|
|
|
/*
|
|
|
|
* arch/x86_64/mm/ioremap.c
|
|
|
|
*
|
|
|
|
* Re-map IO memory to kernel address space so that we can access it.
|
|
|
|
* This is needed for high PCI addresses that aren't mapped in the
|
|
|
|
* 640k-1MB IO memory area on PC's
|
|
|
|
*
|
|
|
|
* (C) Copyright 1995 1996 Linus Torvalds
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include <asm/fixmap.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include <asm/proto.h>
|
|
|
|
|
|
|
|
#define ISA_START_ADDRESS 0xa0000
|
|
|
|
#define ISA_END_ADDRESS 0x100000
|
|
|
|
|
|
|
|
static inline void remap_area_pte(pte_t * pte, unsigned long address, unsigned long size,
|
|
|
|
unsigned long phys_addr, unsigned long flags)
|
|
|
|
{
|
|
|
|
unsigned long end;
|
|
|
|
unsigned long pfn;
|
|
|
|
|
|
|
|
address &= ~PMD_MASK;
|
|
|
|
end = address + size;
|
|
|
|
if (end > PMD_SIZE)
|
|
|
|
end = PMD_SIZE;
|
|
|
|
if (address >= end)
|
|
|
|
BUG();
|
|
|
|
pfn = phys_addr >> PAGE_SHIFT;
|
|
|
|
do {
|
|
|
|
if (!pte_none(*pte)) {
|
|
|
|
printk("remap_area_pte: page already exists\n");
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
set_pte(pte, pfn_pte(pfn, __pgprot(_PAGE_PRESENT | _PAGE_RW |
|
|
|
|
_PAGE_GLOBAL | _PAGE_DIRTY | _PAGE_ACCESSED | flags)));
|
|
|
|
address += PAGE_SIZE;
|
|
|
|
pfn++;
|
|
|
|
pte++;
|
|
|
|
} while (address && (address < end));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int remap_area_pmd(pmd_t * pmd, unsigned long address, unsigned long size,
|
|
|
|
unsigned long phys_addr, unsigned long flags)
|
|
|
|
{
|
|
|
|
unsigned long end;
|
|
|
|
|
|
|
|
address &= ~PUD_MASK;
|
|
|
|
end = address + size;
|
|
|
|
if (end > PUD_SIZE)
|
|
|
|
end = PUD_SIZE;
|
|
|
|
phys_addr -= address;
|
|
|
|
if (address >= end)
|
|
|
|
BUG();
|
|
|
|
do {
|
[PATCH] mm: init_mm without ptlock
First step in pushing down the page_table_lock. init_mm.page_table_lock has
been used throughout the architectures (usually for ioremap): not to serialize
kernel address space allocation (that's usually vmlist_lock), but because
pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it.
Reverse that: don't lock or unlock init_mm.page_table_lock in any of the
architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take
and drop it when allocating a new one, to check lest a racing task already
did. Similarly no page_table_lock in vmalloc's map_vm_area.
Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle
user mms, which are converted only by a later patch, for now they have to lock
differently according to whether or not it's init_mm.
If sources get muddled, there's a danger that an arch source taking
init_mm.page_table_lock will be mixed with common source also taking it (or
neither take it). So break the rules and make another change, which should
break the build for such a mismatch: remove the redundant mm arg from
pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13).
Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64
used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to
pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64
map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free
took page_table_lock for no good reason.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
pte_t * pte = pte_alloc_kernel(pmd, address);
|
|
|
|
if (!pte)
|
|
|
|
return -ENOMEM;
|
|
|
|
remap_area_pte(pte, address, end - address, address + phys_addr, flags);
|
|
|
|
address = (address + PMD_SIZE) & PMD_MASK;
|
|
|
|
pmd++;
|
|
|
|
} while (address && (address < end));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int remap_area_pud(pud_t * pud, unsigned long address, unsigned long size,
|
|
|
|
unsigned long phys_addr, unsigned long flags)
|
|
|
|
{
|
|
|
|
unsigned long end;
|
|
|
|
|
|
|
|
address &= ~PGDIR_MASK;
|
|
|
|
end = address + size;
|
|
|
|
if (end > PGDIR_SIZE)
|
|
|
|
end = PGDIR_SIZE;
|
|
|
|
phys_addr -= address;
|
|
|
|
if (address >= end)
|
|
|
|
BUG();
|
|
|
|
do {
|
|
|
|
pmd_t * pmd = pmd_alloc(&init_mm, pud, address);
|
|
|
|
if (!pmd)
|
|
|
|
return -ENOMEM;
|
|
|
|
remap_area_pmd(pmd, address, end - address, address + phys_addr, flags);
|
|
|
|
address = (address + PUD_SIZE) & PUD_MASK;
|
|
|
|
pud++;
|
|
|
|
} while (address && (address < end));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int remap_area_pages(unsigned long address, unsigned long phys_addr,
|
|
|
|
unsigned long size, unsigned long flags)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
pgd_t *pgd;
|
|
|
|
unsigned long end = address + size;
|
|
|
|
|
|
|
|
phys_addr -= address;
|
|
|
|
pgd = pgd_offset_k(address);
|
|
|
|
flush_cache_all();
|
|
|
|
if (address >= end)
|
|
|
|
BUG();
|
|
|
|
do {
|
|
|
|
pud_t *pud;
|
|
|
|
pud = pud_alloc(&init_mm, pgd, address);
|
|
|
|
error = -ENOMEM;
|
|
|
|
if (!pud)
|
|
|
|
break;
|
|
|
|
if (remap_area_pud(pud, address, end - address,
|
|
|
|
phys_addr + address, flags))
|
|
|
|
break;
|
|
|
|
error = 0;
|
|
|
|
address = (address + PGDIR_SIZE) & PGDIR_MASK;
|
|
|
|
pgd++;
|
|
|
|
} while (address && (address < end));
|
|
|
|
flush_tlb_all();
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fix up the linear direct mapping of the kernel to avoid cache attribute
|
|
|
|
* conflicts.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ioremap_change_attr(unsigned long phys_addr, unsigned long size,
|
|
|
|
unsigned long flags)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
if (phys_addr + size - 1 < (end_pfn_map << PAGE_SHIFT)) {
|
|
|
|
unsigned long npages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
|
|
unsigned long vaddr = (unsigned long) __va(phys_addr);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Must use a address here and not struct page because the phys addr
|
|
|
|
* can be a in hole between nodes and not have an memmap entry.
|
|
|
|
*/
|
|
|
|
err = change_page_attr_addr(vaddr,npages,__pgprot(__PAGE_KERNEL|flags));
|
|
|
|
if (!err)
|
|
|
|
global_flush_tlb();
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generic mapping function
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remap an arbitrary physical address space into the kernel virtual
|
|
|
|
* address space. Needed when the kernel wants to access high addresses
|
|
|
|
* directly.
|
|
|
|
*
|
|
|
|
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
|
|
|
|
* have to convert them into an offset in a page-aligned mapping, but the
|
|
|
|
* caller shouldn't need to know that small detail.
|
|
|
|
*/
|
|
|
|
void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags)
|
|
|
|
{
|
|
|
|
void * addr;
|
|
|
|
struct vm_struct * area;
|
|
|
|
unsigned long offset, last_addr;
|
|
|
|
|
|
|
|
/* Don't allow wraparound or zero size */
|
|
|
|
last_addr = phys_addr + size - 1;
|
|
|
|
if (!size || last_addr < phys_addr)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Don't remap the low PCI/ISA area, it's always mapped..
|
|
|
|
*/
|
|
|
|
if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS)
|
|
|
|
return (__force void __iomem *)phys_to_virt(phys_addr);
|
|
|
|
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
|
|
/*
|
|
|
|
* Don't allow anybody to remap normal RAM that we're using..
|
|
|
|
*/
|
|
|
|
if (last_addr < virt_to_phys(high_memory)) {
|
|
|
|
char *t_addr, *t_end;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
t_addr = __va(phys_addr);
|
|
|
|
t_end = t_addr + (size - 1);
|
|
|
|
|
|
|
|
for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++)
|
|
|
|
if(!PageReserved(page))
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mappings have to be page-aligned
|
|
|
|
*/
|
|
|
|
offset = phys_addr & ~PAGE_MASK;
|
|
|
|
phys_addr &= PAGE_MASK;
|
|
|
|
size = PAGE_ALIGN(last_addr+1) - phys_addr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ok, go for it..
|
|
|
|
*/
|
|
|
|
area = get_vm_area(size, VM_IOREMAP | (flags << 20));
|
|
|
|
if (!area)
|
|
|
|
return NULL;
|
|
|
|
area->phys_addr = phys_addr;
|
|
|
|
addr = area->addr;
|
|
|
|
if (remap_area_pages((unsigned long) addr, phys_addr, size, flags)) {
|
|
|
|
remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
if (flags && ioremap_change_attr(phys_addr, size, flags) < 0) {
|
|
|
|
area->flags &= 0xffffff;
|
|
|
|
vunmap(addr);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return (__force void __iomem *) (offset + (char *)addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ioremap_nocache - map bus memory into CPU space
|
|
|
|
* @offset: bus address of the memory
|
|
|
|
* @size: size of the resource to map
|
|
|
|
*
|
|
|
|
* ioremap_nocache performs a platform specific sequence of operations to
|
|
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
|
|
* address is not guaranteed to be usable directly as a virtual
|
|
|
|
* address.
|
|
|
|
*
|
|
|
|
* This version of ioremap ensures that the memory is marked uncachable
|
|
|
|
* on the CPU as well as honouring existing caching rules from things like
|
|
|
|
* the PCI bus. Note that there are other caches and buffers on many
|
|
|
|
* busses. In particular driver authors should read up on PCI writes
|
|
|
|
*
|
|
|
|
* It's useful if some control registers are in such an area and
|
|
|
|
* write combining or read caching is not desirable:
|
|
|
|
*
|
|
|
|
* Must be freed with iounmap.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size)
|
|
|
|
{
|
|
|
|
return __ioremap(phys_addr, size, _PAGE_PCD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* iounmap - Free a IO remapping
|
|
|
|
* @addr: virtual address from ioremap_*
|
|
|
|
*
|
|
|
|
* Caller must ensure there is only one unmapping for the same pointer.
|
|
|
|
*/
|
|
|
|
void iounmap(volatile void __iomem *addr)
|
|
|
|
{
|
|
|
|
struct vm_struct *p, *o;
|
|
|
|
|
|
|
|
if (addr <= high_memory)
|
|
|
|
return;
|
|
|
|
if (addr >= phys_to_virt(ISA_START_ADDRESS) &&
|
|
|
|
addr < phys_to_virt(ISA_END_ADDRESS))
|
|
|
|
return;
|
|
|
|
|
|
|
|
addr = (volatile void __iomem *)(PAGE_MASK & (unsigned long __force)addr);
|
|
|
|
/* Use the vm area unlocked, assuming the caller
|
|
|
|
ensures there isn't another iounmap for the same address
|
|
|
|
in parallel. Reuse of the virtual address is prevented by
|
|
|
|
leaving it in the global lists until we're done with it.
|
|
|
|
cpa takes care of the direct mappings. */
|
|
|
|
read_lock(&vmlist_lock);
|
|
|
|
for (p = vmlist; p; p = p->next) {
|
|
|
|
if (p->addr == addr)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
read_unlock(&vmlist_lock);
|
|
|
|
|
|
|
|
if (!p) {
|
|
|
|
printk("iounmap: bad address %p\n", addr);
|
|
|
|
dump_stack();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reset the direct mapping. Can block */
|
|
|
|
if (p->flags >> 20)
|
|
|
|
ioremap_change_attr(p->phys_addr, p->size, 0);
|
|
|
|
|
|
|
|
/* Finally remove it */
|
|
|
|
o = remove_vm_area((void *)addr);
|
|
|
|
BUG_ON(p != o || o == NULL);
|
|
|
|
kfree(p);
|
|
|
|
}
|