
|
|
static inline void insw(u32 ptr, void *buf, int length)
|
|
|
|
{
|
|
|
|
register volatile u32 *port = (volatile u32 *)ptr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Is this cycle meant for the CS8900?
|
|
|
|
*/
|
|
|
|
if ((machine_is_ixdp2401() || machine_is_ixdp2801()) &&
|
|
|
|
(((u32)port >= (u32)IXDP2X01_CS8900_VIRT_BASE) &&
|
|
|
|
((u32)port <= (u32)IXDP2X01_CS8900_VIRT_END))) {
|
|
|
|
u8 *buf8 = (u8*)buf;
|
|
|
|
register u32 tmp32;
|
|
|
|
|
|
|
|
do {
|
|
|
|
tmp32 = *port;
|
|
|
|
*buf8++ = (u8)tmp32;
|
|
|
|
*buf8++ = (u8)(tmp32 >> 8);
|
|
|
|
} while(--length);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__raw_readsw(alignw(___io(ptr)),buf,length);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void outsw(u32 ptr, void *buf, int length)
|
|
|
|
{
|
|
|
|
register volatile u32 *port = (volatile u32 *)ptr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Is this cycle meant for the CS8900?
|
|
|
|
*/
|
|
|
|
if ((machine_is_ixdp2401() || machine_is_ixdp2801()) &&
|
|
|
|
(((u32)port >= (u32)IXDP2X01_CS8900_VIRT_BASE) &&
|
|
|
|
((u32)port <= (u32)IXDP2X01_CS8900_VIRT_END))) {
|
|
|
|
register u32 tmp32;
|
|
|
|
u8 *buf8 = (u8*)buf;
|
|
|
|
do {
|
|
|
|
tmp32 = *buf8++;
|
|
|
|
tmp32 |= (*buf8++) << 8;
|
|
|
|
*port = tmp32;
|
|
|
|
} while(--length);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__raw_writesw(alignw(___io(ptr)),buf,length);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline u16 inw(u32 ptr)
|
|
|
|
{
|
|
|
|
register volatile u32 *port = (volatile u32 *)ptr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Is this cycle meant for the CS8900?
|
|
|
|
*/
|
|
|
|
if ((machine_is_ixdp2401() || machine_is_ixdp2801()) &&
|
|
|
|
(((u32)port >= (u32)IXDP2X01_CS8900_VIRT_BASE) &&
|
|
|
|
((u32)port <= (u32)IXDP2X01_CS8900_VIRT_END))) {
|
|
|
|
return (u16)(*port);
|
|
|
|
}
|
|
|
|
|
|
|
|
return __raw_readw(alignw(___io(ptr)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void outw(u16 value, u32 ptr)
|
|
|
|
{
|
|
|
|
register volatile u32 *port = (volatile u32 *)ptr;
|
|
|
|
|
|
|
|
if ((machine_is_ixdp2401() || machine_is_ixdp2801()) &&
|
|
|
|
(((u32)port >= (u32)IXDP2X01_CS8900_VIRT_BASE) &&
|
|
|
|
((u32)port <= (u32)IXDP2X01_CS8900_VIRT_END))) {
|
|
|
|
*port = value;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
__raw_writew((value),alignw(___io(ptr)));
|
|
|
|
}
|
|
|
|
#endif /* IXDP2x01 */
|
|
|
|
|
|
|
|
#endif
|