You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/net/wan/sdla_chdlc.c

4429 lines
121 KiB

/*****************************************************************************
* sdla_chdlc.c WANPIPE(tm) Multiprotocol WAN Link Driver. Cisco HDLC module.
*
* Authors: Nenad Corbic <ncorbic@sangoma.com>
* Gideon Hack
*
* Copyright: (c) 1995-2001 Sangoma Technologies Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
* ============================================================================
* Feb 28, 2001 Nenad Corbic Updated if_tx_timeout() routine for
* 2.4.X kernels.
* Jan 25, 2001 Nenad Corbic Added a TTY Sync serial driver over the
* HDLC streaming protocol
* Added a TTY Async serial driver over the
* Async protocol.
* Dec 15, 2000 Nenad Corbic Updated for 2.4.X Kernel support
* Nov 13, 2000 Nenad Corbic Added true interface type encoding option.
* Tcpdump doesn't support CHDLC inteface
* types, to fix this "true type" option will set
* the interface type to RAW IP mode.
* Nov 07, 2000 Nenad Corbic Added security features for UDP debugging:
* Deny all and specify allowed requests.
* Jun 20, 2000 Nenad Corbic Fixed the API IP ERROR bug. Caused by the
* latest update.
* May 09, 2000 Nenad Corbic Option to bring down an interface
* upon disconnect.
* Mar 23, 2000 Nenad Corbic Improved task queue, bh handling.
* Mar 16, 2000 Nenad Corbic Fixed the SLARP Dynamic IP addressing.
* Mar 06, 2000 Nenad Corbic Bug Fix: corrupted mbox recovery.
* Feb 10, 2000 Gideon Hack Added ASYNC support.
* Feb 09, 2000 Nenad Corbic Fixed two shutdown bugs in update() and
* if_stats() functions.
* Jan 24, 2000 Nenad Corbic Fixed a startup wanpipe state racing,
* condition between if_open and isr.
* Jan 10, 2000 Nenad Corbic Added new socket API support.
* Dev 15, 1999 Nenad Corbic Fixed up header files for 2.0.X kernels
* Nov 20, 1999 Nenad Corbic Fixed zero length API bug.
* Sep 30, 1999 Nenad Corbic Fixed dynamic IP and route setup.
* Sep 23, 1999 Nenad Corbic Added SMP support, fixed tracing
* Sep 13, 1999 Nenad Corbic Split up Port 0 and 1 into separate devices.
* Jun 02, 1999 Gideon Hack Added support for the S514 adapter.
* Oct 30, 1998 Jaspreet Singh Added Support for CHDLC API (HDLC STREAMING).
* Oct 28, 1998 Jaspreet Singh Added Support for Dual Port CHDLC.
* Aug 07, 1998 David Fong Initial version.
*****************************************************************************/
#include <linux/module.h>
#include <linux/kernel.h> /* printk(), and other useful stuff */
#include <linux/stddef.h> /* offsetof(), etc. */
#include <linux/errno.h> /* return codes */
#include <linux/string.h> /* inline memset(), etc. */
#include <linux/slab.h> /* kmalloc(), kfree() */
#include <linux/wanrouter.h> /* WAN router definitions */
#include <linux/wanpipe.h> /* WANPIPE common user API definitions */
#include <linux/if_arp.h> /* ARPHRD_* defines */
#include <asm/uaccess.h>
#include <linux/inetdevice.h>
#include <linux/netdevice.h>
#include <linux/in.h> /* sockaddr_in */
#include <linux/inet.h>
#include <linux/if.h>
#include <asm/byteorder.h> /* htons(), etc. */
#include <linux/sdlapci.h>
#include <asm/io.h>
#include <linux/sdla_chdlc.h> /* CHDLC firmware API definitions */
#include <linux/sdla_asy.h> /* CHDLC (async) API definitions */
#include <linux/if_wanpipe_common.h> /* Socket Driver common area */
#include <linux/if_wanpipe.h>
/* TTY Includes */
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
/****** Defines & Macros ****************************************************/
/* reasons for enabling the timer interrupt on the adapter */
#define TMR_INT_ENABLED_UDP 0x01
#define TMR_INT_ENABLED_UPDATE 0x02
#define TMR_INT_ENABLED_CONFIG 0x10
#define MAX_IP_ERRORS 10
#define TTY_CHDLC_MAX_MTU 2000
#define CHDLC_DFLT_DATA_LEN 1500 /* default MTU */
#define CHDLC_HDR_LEN 1
#define CHDLC_API 0x01
#define PORT(x) (x == 0 ? "PRIMARY" : "SECONDARY" )
#define MAX_BH_BUFF 10
//#define PRINT_DEBUG
#ifdef PRINT_DEBUG
#define dbg_printk(format, a...) printk(format, ## a)
#else
#define dbg_printk(format, a...)
#endif
/******Data Structures*****************************************************/
/* This structure is placed in the private data area of the device structure.
* The card structure used to occupy the private area but now the following
* structure will incorporate the card structure along with CHDLC specific data
*/
typedef struct chdlc_private_area
{
wanpipe_common_t common;
sdla_t *card;
int TracingEnabled; /* For enabling Tracing */
unsigned long curr_trace_addr; /* Used for Tracing */
unsigned long start_trace_addr;
unsigned long end_trace_addr;
unsigned long base_addr_trace_buffer;
unsigned long end_addr_trace_buffer;
unsigned short number_trace_elements;
unsigned available_buffer_space;
unsigned long router_start_time;
unsigned char route_status;
unsigned char route_removed;
unsigned long tick_counter; /* For 5s timeout counter */
unsigned long router_up_time;
u32 IP_address; /* IP addressing */
u32 IP_netmask;
u32 ip_local;
u32 ip_remote;
u32 ip_local_tmp;
u32 ip_remote_tmp;
u8 ip_error;
u8 config_chdlc;
u8 config_chdlc_timeout;
unsigned char mc; /* Mulitcast support on/off */
unsigned short udp_pkt_lgth; /* udp packet processing */
char udp_pkt_src;
char udp_pkt_data[MAX_LGTH_UDP_MGNT_PKT];
unsigned short timer_int_enabled;
char update_comms_stats; /* updating comms stats */
bh_data_t *bh_head; /* Circular buffer for chdlc_bh */
unsigned long tq_working;
volatile int bh_write;
volatile int bh_read;
atomic_t bh_buff_used;
unsigned char interface_down;
/* Polling work queue entry. Each interface
* has its own work queue entry, which is used
* to defer events from the interrupt */
struct work_struct poll_work;
struct timer_list poll_delay_timer;
u8 gateway;
u8 true_if_encoding;
//FIXME: add driver stats as per frame relay!
} chdlc_private_area_t;
/* Route Status options */
#define NO_ROUTE 0x00
#define ADD_ROUTE 0x01
#define ROUTE_ADDED 0x02
#define REMOVE_ROUTE 0x03
/* variable for keeping track of enabling/disabling FT1 monitor status */
static int rCount = 0;
/* variable for tracking how many interfaces to open for WANPIPE on the
two ports */
extern void disable_irq(unsigned int);
extern void enable_irq(unsigned int);
/****** Function Prototypes *************************************************/
/* WAN link driver entry points. These are called by the WAN router module. */
static int update(struct wan_device* wandev);
static int new_if(struct wan_device* wandev, struct net_device* dev,
wanif_conf_t* conf);
/* Network device interface */
static int if_init(struct net_device* dev);
static int if_open(struct net_device* dev);
static int if_close(struct net_device* dev);
static int if_header(struct sk_buff* skb, struct net_device* dev,
unsigned short type, void* daddr, void* saddr,
unsigned len);
static int if_rebuild_hdr (struct sk_buff *skb);
static struct net_device_stats* if_stats(struct net_device* dev);
static int if_send(struct sk_buff* skb, struct net_device* dev);
/* CHDLC Firmware interface functions */
static int chdlc_configure (sdla_t* card, void* data);
static int chdlc_comm_enable (sdla_t* card);
static int chdlc_read_version (sdla_t* card, char* str);
static int chdlc_set_intr_mode (sdla_t* card, unsigned mode);
static int chdlc_send (sdla_t* card, void* data, unsigned len);
static int chdlc_read_comm_err_stats (sdla_t* card);
static int chdlc_read_op_stats (sdla_t* card);
static int chdlc_error (sdla_t *card, int err, CHDLC_MAILBOX_STRUCT *mb);
static int chdlc_disable_comm_shutdown (sdla_t *card);
static void if_tx_timeout(struct net_device *dev);
/* Miscellaneous CHDLC Functions */
static int set_chdlc_config (sdla_t* card);
static void init_chdlc_tx_rx_buff( sdla_t* card);
static int process_chdlc_exception(sdla_t *card);
static int process_global_exception(sdla_t *card);
static int update_comms_stats(sdla_t* card,
chdlc_private_area_t* chdlc_priv_area);
static int configure_ip (sdla_t* card);
static int unconfigure_ip (sdla_t* card);
static void process_route(sdla_t *card);
static void port_set_state (sdla_t *card, int);
static int config_chdlc (sdla_t *card);
static void disable_comm (sdla_t *card);
static void trigger_chdlc_poll(struct net_device *dev);
static void chdlc_poll(struct net_device *dev);
static void chdlc_poll_delay (unsigned long dev_ptr);
/* Miscellaneous asynchronous interface Functions */
static int set_asy_config (sdla_t* card);
static int asy_comm_enable (sdla_t* card);
/* Interrupt handlers */
static void wpc_isr (sdla_t* card);
static void rx_intr (sdla_t* card);
static void timer_intr(sdla_t *);
/* Bottom half handlers */
static void chdlc_work(struct net_device *dev);
static int chdlc_work_cleanup(struct net_device *dev);
static int bh_enqueue(struct net_device *dev, struct sk_buff *skb);
/* Miscellaneous functions */
static int chk_bcast_mcast_addr(sdla_t* card, struct net_device* dev,
struct sk_buff *skb);
static int reply_udp( unsigned char *data, unsigned int mbox_len );
static int intr_test( sdla_t* card);
static int udp_pkt_type( struct sk_buff *skb , sdla_t* card);
static int store_udp_mgmt_pkt(char udp_pkt_src, sdla_t* card,
struct sk_buff *skb, struct net_device* dev,
chdlc_private_area_t* chdlc_priv_area);
static int process_udp_mgmt_pkt(sdla_t* card, struct net_device* dev,
chdlc_private_area_t* chdlc_priv_area);
static unsigned short calc_checksum (char *, int);
static void s508_lock (sdla_t *card, unsigned long *smp_flags);
static void s508_unlock (sdla_t *card, unsigned long *smp_flags);
static int Intr_test_counter;
/* TTY Global Definitions */
#define NR_PORTS 4
#define WAN_TTY_MAJOR 226
#define WAN_TTY_MINOR 0
#define WAN_CARD(port) (tty_card_map[port])
#define MIN_PORT 0
#define MAX_PORT NR_PORTS-1
#define CRC_LENGTH 2
static int wanpipe_tty_init(sdla_t *card);
static void wanpipe_tty_receive(sdla_t *, unsigned, unsigned int);
static void wanpipe_tty_trigger_poll(sdla_t *card);
static struct tty_driver serial_driver;
static int tty_init_cnt=0;
static struct serial_state rs_table[NR_PORTS];
static char tty_driver_mode=WANOPT_TTY_SYNC;
static char *opt_decode[] = {"NONE","CRTSCTS","XONXOFF-RX",
"CRTSCTS XONXOFF-RX","XONXOFF-TX",
"CRTSCTS XONXOFF-TX","CRTSCTS XONXOFF"};
static char *p_decode[] = {"NONE","ODD","EVEN"};
static void* tty_card_map[NR_PORTS] = {NULL,NULL,NULL,NULL};
/****** Public Functions ****************************************************/
/*============================================================================
* Cisco HDLC protocol initialization routine.
*
* This routine is called by the main WANPIPE module during setup. At this
* point adapter is completely initialized and firmware is running.
* o read firmware version (to make sure it's alive)
* o configure adapter
* o initialize protocol-specific fields of the adapter data space.
*
* Return: 0 o.k.
* < 0 failure.
*/
int wpc_init (sdla_t* card, wandev_conf_t* conf)
{
unsigned char port_num;
int err;
unsigned long max_permitted_baud = 0;
SHARED_MEMORY_INFO_STRUCT *flags;
union
{
char str[80];
} u;
volatile CHDLC_MAILBOX_STRUCT* mb;
CHDLC_MAILBOX_STRUCT* mb1;
unsigned long timeout;
/* Verify configuration ID */
if (conf->config_id != WANCONFIG_CHDLC) {
printk(KERN_INFO "%s: invalid configuration ID %u!\n",
card->devname, conf->config_id);
return -EINVAL;
}
/* Find out which Port to use */
if ((conf->comm_port == WANOPT_PRI) || (conf->comm_port == WANOPT_SEC)){
if (card->next){
if (conf->comm_port != card->next->u.c.comm_port){
card->u.c.comm_port = conf->comm_port;
}else{
printk(KERN_INFO "%s: ERROR - %s port used!\n",
card->wandev.name, PORT(conf->comm_port));
return -EINVAL;
}
}else{
card->u.c.comm_port = conf->comm_port;
}
}else{
printk(KERN_INFO "%s: ERROR - Invalid Port Selected!\n",
card->wandev.name);
return -EINVAL;
}
/* Initialize protocol-specific fields */
if(card->hw.type != SDLA_S514){
if (card->u.c.comm_port == WANOPT_PRI){
card->mbox = (void *) card->hw.dpmbase;
}else{
card->mbox = (void *) card->hw.dpmbase +
SEC_BASE_ADDR_MB_STRUCT - PRI_BASE_ADDR_MB_STRUCT;
}
}else{
/* for a S514 adapter, set a pointer to the actual mailbox in the */
/* allocated virtual memory area */
if (card->u.c.comm_port == WANOPT_PRI){
card->mbox = (void *) card->hw.dpmbase + PRI_BASE_ADDR_MB_STRUCT;
}else{
card->mbox = (void *) card->hw.dpmbase + SEC_BASE_ADDR_MB_STRUCT;
}
}
mb = mb1 = card->mbox;
if (!card->configured){
/* The board will place an 'I' in the return code to indicate that it is
ready to accept commands. We expect this to be completed in less
than 1 second. */
timeout = jiffies;
while (mb->return_code != 'I') /* Wait 1s for board to initialize */
if ((jiffies - timeout) > 1*HZ) break;
if (mb->return_code != 'I') {
printk(KERN_INFO
"%s: Initialization not completed by adapter\n",
card->devname);
printk(KERN_INFO "Please contact Sangoma representative.\n");
return -EIO;
}
}
/* Read firmware version. Note that when adapter initializes, it
* clears the mailbox, so it may appear that the first command was
* executed successfully when in fact it was merely erased. To work
* around this, we execute the first command twice.
*/
if (chdlc_read_version(card, u.str))
return -EIO;
printk(KERN_INFO "%s: Running Cisco HDLC firmware v%s\n",
card->devname, u.str);
card->isr = &wpc_isr;
card->poll = NULL;
card->exec = NULL;
card->wandev.update = &update;
card->wandev.new_if = &new_if;
card->wandev.del_if = NULL;
card->wandev.udp_port = conf->udp_port;
card->disable_comm = &disable_comm;
card->wandev.new_if_cnt = 0;
/* reset the number of times the 'update()' proc has been called */
card->u.c.update_call_count = 0;
card->wandev.ttl = conf->ttl;
card->wandev.interface = conf->interface;
if ((card->u.c.comm_port == WANOPT_SEC && conf->interface == WANOPT_V35)&&
card->hw.type != SDLA_S514){
printk(KERN_INFO "%s: ERROR - V35 Interface not supported on S508 %s port \n",
card->devname, PORT(card->u.c.comm_port));
return -EIO;
}
card->wandev.clocking = conf->clocking;
port_num = card->u.c.comm_port;
/* in API mode, we can configure for "receive only" buffering */
if(card->hw.type == SDLA_S514) {
card->u.c.receive_only = conf->receive_only;
if(conf->receive_only) {
printk(KERN_INFO
"%s: Configured for 'receive only' mode\n",
card->devname);
}
}
/* Setup Port Bps */
if(card->wandev.clocking) {
if((port_num == WANOPT_PRI) || card->u.c.receive_only) {
/* For Primary Port 0 */
max_permitted_baud =
(card->hw.type == SDLA_S514) ?
PRI_MAX_BAUD_RATE_S514 :
PRI_MAX_BAUD_RATE_S508;
}else if(port_num == WANOPT_SEC) {
/* For Secondary Port 1 */
max_permitted_baud =
(card->hw.type == SDLA_S514) ?
SEC_MAX_BAUD_RATE_S514 :
SEC_MAX_BAUD_RATE_S508;
}
if(conf->bps > max_permitted_baud) {
conf->bps = max_permitted_baud;
printk(KERN_INFO "%s: Baud too high!\n",
card->wandev.name);
printk(KERN_INFO "%s: Baud rate set to %lu bps\n",
card->wandev.name, max_permitted_baud);
}
card->wandev.bps = conf->bps;
}else{
card->wandev.bps = 0;
}
/* Setup the Port MTU */
if((port_num == WANOPT_PRI) || card->u.c.receive_only) {
/* For Primary Port 0 */
card->wandev.mtu =
(conf->mtu >= MIN_LGTH_CHDLC_DATA_CFG) ?
min_t(unsigned int, conf->mtu, PRI_MAX_NO_DATA_BYTES_IN_FRAME) :
CHDLC_DFLT_DATA_LEN;
} else if(port_num == WANOPT_SEC) {
/* For Secondary Port 1 */
card->wandev.mtu =
(conf->mtu >= MIN_LGTH_CHDLC_DATA_CFG) ?
min_t(unsigned int, conf->mtu, SEC_MAX_NO_DATA_BYTES_IN_FRAME) :
CHDLC_DFLT_DATA_LEN;
}
/* Set up the interrupt status area */
/* Read the CHDLC Configuration and obtain:
* Ptr to shared memory infor struct
* Use this pointer to calculate the value of card->u.c.flags !
*/
mb1->buffer_length = 0;
mb1->command = READ_CHDLC_CONFIGURATION;
err = sdla_exec(mb1) ? mb1->return_code : CMD_TIMEOUT;
if(err != COMMAND_OK) {
if(card->hw.type != SDLA_S514)
enable_irq(card->hw.irq);
chdlc_error(card, err, mb1);
return -EIO;
}
if(card->hw.type == SDLA_S514){
card->u.c.flags = (void *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb1->data)->
ptr_shared_mem_info_struct));
}else{
card->u.c.flags = (void *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb1->data)->
ptr_shared_mem_info_struct % SDLA_WINDOWSIZE));
}
flags = card->u.c.flags;
/* This is for the ports link state */
card->wandev.state = WAN_DUALPORT;
card->u.c.state = WAN_DISCONNECTED;
if (!card->wandev.piggyback){
int err;
/* Perform interrupt testing */
err = intr_test(card);
if(err || (Intr_test_counter < MAX_INTR_TEST_COUNTER)) {
printk(KERN_INFO "%s: Interrupt test failed (%i)\n",
card->devname, Intr_test_counter);
printk(KERN_INFO "%s: Please choose another interrupt\n",
card->devname);
return -EIO;
}
printk(KERN_INFO "%s: Interrupt test passed (%i)\n",
card->devname, Intr_test_counter);
card->configured = 1;
}
if ((card->tty_opt=conf->tty) == WANOPT_YES){
int err;
card->tty_minor = conf->tty_minor;
/* On ASYNC connections internal clocking
* is mandatory */
if ((card->u.c.async_mode = conf->tty_mode)){
card->wandev.clocking = 1;
}
err=wanpipe_tty_init(card);
if (err){
return err;
}
}else{
if (chdlc_set_intr_mode(card, APP_INT_ON_TIMER)){
printk (KERN_INFO "%s: "
"Failed to set interrupt triggers!\n",
card->devname);
return -EIO;
}
/* Mask the Timer interrupt */
flags->interrupt_info_struct.interrupt_permission &=
~APP_INT_ON_TIMER;
}
/* If we are using CHDLC in backup mode, this flag will
* indicate not to look for IP addresses in config_chdlc()*/
card->u.c.backup = conf->backup;
printk(KERN_INFO "\n");
return 0;
}
/******* WAN Device Driver Entry Points *************************************/
/*============================================================================
* Update device status & statistics
* This procedure is called when updating the PROC file system and returns
* various communications statistics. These statistics are accumulated from 3
* different locations:
* 1) The 'if_stats' recorded for the device.
* 2) Communication error statistics on the adapter.
* 3) CHDLC operational statistics on the adapter.
* The board level statistics are read during a timer interrupt. Note that we
* read the error and operational statistics during consecitive timer ticks so
* as to minimize the time that we are inside the interrupt handler.
*
*/
static int update(struct wan_device* wandev)
{
sdla_t* card = wandev->private;
struct net_device* dev;
volatile chdlc_private_area_t* chdlc_priv_area;
SHARED_MEMORY_INFO_STRUCT *flags;
unsigned long timeout;
/* sanity checks */
if((wandev == NULL) || (wandev->private == NULL))
return -EFAULT;
if(wandev->state == WAN_UNCONFIGURED)
return -ENODEV;
/* more sanity checks */
if(!card->u.c.flags)
return -ENODEV;
if(test_bit(PERI_CRIT, (void*)&card->wandev.critical))
return -EAGAIN;
if((dev=card->wandev.dev) == NULL)
return -ENODEV;
if((chdlc_priv_area=dev->priv) == NULL)
return -ENODEV;
flags = card->u.c.flags;
if(chdlc_priv_area->update_comms_stats){
return -EAGAIN;
}
/* we will need 2 timer interrupts to complete the */
/* reading of the statistics */
chdlc_priv_area->update_comms_stats = 2;
flags->interrupt_info_struct.interrupt_permission |= APP_INT_ON_TIMER;
chdlc_priv_area->timer_int_enabled = TMR_INT_ENABLED_UPDATE;
/* wait a maximum of 1 second for the statistics to be updated */
timeout = jiffies;
for(;;) {
if(chdlc_priv_area->update_comms_stats == 0)
break;
if ((jiffies - timeout) > (1 * HZ)){
chdlc_priv_area->update_comms_stats = 0;
chdlc_priv_area->timer_int_enabled &=
~TMR_INT_ENABLED_UPDATE;
return -EAGAIN;
}
}
return 0;
}
/*============================================================================
* Create new logical channel.
* This routine is called by the router when ROUTER_IFNEW IOCTL is being
* handled.
* o parse media- and hardware-specific configuration
* o make sure that a new channel can be created
* o allocate resources, if necessary
* o prepare network device structure for registaration.
*
* Return: 0 o.k.
* < 0 failure (channel will not be created)
*/
static int new_if(struct wan_device* wandev, struct net_device* dev,
wanif_conf_t* conf)
{
sdla_t* card = wandev->private;
chdlc_private_area_t* chdlc_priv_area;
printk(KERN_INFO "%s: Configuring Interface: %s\n",
card->devname, conf->name);
if ((conf->name[0] == '\0') || (strlen(conf->name) > WAN_IFNAME_SZ)) {
printk(KERN_INFO "%s: Invalid interface name!\n",
card->devname);
return -EINVAL;
}
/* allocate and initialize private data */
chdlc_priv_area = kmalloc(sizeof(chdlc_private_area_t), GFP_KERNEL);
if(chdlc_priv_area == NULL)
return -ENOMEM;
memset(chdlc_priv_area, 0, sizeof(chdlc_private_area_t));
chdlc_priv_area->card = card;
chdlc_priv_area->common.sk = NULL;
chdlc_priv_area->common.func = NULL;
/* initialize data */
strcpy(card->u.c.if_name, conf->name);
if(card->wandev.new_if_cnt > 0) {
kfree(chdlc_priv_area);
return -EEXIST;
}
card->wandev.new_if_cnt++;
chdlc_priv_area->TracingEnabled = 0;
chdlc_priv_area->route_status = NO_ROUTE;
chdlc_priv_area->route_removed = 0;
card->u.c.async_mode = conf->async_mode;
/* setup for asynchronous mode */
if(conf->async_mode) {
printk(KERN_INFO "%s: Configuring for asynchronous mode\n",
wandev->name);
if(card->u.c.comm_port == WANOPT_PRI) {
printk(KERN_INFO
"%s:Asynchronous mode on secondary port only\n",
wandev->name);
kfree(chdlc_priv_area);
return -EINVAL;
}
if(strcmp(conf->usedby, "WANPIPE") == 0) {
printk(KERN_INFO
"%s: Running in WANIPE Async Mode\n", wandev->name);
card->u.c.usedby = WANPIPE;
}else{
card->u.c.usedby = API;
}
if(!card->wandev.clocking) {
printk(KERN_INFO
"%s: Asynch. clocking must be 'Internal'\n",
wandev->name);
kfree(chdlc_priv_area);
return -EINVAL;
}
if((card->wandev.bps < MIN_ASY_BAUD_RATE) ||
(card->wandev.bps > MAX_ASY_BAUD_RATE)) {
printk(KERN_INFO "%s: Selected baud rate is invalid.\n",
wandev->name);
printk(KERN_INFO "Must be between %u and %u bps.\n",
MIN_ASY_BAUD_RATE, MAX_ASY_BAUD_RATE);
kfree(chdlc_priv_area);
return -EINVAL;
}
card->u.c.api_options = 0;
if (conf->asy_data_trans == WANOPT_YES) {
card->u.c.api_options |= ASY_RX_DATA_TRANSPARENT;
}
card->u.c.protocol_options = 0;
if (conf->rts_hs_for_receive == WANOPT_YES) {
card->u.c.protocol_options |= ASY_RTS_HS_FOR_RX;
}
if (conf->xon_xoff_hs_for_receive == WANOPT_YES) {
card->u.c.protocol_options |= ASY_XON_XOFF_HS_FOR_RX;
}
if (conf->xon_xoff_hs_for_transmit == WANOPT_YES) {
card->u.c.protocol_options |= ASY_XON_XOFF_HS_FOR_TX;
}
if (conf->dcd_hs_for_transmit == WANOPT_YES) {
card->u.c.protocol_options |= ASY_DCD_HS_FOR_TX;
}
if (conf->cts_hs_for_transmit == WANOPT_YES) {
card->u.c.protocol_options |= ASY_CTS_HS_FOR_TX;
}
card->u.c.tx_bits_per_char = conf->tx_bits_per_char;
card->u.c.rx_bits_per_char = conf->rx_bits_per_char;
card->u.c.stop_bits = conf->stop_bits;
card->u.c.parity = conf->parity;
card->u.c.break_timer = conf->break_timer;
card->u.c.inter_char_timer = conf->inter_char_timer;
card->u.c.rx_complete_length = conf->rx_complete_length;
card->u.c.xon_char = conf->xon_char;
} else { /* setup for synchronous mode */
card->u.c.protocol_options = 0;
if (conf->ignore_dcd == WANOPT_YES){
card->u.c.protocol_options |= IGNORE_DCD_FOR_LINK_STAT;
}
if (conf->ignore_cts == WANOPT_YES){
card->u.c.protocol_options |= IGNORE_CTS_FOR_LINK_STAT;
}
if (conf->ignore_keepalive == WANOPT_YES) {
card->u.c.protocol_options |=
IGNORE_KPALV_FOR_LINK_STAT;
card->u.c.kpalv_tx = MIN_Tx_KPALV_TIMER;
card->u.c.kpalv_rx = MIN_Rx_KPALV_TIMER;
card->u.c.kpalv_err = MIN_KPALV_ERR_TOL;
} else { /* Do not ignore keepalives */
card->u.c.kpalv_tx =
((conf->keepalive_tx_tmr - MIN_Tx_KPALV_TIMER)
>= 0) ?
min_t(unsigned int, conf->keepalive_tx_tmr,MAX_Tx_KPALV_TIMER) :
DEFAULT_Tx_KPALV_TIMER;
card->u.c.kpalv_rx =
((conf->keepalive_rx_tmr - MIN_Rx_KPALV_TIMER)
>= 0) ?
min_t(unsigned int, conf->keepalive_rx_tmr,MAX_Rx_KPALV_TIMER) :
DEFAULT_Rx_KPALV_TIMER;
card->u.c.kpalv_err =
((conf->keepalive_err_margin-MIN_KPALV_ERR_TOL)
>= 0) ?
min_t(unsigned int, conf->keepalive_err_margin,
MAX_KPALV_ERR_TOL) :
DEFAULT_KPALV_ERR_TOL;
}
/* Setup slarp timer to control delay between slarps */
card->u.c.slarp_timer =
((conf->slarp_timer - MIN_SLARP_REQ_TIMER) >= 0) ?
min_t(unsigned int, conf->slarp_timer, MAX_SLARP_REQ_TIMER) :
DEFAULT_SLARP_REQ_TIMER;
if (conf->hdlc_streaming == WANOPT_YES) {
printk(KERN_INFO "%s: Enabling HDLC STREAMING Mode\n",
wandev->name);
card->u.c.protocol_options = HDLC_STREAMING_MODE;
}
if ((chdlc_priv_area->true_if_encoding = conf->true_if_encoding) == WANOPT_YES){
printk(KERN_INFO
"%s: Enabling, true interface type encoding.\n",
card->devname);
}
/* Setup wanpipe as a router (WANPIPE) or as an API */
if( strcmp(conf->usedby, "WANPIPE") == 0) {
printk(KERN_INFO "%s: Running in WANPIPE mode!\n",
wandev->name);
card->u.c.usedby = WANPIPE;
/* Option to bring down the interface when
* the link goes down */
if (conf->if_down){
set_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down);
printk(KERN_INFO
"%s: Dynamic interface configuration enabled\n",
card->devname);
}
} else if( strcmp(conf->usedby, "API") == 0) {
card->u.c.usedby = API;
printk(KERN_INFO "%s: Running in API mode !\n",
wandev->name);
}
}
/* Tells us that if this interface is a
* gateway or not */
if ((chdlc_priv_area->gateway = conf->gateway) == WANOPT_YES){
printk(KERN_INFO "%s: Interface %s is set as a gateway.\n",
card->devname,card->u.c.if_name);
}
/* Get Multicast Information */
chdlc_priv_area->mc = conf->mc;
/* prepare network device data space for registration */
strcpy(dev->name,card->u.c.if_name);
dev->init = &if_init;
dev->priv = chdlc_priv_area;
/* Initialize the polling work routine */
INIT_WORK(&chdlc_priv_area->poll_work, (void*)(void*)chdlc_poll, dev);
/* Initialize the polling delay timer */
init_timer(&chdlc_priv_area->poll_delay_timer);
chdlc_priv_area->poll_delay_timer.data = (unsigned long)dev;
chdlc_priv_area->poll_delay_timer.function = chdlc_poll_delay;
printk(KERN_INFO "\n");
return 0;
}
/****** Network Device Interface ********************************************/
/*============================================================================
* Initialize Linux network interface.
*
* This routine is called only once for each interface, during Linux network
* interface registration. Returning anything but zero will fail interface
* registration.
*/
static int if_init(struct net_device* dev)
{
chdlc_private_area_t* chdlc_priv_area = dev->priv;
sdla_t* card = chdlc_priv_area->card;
struct wan_device* wandev = &card->wandev;
/* Initialize device driver entry points */
dev->open = &if_open;
dev->stop = &if_close;
dev->hard_header = &if_header;
dev->rebuild_header = &if_rebuild_hdr;
dev->hard_start_xmit = &if_send;
dev->get_stats = &if_stats;
dev->tx_timeout = &if_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
/* Initialize media-specific parameters */
dev->flags |= IFF_POINTOPOINT;
dev->flags |= IFF_NOARP;
/* Enable Mulitcasting if user selected */
if (chdlc_priv_area->mc == WANOPT_YES){
dev->flags |= IFF_MULTICAST;
}
if (chdlc_priv_area->true_if_encoding){
dev->type = ARPHRD_HDLC; /* This breaks the tcpdump */
}else{
dev->type = ARPHRD_PPP;
}
dev->mtu = card->wandev.mtu;
/* for API usage, add the API header size to the requested MTU size */
if(card->u.c.usedby == API) {
dev->mtu += sizeof(api_tx_hdr_t);
}
dev->hard_header_len = CHDLC_HDR_LEN;
/* Initialize hardware parameters */
dev->irq = wandev->irq;
dev->dma = wandev->dma;
dev->base_addr = wandev->ioport;
dev->mem_start = wandev->maddr;
dev->mem_end = wandev->maddr + wandev->msize - 1;
/* Set transmit buffer queue length
* If too low packets will not be retransmitted
* by stack.
*/
dev->tx_queue_len = 100;
SET_MODULE_OWNER(dev);
return 0;
}
/*============================================================================
* Open network interface.
* o enable communications and interrupts.
* o prevent module from unloading by incrementing use count
*
* Return 0 if O.k. or errno.
*/
static int if_open(struct net_device* dev)
{
chdlc_private_area_t* chdlc_priv_area = dev->priv;
sdla_t* card = chdlc_priv_area->card;
struct timeval tv;
int err = 0;
/* Only one open per interface is allowed */
if (netif_running(dev))
return -EBUSY;
/* Initialize the work queue entry */
chdlc_priv_area->tq_working=0;
INIT_WORK(&chdlc_priv_area->common.wanpipe_work,
(void *)(void *)chdlc_work, dev);
/* Allocate and initialize BH circular buffer */
/* Add 1 to MAX_BH_BUFF so we don't have test with (MAX_BH_BUFF-1) */
chdlc_priv_area->bh_head = kmalloc((sizeof(bh_data_t)*(MAX_BH_BUFF+1)),GFP_ATOMIC);
memset(chdlc_priv_area->bh_head,0,(sizeof(bh_data_t)*(MAX_BH_BUFF+1)));
atomic_set(&chdlc_priv_area->bh_buff_used, 0);
do_gettimeofday(&tv);
chdlc_priv_area->router_start_time = tv.tv_sec;
netif_start_queue(dev);
wanpipe_open(card);
/* TTY is configured during wanpipe_set_termios
* call, not here */
if (card->tty_opt)
return err;
set_bit(0,&chdlc_priv_area->config_chdlc);
chdlc_priv_area->config_chdlc_timeout=jiffies;
/* Start the CHDLC configuration after 1sec delay.
* This will give the interface initilization time
* to finish its configuration */
mod_timer(&chdlc_priv_area->poll_delay_timer, jiffies + HZ);
return err;
}
/*============================================================================
* Close network interface.
* o if this is the last close, then disable communications and interrupts.
* o reset flags.
*/
static int if_close(struct net_device* dev)
{
chdlc_private_area_t* chdlc_priv_area = dev->priv;
sdla_t* card = chdlc_priv_area->card;
if (chdlc_priv_area->bh_head){
int i;
struct sk_buff *skb;
for (i=0; i<(MAX_BH_BUFF+1); i++){
skb = ((bh_data_t *)&chdlc_priv_area->bh_head[i])->skb;
if (skb != NULL){
dev_kfree_skb_any(skb);
}
}
kfree(chdlc_priv_area->bh_head);
chdlc_priv_area->bh_head=NULL;
}
netif_stop_queue(dev);
wanpipe_close(card);
del_timer(&chdlc_priv_area->poll_delay_timer);
return 0;
}
static void disable_comm (sdla_t *card)
{
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
if (card->u.c.comm_enabled){
chdlc_disable_comm_shutdown (card);
}else{
flags->interrupt_info_struct.interrupt_permission = 0;
}
if (!tty_init_cnt)
return;
if (card->tty_opt){
struct serial_state * state;
if (!(--tty_init_cnt)){
int e1;
serial_driver.refcount=0;
if ((e1 = tty_unregister_driver(&serial_driver)))
printk("SERIAL: failed to unregister serial driver (%d)\n",
e1);
printk(KERN_INFO "%s: Unregistering TTY Driver, Major %i\n",
card->devname,WAN_TTY_MAJOR);
}
card->tty=NULL;
tty_card_map[card->tty_minor]=NULL;
state = &rs_table[card->tty_minor];
memset(state, 0, sizeof(*state));
}
return;
}
/*============================================================================
* Build media header.
*
* The trick here is to put packet type (Ethertype) into 'protocol' field of
* the socket buffer, so that we don't forget it. If packet type is not
* supported, set skb->protocol to 0 and discard packet later.
*
* Return: media header length.
*/
static int if_header(struct sk_buff* skb, struct net_device* dev,
unsigned short type, void* daddr, void* saddr,
unsigned len)
{
skb->protocol = htons(type);
return CHDLC_HDR_LEN;
}
/*============================================================================
* Handle transmit timeout event from netif watchdog
*/
static void if_tx_timeout(struct net_device *dev)
{
chdlc_private_area_t* chan = dev->priv;
sdla_t *card = chan->card;
/* If our device stays busy for at least 5 seconds then we will
* kick start the device by making dev->tbusy = 0. We expect
* that our device never stays busy more than 5 seconds. So this
* is only used as a last resort.
*/
++card->wandev.stats.collisions;
printk (KERN_INFO "%s: Transmit timed out on %s\n", card->devname,dev->name);
netif_wake_queue (dev);
}
/*============================================================================
* Re-build media header.
*
* Return: 1 physical address resolved.
* 0 physical address not resolved
*/
static int if_rebuild_hdr (struct sk_buff *skb)
{
return 1;
}
/*============================================================================
* Send a packet on a network interface.
* o set tbusy flag (marks start of the transmission) to block a timer-based
* transmit from overlapping.
* o check link state. If link is not up, then drop the packet.
* o execute adapter send command.
* o free socket buffer
*
* Return: 0 complete (socket buffer must be freed)
* non-0 packet may be re-transmitted (tbusy must be set)
*
* Notes:
* 1. This routine is called either by the protocol stack or by the "net
* bottom half" (with interrupts enabled).
* 2. Setting tbusy flag will inhibit further transmit requests from the
* protocol stack and can be used for flow control with protocol layer.
*/
static int if_send(struct sk_buff* skb, struct net_device* dev)
{
chdlc_private_area_t *chdlc_priv_area = dev->priv;
sdla_t *card = chdlc_priv_area->card;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
INTERRUPT_INFORMATION_STRUCT *chdlc_int = &flags->interrupt_info_struct;
int udp_type = 0;
unsigned long smp_flags;
int err=0;
netif_stop_queue(dev);
if (skb == NULL){
/* If we get here, some higher layer thinks we've missed an
* tx-done interrupt.
*/
printk(KERN_INFO "%s: interface %s got kicked!\n",
card->devname, dev->name);
netif_wake_queue(dev);
return 0;
}
if (ntohs(skb->protocol) != htons(PVC_PROT)){
/* check the udp packet type */
udp_type = udp_pkt_type(skb, card);
if (udp_type == UDP_CPIPE_TYPE){
if(store_udp_mgmt_pkt(UDP_PKT_FRM_STACK, card, skb, dev,
chdlc_priv_area)){
chdlc_int->interrupt_permission |=
APP_INT_ON_TIMER;
}
netif_start_queue(dev);
return 0;
}
/* check to see if the source IP address is a broadcast or */
/* multicast IP address */
if(chk_bcast_mcast_addr(card, dev, skb)){
++card->wandev.stats.tx_dropped;
dev_kfree_skb_any(skb);
netif_start_queue(dev);
return 0;
}
}
/* Lock the 508 Card: SMP is supported */
if(card->hw.type != SDLA_S514){
s508_lock(card,&smp_flags);
}
if(test_and_set_bit(SEND_CRIT, (void*)&card->wandev.critical)) {
printk(KERN_INFO "%s: Critical in if_send: %lx\n",
card->wandev.name,card->wandev.critical);
++card->wandev.stats.tx_dropped;
netif_start_queue(dev);
goto if_send_exit_crit;
}
if(card->u.c.state != WAN_CONNECTED){
++card->wandev.stats.tx_dropped;
netif_start_queue(dev);
}else if(!skb->protocol){
++card->wandev.stats.tx_errors;
netif_start_queue(dev);
}else {
void* data = skb->data;
unsigned len = skb->len;
unsigned char attr;
/* If it's an API packet pull off the API
* header. Also check that the packet size
* is larger than the API header
*/
if (card->u.c.usedby == API){
api_tx_hdr_t* api_tx_hdr;
/* discard the frame if we are configured for */
/* 'receive only' mode or if there is no data */
if (card->u.c.receive_only ||
(len <= sizeof(api_tx_hdr_t))) {
++card->wandev.stats.tx_dropped;
netif_start_queue(dev);
goto if_send_exit_crit;
}
api_tx_hdr = (api_tx_hdr_t *)data;
attr = api_tx_hdr->attr;
data += sizeof(api_tx_hdr_t);
len -= sizeof(api_tx_hdr_t);
}
if(chdlc_send(card, data, len)) {
netif_stop_queue(dev);
}else{
++card->wandev.stats.tx_packets;
card->wandev.stats.tx_bytes += len;
netif_start_queue(dev);
dev->trans_start = jiffies;
}
}
if_send_exit_crit:
if (!(err=netif_queue_stopped(dev))) {
dev_kfree_skb_any(skb);
}else{
chdlc_priv_area->tick_counter = jiffies;
chdlc_int->interrupt_permission |= APP_INT_ON_TX_FRAME;
}
clear_bit(SEND_CRIT, (void*)&card->wandev.critical);
if(card->hw.type != SDLA_S514){
s508_unlock(card,&smp_flags);
}
return err;
}
/*============================================================================
* Check to see if the packet to be transmitted contains a broadcast or
* multicast source IP address.
*/
static int chk_bcast_mcast_addr(sdla_t *card, struct net_device* dev,
struct sk_buff *skb)
{
u32 src_ip_addr;
u32 broadcast_ip_addr = 0;
struct in_device *in_dev;
/* read the IP source address from the outgoing packet */
src_ip_addr = *(u32 *)(skb->data + 12);
/* read the IP broadcast address for the device */
in_dev = dev->ip_ptr;
if(in_dev != NULL) {
struct in_ifaddr *ifa= in_dev->ifa_list;
if(ifa != NULL)
broadcast_ip_addr = ifa->ifa_broadcast;
else
return 0;
}
/* check if the IP Source Address is a Broadcast address */
if((dev->flags & IFF_BROADCAST) && (src_ip_addr == broadcast_ip_addr)) {
printk(KERN_INFO "%s: Broadcast Source Address silently discarded\n",
card->devname);
return 1;
}
/* check if the IP Source Address is a Multicast address */
if((ntohl(src_ip_addr) >= 0xE0000001) &&
(ntohl(src_ip_addr) <= 0xFFFFFFFE)) {
printk(KERN_INFO "%s: Multicast Source Address silently discarded\n",
card->devname);
return 1;
}
return 0;
}
/*============================================================================
* Reply to UDP Management system.
* Return length of reply.
*/
static int reply_udp( unsigned char *data, unsigned int mbox_len )
{
unsigned short len, udp_length, temp, ip_length;
unsigned long ip_temp;
int even_bound = 0;
chdlc_udp_pkt_t *c_udp_pkt = (chdlc_udp_pkt_t *)data;
/* Set length of packet */
len = sizeof(ip_pkt_t)+
sizeof(udp_pkt_t)+
sizeof(wp_mgmt_t)+
sizeof(cblock_t)+
sizeof(trace_info_t)+
mbox_len;
/* fill in UDP reply */
c_udp_pkt->wp_mgmt.request_reply = UDPMGMT_REPLY;
/* fill in UDP length */
udp_length = sizeof(udp_pkt_t)+
sizeof(wp_mgmt_t)+
sizeof(cblock_t)+
sizeof(trace_info_t)+
mbox_len;
/* put it on an even boundary */
if ( udp_length & 0x0001 ) {
udp_length += 1;
len += 1;
even_bound = 1;
}
temp = (udp_length<<8)|(udp_length>>8);
c_udp_pkt->udp_pkt.udp_length = temp;
/* swap UDP ports */
temp = c_udp_pkt->udp_pkt.udp_src_port;
c_udp_pkt->udp_pkt.udp_src_port =
c_udp_pkt->udp_pkt.udp_dst_port;
c_udp_pkt->udp_pkt.udp_dst_port = temp;
/* add UDP pseudo header */
temp = 0x1100;
*((unsigned short *)(c_udp_pkt->data+mbox_len+even_bound)) = temp;
temp = (udp_length<<8)|(udp_length>>8);
*((unsigned short *)(c_udp_pkt->data+mbox_len+even_bound+2)) = temp;
/* calculate UDP checksum */
c_udp_pkt->udp_pkt.udp_checksum = 0;
c_udp_pkt->udp_pkt.udp_checksum = calc_checksum(&data[UDP_OFFSET],udp_length+UDP_OFFSET);
/* fill in IP length */
ip_length = len;
temp = (ip_length<<8)|(ip_length>>8);
c_udp_pkt->ip_pkt.total_length = temp;
/* swap IP addresses */
ip_temp = c_udp_pkt->ip_pkt.ip_src_address;
c_udp_pkt->ip_pkt.ip_src_address = c_udp_pkt->ip_pkt.ip_dst_address;
c_udp_pkt->ip_pkt.ip_dst_address = ip_temp;
/* fill in IP checksum */
c_udp_pkt->ip_pkt.hdr_checksum = 0;
c_udp_pkt->ip_pkt.hdr_checksum = calc_checksum(data,sizeof(ip_pkt_t));
return len;
} /* reply_udp */
unsigned short calc_checksum (char *data, int len)
{
unsigned short temp;
unsigned long sum=0;
int i;
for( i = 0; i <len; i+=2 ) {
memcpy(&temp,&data[i],2);
sum += (unsigned long)temp;
}
while (sum >> 16 ) {
sum = (sum & 0xffffUL) + (sum >> 16);
}
temp = (unsigned short)sum;
temp = ~temp;
if( temp == 0 )
temp = 0xffff;
return temp;
}
/*============================================================================
* Get ethernet-style interface statistics.
* Return a pointer to struct enet_statistics.
*/
static struct net_device_stats* if_stats(struct net_device* dev)
{
sdla_t *my_card;
chdlc_private_area_t* chdlc_priv_area;
if ((chdlc_priv_area=dev->priv) == NULL)
return NULL;
my_card = chdlc_priv_area->card;
return &my_card->wandev.stats;
}
/****** Cisco HDLC Firmware Interface Functions *******************************/
/*============================================================================
* Read firmware code version.
* Put code version as ASCII string in str.
*/
static int chdlc_read_version (sdla_t* card, char* str)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
int len;
char err;
mb->buffer_length = 0;
mb->command = READ_CHDLC_CODE_VERSION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if(err != COMMAND_OK) {
chdlc_error(card,err,mb);
}
else if (str) { /* is not null */
len = mb->buffer_length;
memcpy(str, mb->data, len);
str[len] = '\0';
}
return (err);
}
/*-----------------------------------------------------------------------------
* Configure CHDLC firmware.
*/
static int chdlc_configure (sdla_t* card, void* data)
{
int err;
CHDLC_MAILBOX_STRUCT *mailbox = card->mbox;
int data_length = sizeof(CHDLC_CONFIGURATION_STRUCT);
mailbox->buffer_length = data_length;
memcpy(mailbox->data, data, data_length);
mailbox->command = SET_CHDLC_CONFIGURATION;
err = sdla_exec(mailbox) ? mailbox->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK) chdlc_error (card, err, mailbox);
return err;
}
/*============================================================================
* Set interrupt mode -- HDLC Version.
*/
static int chdlc_set_intr_mode (sdla_t* card, unsigned mode)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
CHDLC_INT_TRIGGERS_STRUCT* int_data =
(CHDLC_INT_TRIGGERS_STRUCT *)mb->data;
int err;
int_data->CHDLC_interrupt_triggers = mode;
int_data->IRQ = card->hw.irq;
int_data->interrupt_timer = 1;
mb->buffer_length = sizeof(CHDLC_INT_TRIGGERS_STRUCT);
mb->command = SET_CHDLC_INTERRUPT_TRIGGERS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error (card, err, mb);
return err;
}
/*===========================================================
* chdlc_disable_comm_shutdown
*
* Shutdown() disables the communications. We must
* have a sparate functions, because we must not
* call chdlc_error() hander since the private
* area has already been replaced */
static int chdlc_disable_comm_shutdown (sdla_t *card)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
CHDLC_INT_TRIGGERS_STRUCT* int_data =
(CHDLC_INT_TRIGGERS_STRUCT *)mb->data;
int err;
/* Disable Interrutps */
int_data->CHDLC_interrupt_triggers = 0;
int_data->IRQ = card->hw.irq;
int_data->interrupt_timer = 1;
mb->buffer_length = sizeof(CHDLC_INT_TRIGGERS_STRUCT);
mb->command = SET_CHDLC_INTERRUPT_TRIGGERS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
/* Disable Communications */
if (card->u.c.async_mode) {
mb->command = DISABLE_ASY_COMMUNICATIONS;
}else{
mb->command = DISABLE_CHDLC_COMMUNICATIONS;
}
mb->buffer_length = 0;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
card->u.c.comm_enabled = 0;
return 0;
}
/*============================================================================
* Enable communications.
*/
static int chdlc_comm_enable (sdla_t* card)
{
int err;
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
mb->buffer_length = 0;
mb->command = ENABLE_CHDLC_COMMUNICATIONS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error(card, err, mb);
else
card->u.c.comm_enabled = 1;
return err;
}
/*============================================================================
* Read communication error statistics.
*/
static int chdlc_read_comm_err_stats (sdla_t* card)
{
int err;
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
mb->buffer_length = 0;
mb->command = READ_COMMS_ERROR_STATS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error(card,err,mb);
return err;
}
/*============================================================================
* Read CHDLC operational statistics.
*/
static int chdlc_read_op_stats (sdla_t* card)
{
int err;
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
mb->buffer_length = 0;
mb->command = READ_CHDLC_OPERATIONAL_STATS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error(card,err,mb);
return err;
}
/*============================================================================
* Update communications error and general packet statistics.
*/
static int update_comms_stats(sdla_t* card,
chdlc_private_area_t* chdlc_priv_area)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
COMMS_ERROR_STATS_STRUCT* err_stats;
CHDLC_OPERATIONAL_STATS_STRUCT *op_stats;
/* on the first timer interrupt, read the comms error statistics */
if(chdlc_priv_area->update_comms_stats == 2) {
if(chdlc_read_comm_err_stats(card))
return 1;
err_stats = (COMMS_ERROR_STATS_STRUCT *)mb->data;
card->wandev.stats.rx_over_errors =
err_stats->Rx_overrun_err_count;
card->wandev.stats.rx_crc_errors =
err_stats->CRC_err_count;
card->wandev.stats.rx_frame_errors =
err_stats->Rx_abort_count;
card->wandev.stats.rx_fifo_errors =
err_stats->Rx_dis_pri_bfrs_full_count;
card->wandev.stats.rx_missed_errors =
card->wandev.stats.rx_fifo_errors;
card->wandev.stats.tx_aborted_errors =
err_stats->sec_Tx_abort_count;
}
/* on the second timer interrupt, read the operational statistics */
else {
if(chdlc_read_op_stats(card))
return 1;
op_stats = (CHDLC_OPERATIONAL_STATS_STRUCT *)mb->data;
card->wandev.stats.rx_length_errors =
(op_stats->Rx_Data_discard_short_count +
op_stats->Rx_Data_discard_long_count);
}
return 0;
}
/*============================================================================
* Send packet.
* Return: 0 - o.k.
* 1 - no transmit buffers available
*/
static int chdlc_send (sdla_t* card, void* data, unsigned len)
{
CHDLC_DATA_TX_STATUS_EL_STRUCT *txbuf = card->u.c.txbuf;
if (txbuf->opp_flag)
return 1;
sdla_poke(&card->hw, txbuf->ptr_data_bfr, data, len);
txbuf->frame_length = len;
txbuf->opp_flag = 1; /* start transmission */
/* Update transmit buffer control fields */
card->u.c.txbuf = ++txbuf;
if ((void*)txbuf > card->u.c.txbuf_last)
card->u.c.txbuf = card->u.c.txbuf_base;
return 0;
}
/****** Firmware Error Handler **********************************************/
/*============================================================================
* Firmware error handler.
* This routine is called whenever firmware command returns non-zero
* return code.
*
* Return zero if previous command has to be cancelled.
*/
static int chdlc_error (sdla_t *card, int err, CHDLC_MAILBOX_STRUCT *mb)
{
unsigned cmd = mb->command;
switch (err) {
case CMD_TIMEOUT:
printk(KERN_INFO "%s: command 0x%02X timed out!\n",
card->devname, cmd);
break;
case S514_BOTH_PORTS_SAME_CLK_MODE:
if(cmd == SET_CHDLC_CONFIGURATION) {
printk(KERN_INFO
"%s: Configure both ports for the same clock source\n",
card->devname);
break;
}
default:
printk(KERN_INFO "%s: command 0x%02X returned 0x%02X!\n",
card->devname, cmd, err);
}
return 0;
}
/********** Bottom Half Handlers ********************************************/
/* NOTE: There is no API, BH support for Kernels lower than 2.2.X.
* DO NOT INSERT ANY CODE HERE, NOTICE THE
* PREPROCESSOR STATEMENT ABOVE, UNLESS YOU KNOW WHAT YOU ARE
* DOING */
static void chdlc_work(struct net_device * dev)
{
chdlc_private_area_t* chan = dev->priv;
sdla_t *card = chan->card;
struct sk_buff *skb;
if (atomic_read(&chan->bh_buff_used) == 0){
clear_bit(0, &chan->tq_working);
return;
}
while (atomic_read(&chan->bh_buff_used)){
skb = ((bh_data_t *)&chan->bh_head[chan->bh_read])->skb;
if (skb != NULL){
if (chan->common.sk == NULL || chan->common.func == NULL){
++card->wandev.stats.rx_dropped;
dev_kfree_skb_any(skb);
chdlc_work_cleanup(dev);
continue;
}
if (chan->common.func(skb,dev,chan->common.sk) != 0){
/* Sock full cannot send, queue us for another
* try */
atomic_set(&chan->common.receive_block,1);
return;
}else{
chdlc_work_cleanup(dev);
}
}else{
chdlc_work_cleanup(dev);
}
}
clear_bit(0, &chan->tq_working);
return;
}
static int chdlc_work_cleanup(struct net_device *dev)
{
chdlc_private_area_t* chan = dev->priv;
((bh_data_t *)&chan->bh_head[chan->bh_read])->skb = NULL;
if (chan->bh_read == MAX_BH_BUFF){
chan->bh_read=0;
}else{
++chan->bh_read;
}
atomic_dec(&chan->bh_buff_used);
return 0;
}
static int bh_enqueue(struct net_device *dev, struct sk_buff *skb)
{
/* Check for full */
chdlc_private_area_t* chan = dev->priv;
sdla_t *card = chan->card;
if (atomic_read(&chan->bh_buff_used) == (MAX_BH_BUFF+1)){
++card->wandev.stats.rx_dropped;
dev_kfree_skb_any(skb);
return 1;
}
((bh_data_t *)&chan->bh_head[chan->bh_write])->skb = skb;
if (chan->bh_write == MAX_BH_BUFF){
chan->bh_write=0;
}else{
++chan->bh_write;
}
atomic_inc(&chan->bh_buff_used);
return 0;
}
/* END OF API BH Support */
/****** Interrupt Handlers **************************************************/
/*============================================================================
* Cisco HDLC interrupt service routine.
*/
static void wpc_isr (sdla_t* card)
{
struct net_device* dev;
SHARED_MEMORY_INFO_STRUCT* flags = NULL;
int i;
sdla_t *my_card;
/* Check for which port the interrupt has been generated
* Since Secondary Port is piggybacking on the Primary
* the check must be done here.
*/
flags = card->u.c.flags;
if (!flags->interrupt_info_struct.interrupt_type){
/* Check for a second port (piggybacking) */
if ((my_card = card->next)){
flags = my_card->u.c.flags;
if (flags->interrupt_info_struct.interrupt_type){
card = my_card;
card->isr(card);
return;
}
}
}
flags = card->u.c.flags;
card->in_isr = 1;
dev = card->wandev.dev;
/* If we get an interrupt with no network device, stop the interrupts
* and issue an error */
if (!card->tty_opt && !dev &&
flags->interrupt_info_struct.interrupt_type !=
COMMAND_COMPLETE_APP_INT_PEND){
goto isr_done;
}
/* if critical due to peripheral operations
* ie. update() or getstats() then reset the interrupt and
* wait for the board to retrigger.
*/
if(test_bit(PERI_CRIT, (void*)&card->wandev.critical)) {
printk(KERN_INFO "ISR CRIT TO PERI\n");
goto isr_done;
}
/* On a 508 Card, if critical due to if_send
* Major Error !!! */
if(card->hw.type != SDLA_S514) {
if(test_bit(SEND_CRIT, (void*)&card->wandev.critical)) {
printk(KERN_INFO "%s: Critical while in ISR: %lx\n",
card->devname, card->wandev.critical);
card->in_isr = 0;
flags->interrupt_info_struct.interrupt_type = 0;
return;
}
}
switch(flags->interrupt_info_struct.interrupt_type) {
case RX_APP_INT_PEND: /* 0x01: receive interrupt */
rx_intr(card);
break;
case TX_APP_INT_PEND: /* 0x02: transmit interrupt */
flags->interrupt_info_struct.interrupt_permission &=
~APP_INT_ON_TX_FRAME;
if (card->tty_opt){
wanpipe_tty_trigger_poll(card);
break;
}
if (dev && netif_queue_stopped(dev)){
if (card->u.c.usedby == API){
netif_start_queue(dev);
wakeup_sk_bh(dev);
}else{
netif_wake_queue(dev);
}
}
break;
case COMMAND_COMPLETE_APP_INT_PEND:/* 0x04: cmd cplt */
++ Intr_test_counter;
break;
case CHDLC_EXCEP_COND_APP_INT_PEND: /* 0x20 */
process_chdlc_exception(card);
break;
case GLOBAL_EXCEP_COND_APP_INT_PEND:
process_global_exception(card);
break;
case TIMER_APP_INT_PEND:
timer_intr(card);
break;
default:
printk(KERN_INFO "%s: spurious interrupt 0x%02X!\n",
card->devname,
flags->interrupt_info_struct.interrupt_type);
printk(KERN_INFO "Code name: ");
for(i = 0; i < 4; i ++)
printk(KERN_INFO "%c",
flags->global_info_struct.codename[i]);
printk(KERN_INFO "\nCode version: ");
for(i = 0; i < 4; i ++)
printk(KERN_INFO "%c",
flags->global_info_struct.codeversion[i]);
printk(KERN_INFO "\n");
break;
}
isr_done:
card->in_isr = 0;
flags->interrupt_info_struct.interrupt_type = 0;
return;
}
/*============================================================================
* Receive interrupt handler.
*/
static void rx_intr (sdla_t* card)
{
struct net_device *dev;
chdlc_private_area_t *chdlc_priv_area;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
CHDLC_DATA_RX_STATUS_EL_STRUCT *rxbuf = card->u.c.rxmb;
struct sk_buff *skb;
unsigned len;
unsigned addr = rxbuf->ptr_data_bfr;
void *buf;
int i,udp_type;
if (rxbuf->opp_flag != 0x01) {
printk(KERN_INFO
"%s: corrupted Rx buffer @ 0x%X, flag = 0x%02X!\n",
card->devname, (unsigned)rxbuf, rxbuf->opp_flag);
printk(KERN_INFO "Code name: ");
for(i = 0; i < 4; i ++)
printk(KERN_INFO "%c",
flags->global_info_struct.codename[i]);
printk(KERN_INFO "\nCode version: ");
for(i = 0; i < 4; i ++)
printk(KERN_INFO "%c",
flags->global_info_struct.codeversion[i]);
printk(KERN_INFO "\n");
/* Bug Fix: Mar 6 2000
* If we get a corrupted mailbox, it measn that driver
* is out of sync with the firmware. There is no recovery.
* If we don't turn off all interrupts for this card
* the machine will crash.
*/
printk(KERN_INFO "%s: Critical router failure ...!!!\n", card->devname);
printk(KERN_INFO "Please contact Sangoma Technologies !\n");
chdlc_set_intr_mode(card,0);
return;
}
len = rxbuf->frame_length;
if (card->tty_opt){
if (rxbuf->error_flag){
goto rx_exit;
}
if (len <= CRC_LENGTH){
goto rx_exit;
}
if (!card->u.c.async_mode){
len -= CRC_LENGTH;
}
wanpipe_tty_receive(card,addr,len);
goto rx_exit;
}
dev = card->wandev.dev;
if (!dev){
goto rx_exit;
}
if (!netif_running(dev))
goto rx_exit;
chdlc_priv_area = dev->priv;
/* Allocate socket buffer */
skb = dev_alloc_skb(len);
if (skb == NULL) {
printk(KERN_INFO "%s: no socket buffers available!\n",
card->devname);
++card->wandev.stats.rx_dropped;
goto rx_exit;
}
/* Copy data to the socket buffer */
if((addr + len) > card->u.c.rx_top + 1) {
unsigned tmp = card->u.c.rx_top - addr + 1;
buf = skb_put(skb, tmp);
sdla_peek(&card->hw, addr, buf, tmp);
addr = card->u.c.rx_base;
len -= tmp;
}
buf = skb_put(skb, len);
sdla_peek(&card->hw, addr, buf, len);
skb->protocol = htons(ETH_P_IP);
card->wandev.stats.rx_packets ++;
card->wandev.stats.rx_bytes += skb->len;
udp_type = udp_pkt_type( skb, card );
if(udp_type == UDP_CPIPE_TYPE) {
if(store_udp_mgmt_pkt(UDP_PKT_FRM_NETWORK,
card, skb, dev, chdlc_priv_area)) {
flags->interrupt_info_struct.
interrupt_permission |=
APP_INT_ON_TIMER;
}
} else if(card->u.c.usedby == API) {
api_rx_hdr_t* api_rx_hdr;
skb_push(skb, sizeof(api_rx_hdr_t));
api_rx_hdr = (api_rx_hdr_t*)&skb->data[0x00];
api_rx_hdr->error_flag = rxbuf->error_flag;
api_rx_hdr->time_stamp = rxbuf->time_stamp;
skb->protocol = htons(PVC_PROT);
skb->mac.raw = skb->data;
skb->dev = dev;
skb->pkt_type = WAN_PACKET_DATA;
bh_enqueue(dev, skb);
if (!test_and_set_bit(0,&chdlc_priv_area->tq_working))
wanpipe_queue_work(&chdlc_priv_area->common.wanpipe_work);
}else{
/* FIXME: we should check to see if the received packet is a
multicast packet so that we can increment the multicast
statistic
++ chdlc_priv_area->if_stats.multicast;
*/
/* Pass it up the protocol stack */
skb->dev = dev;
skb->mac.raw = skb->data;
netif_rx(skb);
dev->last_rx = jiffies;
}
rx_exit:
/* Release buffer element and calculate a pointer to the next one */
rxbuf->opp_flag = 0x00;
card->u.c.rxmb = ++ rxbuf;
if((void*)rxbuf > card->u.c.rxbuf_last){
card->u.c.rxmb = card->u.c.rxbuf_base;
}
}
/*============================================================================
* Timer interrupt handler.
* The timer interrupt is used for two purposes:
* 1) Processing udp calls from 'cpipemon'.
* 2) Reading board-level statistics for updating the proc file system.
*/
void timer_intr(sdla_t *card)
{
struct net_device* dev;
chdlc_private_area_t* chdlc_priv_area = NULL;
SHARED_MEMORY_INFO_STRUCT* flags = NULL;
if ((dev = card->wandev.dev)==NULL){
flags = card->u.c.flags;
flags->interrupt_info_struct.interrupt_permission &=
~APP_INT_ON_TIMER;
return;
}
chdlc_priv_area = dev->priv;
if (chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_CONFIG) {
if (!config_chdlc(card)){
chdlc_priv_area->timer_int_enabled &= ~TMR_INT_ENABLED_CONFIG;
}
}
/* process a udp call if pending */
if(chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_UDP) {
process_udp_mgmt_pkt(card, dev,
chdlc_priv_area);
chdlc_priv_area->timer_int_enabled &= ~TMR_INT_ENABLED_UDP;
}
/* read the communications statistics if required */
if(chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_UPDATE) {
update_comms_stats(card, chdlc_priv_area);
if(!(-- chdlc_priv_area->update_comms_stats)) {
chdlc_priv_area->timer_int_enabled &=
~TMR_INT_ENABLED_UPDATE;
}
}
/* only disable the timer interrupt if there are no udp or statistic */
/* updates pending */
if(!chdlc_priv_area->timer_int_enabled) {
flags = card->u.c.flags;
flags->interrupt_info_struct.interrupt_permission &=
~APP_INT_ON_TIMER;
}
}
/*------------------------------------------------------------------------------
Miscellaneous Functions
- set_chdlc_config() used to set configuration options on the board
------------------------------------------------------------------------------*/
static int set_chdlc_config(sdla_t* card)
{
CHDLC_CONFIGURATION_STRUCT cfg;
memset(&cfg, 0, sizeof(CHDLC_CONFIGURATION_STRUCT));
if(card->wandev.clocking){
cfg.baud_rate = card->wandev.bps;
}
cfg.line_config_options = (card->wandev.interface == WANOPT_RS232) ?
INTERFACE_LEVEL_RS232 : INTERFACE_LEVEL_V35;
cfg.modem_config_options = 0;
cfg.modem_status_timer = 100;
cfg.CHDLC_protocol_options = card->u.c.protocol_options;
if (card->tty_opt){
cfg.CHDLC_API_options = DISCARD_RX_ERROR_FRAMES;
}
cfg.percent_data_buffer_for_Tx = (card->u.c.receive_only) ? 0 : 50;
cfg.CHDLC_statistics_options = (CHDLC_TX_DATA_BYTE_COUNT_STAT |
CHDLC_RX_DATA_BYTE_COUNT_STAT);
if (card->tty_opt){
card->wandev.mtu = TTY_CHDLC_MAX_MTU;
}
cfg.max_CHDLC_data_field_length = card->wandev.mtu;
cfg.transmit_keepalive_timer = card->u.c.kpalv_tx;
cfg.receive_keepalive_timer = card->u.c.kpalv_rx;
cfg.keepalive_error_tolerance = card->u.c.kpalv_err;
cfg.SLARP_request_timer = card->u.c.slarp_timer;
if (cfg.SLARP_request_timer) {
cfg.IP_address = 0;
cfg.IP_netmask = 0;
}else if (card->wandev.dev){
struct net_device *dev = card->wandev.dev;
chdlc_private_area_t *chdlc_priv_area = dev->priv;
struct in_device *in_dev = dev->ip_ptr;
if(in_dev != NULL) {
struct in_ifaddr *ifa = in_dev->ifa_list;
if (ifa != NULL ) {
cfg.IP_address = ntohl(ifa->ifa_local);
cfg.IP_netmask = ntohl(ifa->ifa_mask);
chdlc_priv_area->IP_address = ntohl(ifa->ifa_local);
chdlc_priv_area->IP_netmask = ntohl(ifa->ifa_mask);
}
}
/* FIXME: We must re-think this message in next release
if((cfg.IP_address & 0x000000FF) > 2) {
printk(KERN_WARNING "\n");
printk(KERN_WARNING " WARNING:%s configured with an\n",
card->devname);
printk(KERN_WARNING " invalid local IP address.\n");
printk(KERN_WARNING " Slarp pragmatics will fail.\n");
printk(KERN_WARNING " IP address should be of the\n");
printk(KERN_WARNING " format A.B.C.1 or A.B.C.2.\n");
}
*/
}
return chdlc_configure(card, &cfg);
}
/*-----------------------------------------------------------------------------
set_asy_config() used to set asynchronous configuration options on the board
------------------------------------------------------------------------------*/
static int set_asy_config(sdla_t* card)
{
ASY_CONFIGURATION_STRUCT cfg;
CHDLC_MAILBOX_STRUCT *mailbox = card->mbox;
int err;
memset(&cfg, 0, sizeof(ASY_CONFIGURATION_STRUCT));
if(card->wandev.clocking)
cfg.baud_rate = card->wandev.bps;
cfg.line_config_options = (card->wandev.interface == WANOPT_RS232) ?
INTERFACE_LEVEL_RS232 : INTERFACE_LEVEL_V35;
cfg.modem_config_options = 0;
cfg.asy_API_options = card->u.c.api_options;
cfg.asy_protocol_options = card->u.c.protocol_options;
cfg.Tx_bits_per_char = card->u.c.tx_bits_per_char;
cfg.Rx_bits_per_char = card->u.c.rx_bits_per_char;
cfg.stop_bits = card->u.c.stop_bits;
cfg.parity = card->u.c.parity;
cfg.break_timer = card->u.c.break_timer;
cfg.asy_Rx_inter_char_timer = card->u.c.inter_char_timer;
cfg.asy_Rx_complete_length = card->u.c.rx_complete_length;
cfg.XON_char = card->u.c.xon_char;
cfg.XOFF_char = card->u.c.xoff_char;
cfg.asy_statistics_options = (CHDLC_TX_DATA_BYTE_COUNT_STAT |
CHDLC_RX_DATA_BYTE_COUNT_STAT);
mailbox->buffer_length = sizeof(ASY_CONFIGURATION_STRUCT);
memcpy(mailbox->data, &cfg, mailbox->buffer_length);
mailbox->command = SET_ASY_CONFIGURATION;
err = sdla_exec(mailbox) ? mailbox->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error (card, err, mailbox);
return err;
}
/*============================================================================
* Enable asynchronous communications.
*/
static int asy_comm_enable (sdla_t* card)
{
int err;
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
mb->buffer_length = 0;
mb->command = ENABLE_ASY_COMMUNICATIONS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK && card->wandev.dev)
chdlc_error(card, err, mb);
if (!err)
card->u.c.comm_enabled = 1;
return err;
}
/*============================================================================
* Process global exception condition
*/
static int process_global_exception(sdla_t *card)
{
CHDLC_MAILBOX_STRUCT* mbox = card->mbox;
int err;
mbox->buffer_length = 0;
mbox->command = READ_GLOBAL_EXCEPTION_CONDITION;
err = sdla_exec(mbox) ? mbox->return_code : CMD_TIMEOUT;
if(err != CMD_TIMEOUT ){
switch(mbox->return_code) {
case EXCEP_MODEM_STATUS_CHANGE:
printk(KERN_INFO "%s: Modem status change\n",
card->devname);
switch(mbox->data[0] & (DCD_HIGH | CTS_HIGH)) {
case (DCD_HIGH):
printk(KERN_INFO "%s: DCD high, CTS low\n",card->devname);
break;
case (CTS_HIGH):
printk(KERN_INFO "%s: DCD low, CTS high\n",card->devname);
break;
case ((DCD_HIGH | CTS_HIGH)):
printk(KERN_INFO "%s: DCD high, CTS high\n",card->devname);
break;
default:
printk(KERN_INFO "%s: DCD low, CTS low\n",card->devname);
break;
}
break;
case EXCEP_TRC_DISABLED:
printk(KERN_INFO "%s: Line trace disabled\n",
card->devname);
break;
case EXCEP_IRQ_TIMEOUT:
printk(KERN_INFO "%s: IRQ timeout occurred\n",
card->devname);
break;
case 0x17:
if (card->tty_opt){
if (card->tty && card->tty_open){
printk(KERN_INFO
"%s: Modem Hangup Exception: Hanging Up!\n",
card->devname);
tty_hangup(card->tty);
}
break;
}
/* If TTY is not used just drop throught */
default:
printk(KERN_INFO "%s: Global exception %x\n",
card->devname, mbox->return_code);
break;
}
}
return 0;
}
/*============================================================================
* Process chdlc exception condition
*/
static int process_chdlc_exception(sdla_t *card)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
int err;
mb->buffer_length = 0;
mb->command = READ_CHDLC_EXCEPTION_CONDITION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if(err != CMD_TIMEOUT) {
switch (err) {
case EXCEP_LINK_ACTIVE:
port_set_state(card, WAN_CONNECTED);
trigger_chdlc_poll(card->wandev.dev);
break;
case EXCEP_LINK_INACTIVE_MODEM:
port_set_state(card, WAN_DISCONNECTED);
unconfigure_ip(card);
trigger_chdlc_poll(card->wandev.dev);
break;
case EXCEP_LINK_INACTIVE_KPALV:
port_set_state(card, WAN_DISCONNECTED);
printk(KERN_INFO "%s: Keepalive timer expired.\n",
card->devname);
unconfigure_ip(card);
trigger_chdlc_poll(card->wandev.dev);
break;
case EXCEP_IP_ADDRESS_DISCOVERED:
if (configure_ip(card))
return -1;
break;
case EXCEP_LOOPBACK_CONDITION:
printk(KERN_INFO "%s: Loopback Condition Detected.\n",
card->devname);
break;
case NO_CHDLC_EXCEP_COND_TO_REPORT:
printk(KERN_INFO "%s: No exceptions reported.\n",
card->devname);
break;
}
}
return 0;
}
/*============================================================================
* Configure IP from SLARP negotiation
* This adds dynamic routes when SLARP has provided valid addresses
*/
static int configure_ip (sdla_t* card)
{
struct net_device *dev = card->wandev.dev;
chdlc_private_area_t *chdlc_priv_area;
char err;
if (!dev)
return 0;
chdlc_priv_area = dev->priv;
/* set to discover */
if(card->u.c.slarp_timer != 0x00) {
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
CHDLC_CONFIGURATION_STRUCT *cfg;
mb->buffer_length = 0;
mb->command = READ_CHDLC_CONFIGURATION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if(err != COMMAND_OK) {
chdlc_error(card,err,mb);
return -1;
}
cfg = (CHDLC_CONFIGURATION_STRUCT *)mb->data;
chdlc_priv_area->IP_address = cfg->IP_address;
chdlc_priv_area->IP_netmask = cfg->IP_netmask;
/* Set flag to add route */
chdlc_priv_area->route_status = ADD_ROUTE;
/* The idea here is to add the route in the poll routine.
This way, we aren't in interrupt context when adding routes */
trigger_chdlc_poll(dev);
}
return 0;
}
/*============================================================================
* Un-Configure IP negotiated by SLARP
* This removes dynamic routes when the link becomes inactive.
*/
static int unconfigure_ip (sdla_t* card)
{
struct net_device *dev = card->wandev.dev;
chdlc_private_area_t *chdlc_priv_area;
if (!dev)
return 0;
chdlc_priv_area= dev->priv;
if (chdlc_priv_area->route_status == ROUTE_ADDED) {
/* Note: If this function is called, the
* port state has been DISCONNECTED. This state
* change will trigger a poll_disconnected
* function, that will check for this condition.
*/
chdlc_priv_area->route_status = REMOVE_ROUTE;
}
return 0;
}
/*============================================================================
* Routine to add/remove routes
* Called like a polling routine when Routes are flagged to be added/removed.
*/
static void process_route (sdla_t *card)
{
struct net_device *dev = card->wandev.dev;
unsigned char port_num;
chdlc_private_area_t *chdlc_priv_area = NULL;
u32 local_IP_addr = 0;
u32 remote_IP_addr = 0;
u32 IP_netmask, IP_addr;
int err = 0;
struct in_device *in_dev;
mm_segment_t fs;
struct ifreq if_info;
struct sockaddr_in *if_data1, *if_data2;
chdlc_priv_area = dev->priv;
port_num = card->u.c.comm_port;
/* Bug Fix Mar 16 2000
* AND the IP address to the Mask before checking
* the last two bits. */
if((chdlc_priv_area->route_status == ADD_ROUTE) &&
((chdlc_priv_area->IP_address & ~chdlc_priv_area->IP_netmask) > 2)) {
printk(KERN_INFO "%s: Dynamic route failure.\n",card->devname);
if(card->u.c.slarp_timer) {
u32 addr_net = htonl(chdlc_priv_area->IP_address);
printk(KERN_INFO "%s: Bad IP address %u.%u.%u.%u received\n",
card->devname,
NIPQUAD(addr_net));
printk(KERN_INFO "%s: from remote station.\n",
card->devname);
}else{
u32 addr_net = htonl(chdlc_priv_area->IP_address);
printk(KERN_INFO "%s: Bad IP address %u.%u.%u.%u issued\n",
card->devname,
NIPQUAD(addr_net));
printk(KERN_INFO "%s: to remote station. Local\n",
card->devname);
printk(KERN_INFO "%s: IP address must be A.B.C.1\n",
card->devname);
printk(KERN_INFO "%s: or A.B.C.2.\n",card->devname);
}
/* remove the route due to the IP address error condition */
chdlc_priv_area->route_status = REMOVE_ROUTE;
err = 1;
}
/* If we are removing a route with bad IP addressing, then use the */
/* locally configured IP addresses */
if((chdlc_priv_area->route_status == REMOVE_ROUTE) && err) {
/* do not remove a bad route that has already been removed */
if(chdlc_priv_area->route_removed) {
return;
}
in_dev = dev->ip_ptr;
if(in_dev != NULL) {
struct in_ifaddr *ifa = in_dev->ifa_list;
if (ifa != NULL ) {
local_IP_addr = ifa->ifa_local;
IP_netmask = ifa->ifa_mask;
}
}
}else{
/* According to Cisco HDLC, if the point-to-point address is
A.B.C.1, then we are the opposite (A.B.C.2), and vice-versa.
*/
IP_netmask = ntohl(chdlc_priv_area->IP_netmask);
remote_IP_addr = ntohl(chdlc_priv_area->IP_address);
/* If Netmask is 255.255.255.255 the local address
* calculation will fail. Default it back to 255.255.255.0 */
if (IP_netmask == 0xffffffff)
IP_netmask &= 0x00ffffff;
/* Bug Fix Mar 16 2000
* AND the Remote IP address with IP netmask, instead
* of static netmask of 255.255.255.0 */
local_IP_addr = (remote_IP_addr & IP_netmask) +
(~remote_IP_addr & ntohl(0x0003));
if(!card->u.c.slarp_timer) {
IP_addr = local_IP_addr;
local_IP_addr = remote_IP_addr;
remote_IP_addr = IP_addr;
}
}
fs = get_fs(); /* Save file system */
set_fs(get_ds()); /* Get user space block */
/* Setup a structure for adding/removing routes */
memset(&if_info, 0, sizeof(if_info));
strcpy(if_info.ifr_name, dev->name);
switch (chdlc_priv_area->route_status) {
case ADD_ROUTE:
if(!card->u.c.slarp_timer) {
if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr;
if_data2->sin_addr.s_addr = remote_IP_addr;
if_data2->sin_family = AF_INET;
err = devinet_ioctl(SIOCSIFDSTADDR, &if_info);
} else {
if_data1 = (struct sockaddr_in *)&if_info.ifr_addr;
if_data1->sin_addr.s_addr = local_IP_addr;
if_data1->sin_family = AF_INET;
if(!(err = devinet_ioctl(SIOCSIFADDR, &if_info))){
if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr;
if_data2->sin_addr.s_addr = remote_IP_addr;
if_data2->sin_family = AF_INET;
err = devinet_ioctl(SIOCSIFDSTADDR, &if_info);
}
}
if(err) {
printk(KERN_INFO "%s: Add route %u.%u.%u.%u failed (%d)\n",
card->devname, NIPQUAD(remote_IP_addr), err);
} else {
((chdlc_private_area_t *)dev->priv)->route_status = ROUTE_ADDED;
printk(KERN_INFO "%s: Dynamic route added.\n",
card->devname);
printk(KERN_INFO "%s: Local IP addr : %u.%u.%u.%u\n",
card->devname, NIPQUAD(local_IP_addr));
printk(KERN_INFO "%s: Remote IP addr: %u.%u.%u.%u\n",
card->devname, NIPQUAD(remote_IP_addr));
chdlc_priv_area->route_removed = 0;
}
break;
case REMOVE_ROUTE:
/* Change the local ip address of the interface to 0.
* This will also delete the destination route.
*/
if(!card->u.c.slarp_timer) {
if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr;
if_data2->sin_addr.s_addr = 0;
if_data2->sin_family = AF_INET;
err = devinet_ioctl(SIOCSIFDSTADDR, &if_info);
} else {
if_data1 = (struct sockaddr_in *)&if_info.ifr_addr;
if_data1->sin_addr.s_addr = 0;
if_data1->sin_family = AF_INET;
err = devinet_ioctl(SIOCSIFADDR,&if_info);
}
if(err) {
printk(KERN_INFO
"%s: Remove route %u.%u.%u.%u failed, (err %d)\n",
card->devname, NIPQUAD(remote_IP_addr),
err);
} else {
((chdlc_private_area_t *)dev->priv)->route_status =
NO_ROUTE;
printk(KERN_INFO "%s: Dynamic route removed: %u.%u.%u.%u\n",
card->devname, NIPQUAD(local_IP_addr));
chdlc_priv_area->route_removed = 1;
}
break;
}
set_fs(fs); /* Restore file system */
}
/*=============================================================================
* Store a UDP management packet for later processing.
*/
static int store_udp_mgmt_pkt(char udp_pkt_src, sdla_t* card,
struct sk_buff *skb, struct net_device* dev,
chdlc_private_area_t* chdlc_priv_area)
{
int udp_pkt_stored = 0;
if(!chdlc_priv_area->udp_pkt_lgth &&
(skb->len <= MAX_LGTH_UDP_MGNT_PKT)) {
chdlc_priv_area->udp_pkt_lgth = skb->len;
chdlc_priv_area->udp_pkt_src = udp_pkt_src;
memcpy(chdlc_priv_area->udp_pkt_data, skb->data, skb->len);
chdlc_priv_area->timer_int_enabled = TMR_INT_ENABLED_UDP;
udp_pkt_stored = 1;
}
if(udp_pkt_src == UDP_PKT_FRM_STACK){
dev_kfree_skb_any(skb);
}else{
dev_kfree_skb_any(skb);
}
return(udp_pkt_stored);
}
/*=============================================================================
* Process UDP management packet.
*/
static int process_udp_mgmt_pkt(sdla_t* card, struct net_device* dev,
chdlc_private_area_t* chdlc_priv_area )
{
unsigned char *buf;
unsigned int frames, len;
struct sk_buff *new_skb;
unsigned short buffer_length, real_len;
unsigned long data_ptr;
unsigned data_length;
int udp_mgmt_req_valid = 1;
CHDLC_MAILBOX_STRUCT *mb = card->mbox;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
chdlc_udp_pkt_t *chdlc_udp_pkt;
struct timeval tv;
int err;
char ut_char;
chdlc_udp_pkt = (chdlc_udp_pkt_t *) chdlc_priv_area->udp_pkt_data;
if(chdlc_priv_area->udp_pkt_src == UDP_PKT_FRM_NETWORK){
/* Only these commands are support for remote debugging.
* All others are not */
switch(chdlc_udp_pkt->cblock.command) {
case READ_GLOBAL_STATISTICS:
case READ_MODEM_STATUS:
case READ_CHDLC_LINK_STATUS:
case CPIPE_ROUTER_UP_TIME:
case READ_COMMS_ERROR_STATS:
case READ_CHDLC_OPERATIONAL_STATS:
/* These two commands are executed for
* each request */
case READ_CHDLC_CONFIGURATION:
case READ_CHDLC_CODE_VERSION:
udp_mgmt_req_valid = 1;
break;
default:
udp_mgmt_req_valid = 0;
break;
}
}
if(!udp_mgmt_req_valid) {
/* set length to 0 */
chdlc_udp_pkt->cblock.buffer_length = 0;
/* set return code */
chdlc_udp_pkt->cblock.return_code = 0xCD;
if (net_ratelimit()){
printk(KERN_INFO
"%s: Warning, Illegal UDP command attempted from network: %x\n",
card->devname,chdlc_udp_pkt->cblock.command);
}
} else {
unsigned long trace_status_cfg_addr = 0;
TRACE_STATUS_EL_CFG_STRUCT trace_cfg_struct;
TRACE_STATUS_ELEMENT_STRUCT trace_element_struct;
switch(chdlc_udp_pkt->cblock.command) {
case CPIPE_ENABLE_TRACING:
if (!chdlc_priv_area->TracingEnabled) {
/* OPERATE_DATALINE_MONITOR */
mb->buffer_length = sizeof(LINE_TRACE_CONFIG_STRUCT);
mb->command = SET_TRACE_CONFIGURATION;
((LINE_TRACE_CONFIG_STRUCT *)mb->data)->
trace_config = TRACE_ACTIVE;
/* Trace delay mode is not used because it slows
down transfer and results in a standoff situation
when there is a lot of data */
/* Configure the Trace based on user inputs */
((LINE_TRACE_CONFIG_STRUCT *)mb->data)->trace_config |=
chdlc_udp_pkt->data[0];
((LINE_TRACE_CONFIG_STRUCT *)mb->data)->
trace_deactivation_timer = 4000;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK) {
chdlc_error(card,err,mb);
card->TracingEnabled = 0;
chdlc_udp_pkt->cblock.return_code = err;
mb->buffer_length = 0;
break;
}
/* Get the base address of the trace element list */
mb->buffer_length = 0;
mb->command = READ_TRACE_CONFIGURATION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK) {
chdlc_error(card,err,mb);
chdlc_priv_area->TracingEnabled = 0;
chdlc_udp_pkt->cblock.return_code = err;
mb->buffer_length = 0;
break;
}
trace_status_cfg_addr =((LINE_TRACE_CONFIG_STRUCT *)
mb->data) -> ptr_trace_stat_el_cfg_struct;
sdla_peek(&card->hw, trace_status_cfg_addr,
&trace_cfg_struct, sizeof(trace_cfg_struct));
chdlc_priv_area->start_trace_addr = trace_cfg_struct.
base_addr_trace_status_elements;
chdlc_priv_area->number_trace_elements =
trace_cfg_struct.number_trace_status_elements;
chdlc_priv_area->end_trace_addr = (unsigned long)
((TRACE_STATUS_ELEMENT_STRUCT *)
chdlc_priv_area->start_trace_addr +
(chdlc_priv_area->number_trace_elements - 1));
chdlc_priv_area->base_addr_trace_buffer =
trace_cfg_struct.base_addr_trace_buffer;
chdlc_priv_area->end_addr_trace_buffer =
trace_cfg_struct.end_addr_trace_buffer;
chdlc_priv_area->curr_trace_addr =
trace_cfg_struct.next_trace_element_to_use;
chdlc_priv_area->available_buffer_space = 2000 -
sizeof(ip_pkt_t) -
sizeof(udp_pkt_t) -
sizeof(wp_mgmt_t) -
sizeof(cblock_t) -
sizeof(trace_info_t);
}
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
mb->buffer_length = 0;
chdlc_priv_area->TracingEnabled = 1;
break;
case CPIPE_DISABLE_TRACING:
if (chdlc_priv_area->TracingEnabled) {
/* OPERATE_DATALINE_MONITOR */
mb->buffer_length = sizeof(LINE_TRACE_CONFIG_STRUCT);
mb->command = SET_TRACE_CONFIGURATION;
((LINE_TRACE_CONFIG_STRUCT *)mb->data)->
trace_config = TRACE_INACTIVE;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
}
chdlc_priv_area->TracingEnabled = 0;
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
mb->buffer_length = 0;
break;
case CPIPE_GET_TRACE_INFO:
if (!chdlc_priv_area->TracingEnabled) {
chdlc_udp_pkt->cblock.return_code = 1;
mb->buffer_length = 0;
break;
}
chdlc_udp_pkt->trace_info.ismoredata = 0x00;
buffer_length = 0; /* offset of packet already occupied */
for (frames=0; frames < chdlc_priv_area->number_trace_elements; frames++){
trace_pkt_t *trace_pkt = (trace_pkt_t *)
&chdlc_udp_pkt->data[buffer_length];
sdla_peek(&card->hw, chdlc_priv_area->curr_trace_addr,
(unsigned char *)&trace_element_struct,
sizeof(TRACE_STATUS_ELEMENT_STRUCT));
if (trace_element_struct.opp_flag == 0x00) {
break;
}
/* get pointer to real data */
data_ptr = trace_element_struct.ptr_data_bfr;
/* See if there is actual data on the trace buffer */
if (data_ptr){
data_length = trace_element_struct.trace_length;
}else{
data_length = 0;
chdlc_udp_pkt->trace_info.ismoredata = 0x01;
}
if( (chdlc_priv_area->available_buffer_space - buffer_length)
< ( sizeof(trace_pkt_t) + data_length) ) {
/* indicate there are more frames on board & exit */
chdlc_udp_pkt->trace_info.ismoredata = 0x01;
break;
}
trace_pkt->status = trace_element_struct.trace_type;
trace_pkt->time_stamp =
trace_element_struct.trace_time_stamp;
trace_pkt->real_length =
trace_element_struct.trace_length;
/* see if we can fit the frame into the user buffer */
real_len = trace_pkt->real_length;
if (data_ptr == 0) {
trace_pkt->data_avail = 0x00;
} else {
unsigned tmp = 0;
/* get the data from circular buffer
must check for end of buffer */
trace_pkt->data_avail = 0x01;
if ((data_ptr + real_len) >
chdlc_priv_area->end_addr_trace_buffer + 1){
tmp = chdlc_priv_area->end_addr_trace_buffer - data_ptr + 1;
sdla_peek(&card->hw, data_ptr,
trace_pkt->data,tmp);
data_ptr = chdlc_priv_area->base_addr_trace_buffer;
}
sdla_peek(&card->hw, data_ptr,
&trace_pkt->data[tmp], real_len - tmp);
}
/* zero the opp flag to show we got the frame */
ut_char = 0x00;
sdla_poke(&card->hw, chdlc_priv_area->curr_trace_addr, &ut_char, 1);
/* now move onto the next frame */
chdlc_priv_area->curr_trace_addr += sizeof(TRACE_STATUS_ELEMENT_STRUCT);
/* check if we went over the last address */
if ( chdlc_priv_area->curr_trace_addr > chdlc_priv_area->end_trace_addr ) {
chdlc_priv_area->curr_trace_addr = chdlc_priv_area->start_trace_addr;
}
if(trace_pkt->data_avail == 0x01) {
buffer_length += real_len - 1;
}
/* for the header */
buffer_length += sizeof(trace_pkt_t);
} /* For Loop */
if (frames == chdlc_priv_area->number_trace_elements){
chdlc_udp_pkt->trace_info.ismoredata = 0x01;
}
chdlc_udp_pkt->trace_info.num_frames = frames;
mb->buffer_length = buffer_length;
chdlc_udp_pkt->cblock.buffer_length = buffer_length;
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
break;
case CPIPE_FT1_READ_STATUS:
((unsigned char *)chdlc_udp_pkt->data )[0] =
flags->FT1_info_struct.parallel_port_A_input;
((unsigned char *)chdlc_udp_pkt->data )[1] =
flags->FT1_info_struct.parallel_port_B_input;
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
chdlc_udp_pkt->cblock.buffer_length = 2;
mb->buffer_length = 2;
break;
case CPIPE_ROUTER_UP_TIME:
do_gettimeofday( &tv );
chdlc_priv_area->router_up_time = tv.tv_sec -
chdlc_priv_area->router_start_time;
*(unsigned long *)&chdlc_udp_pkt->data =
chdlc_priv_area->router_up_time;
mb->buffer_length = sizeof(unsigned long);
chdlc_udp_pkt->cblock.buffer_length = sizeof(unsigned long);
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
break;
case FT1_MONITOR_STATUS_CTRL:
/* Enable FT1 MONITOR STATUS */
if ((chdlc_udp_pkt->data[0] & ENABLE_READ_FT1_STATUS) ||
(chdlc_udp_pkt->data[0] & ENABLE_READ_FT1_OP_STATS)) {
if( rCount++ != 0 ) {
chdlc_udp_pkt->cblock.
return_code = COMMAND_OK;
mb->buffer_length = 1;
break;
}
}
/* Disable FT1 MONITOR STATUS */
if( chdlc_udp_pkt->data[0] == 0) {
if( --rCount != 0) {
chdlc_udp_pkt->cblock.
return_code = COMMAND_OK;
mb->buffer_length = 1;
break;
}
}
goto dflt_1;
default:
dflt_1:
/* it's a board command */
mb->command = chdlc_udp_pkt->cblock.command;
mb->buffer_length = chdlc_udp_pkt->cblock.buffer_length;
if (mb->buffer_length) {
memcpy(&mb->data, (unsigned char *) chdlc_udp_pkt->
data, mb->buffer_length);
}
/* run the command on the board */
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK) {
break;
}
/* copy the result back to our buffer */
memcpy(&chdlc_udp_pkt->cblock, mb, sizeof(cblock_t));
if (mb->buffer_length) {
memcpy(&chdlc_udp_pkt->data, &mb->data,
mb->buffer_length);
}
} /* end of switch */
} /* end of else */
/* Fill UDP TTL */
chdlc_udp_pkt->ip_pkt.ttl = card->wandev.ttl;
len = reply_udp(chdlc_priv_area->udp_pkt_data, mb->buffer_length);
if(chdlc_priv_area->udp_pkt_src == UDP_PKT_FRM_NETWORK){
/* Must check if we interrupted if_send() routine. The
* tx buffers might be used. If so drop the packet */
if (!test_bit(SEND_CRIT,&card->wandev.critical)) {
if(!chdlc_send(card, chdlc_priv_area->udp_pkt_data, len)) {
++ card->wandev.stats.tx_packets;
card->wandev.stats.tx_bytes += len;
}
}
} else {
/* Pass it up the stack
Allocate socket buffer */
if ((new_skb = dev_alloc_skb(len)) != NULL) {
/* copy data into new_skb */
buf = skb_put(new_skb, len);
memcpy(buf, chdlc_priv_area->udp_pkt_data, len);
/* Decapsulate pkt and pass it up the protocol stack */
new_skb->protocol = htons(ETH_P_IP);
new_skb->dev = dev;
new_skb->mac.raw = new_skb->data;
netif_rx(new_skb);
dev->last_rx = jiffies;
} else {
printk(KERN_INFO "%s: no socket buffers available!\n",
card->devname);
}
}
chdlc_priv_area->udp_pkt_lgth = 0;
return 0;
}
/*============================================================================
* Initialize Receive and Transmit Buffers.
*/
static void init_chdlc_tx_rx_buff( sdla_t* card)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
CHDLC_TX_STATUS_EL_CFG_STRUCT *tx_config;
CHDLC_RX_STATUS_EL_CFG_STRUCT *rx_config;
char err;
mb->buffer_length = 0;
mb->command = READ_CHDLC_CONFIGURATION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if(err != COMMAND_OK) {
if (card->wandev.dev){
chdlc_error(card,err,mb);
}
return;
}
if(card->hw.type == SDLA_S514) {
tx_config = (CHDLC_TX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb->data)->
ptr_CHDLC_Tx_stat_el_cfg_struct));
rx_config = (CHDLC_RX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb->data)->
ptr_CHDLC_Rx_stat_el_cfg_struct));
/* Setup Head and Tails for buffers */
card->u.c.txbuf_base = (void *)(card->hw.dpmbase +
tx_config->base_addr_Tx_status_elements);
card->u.c.txbuf_last =
(CHDLC_DATA_TX_STATUS_EL_STRUCT *)
card->u.c.txbuf_base +
(tx_config->number_Tx_status_elements - 1);
card->u.c.rxbuf_base = (void *)(card->hw.dpmbase +
rx_config->base_addr_Rx_status_elements);
card->u.c.rxbuf_last =
(CHDLC_DATA_RX_STATUS_EL_STRUCT *)
card->u.c.rxbuf_base +
(rx_config->number_Rx_status_elements - 1);
/* Set up next pointer to be used */
card->u.c.txbuf = (void *)(card->hw.dpmbase +
tx_config->next_Tx_status_element_to_use);
card->u.c.rxmb = (void *)(card->hw.dpmbase +
rx_config->next_Rx_status_element_to_use);
}
else {
tx_config = (CHDLC_TX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb->data)->
ptr_CHDLC_Tx_stat_el_cfg_struct % SDLA_WINDOWSIZE));
rx_config = (CHDLC_RX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb->data)->
ptr_CHDLC_Rx_stat_el_cfg_struct % SDLA_WINDOWSIZE));
/* Setup Head and Tails for buffers */
card->u.c.txbuf_base = (void *)(card->hw.dpmbase +
(tx_config->base_addr_Tx_status_elements % SDLA_WINDOWSIZE));
card->u.c.txbuf_last =
(CHDLC_DATA_TX_STATUS_EL_STRUCT *)card->u.c.txbuf_base
+ (tx_config->number_Tx_status_elements - 1);
card->u.c.rxbuf_base = (void *)(card->hw.dpmbase +
(rx_config->base_addr_Rx_status_elements % SDLA_WINDOWSIZE));
card->u.c.rxbuf_last =
(CHDLC_DATA_RX_STATUS_EL_STRUCT *)card->u.c.rxbuf_base
+ (rx_config->number_Rx_status_elements - 1);
/* Set up next pointer to be used */
card->u.c.txbuf = (void *)(card->hw.dpmbase +
(tx_config->next_Tx_status_element_to_use % SDLA_WINDOWSIZE));
card->u.c.rxmb = (void *)(card->hw.dpmbase +
(rx_config->next_Rx_status_element_to_use % SDLA_WINDOWSIZE));
}
/* Setup Actual Buffer Start and end addresses */
card->u.c.rx_base = rx_config->base_addr_Rx_buffer;
card->u.c.rx_top = rx_config->end_addr_Rx_buffer;
}
/*=============================================================================
* Perform Interrupt Test by running READ_CHDLC_CODE_VERSION command MAX_INTR
* _TEST_COUNTER times.
*/
static int intr_test( sdla_t* card)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
int err,i;
Intr_test_counter = 0;
err = chdlc_set_intr_mode(card, APP_INT_ON_COMMAND_COMPLETE);
if (err == CMD_OK) {
for (i = 0; i < MAX_INTR_TEST_COUNTER; i ++) {
mb->buffer_length = 0;
mb->command = READ_CHDLC_CODE_VERSION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != CMD_OK)
chdlc_error(card, err, mb);
}
}
else {
return err;
}
err = chdlc_set_intr_mode(card, 0);
if (err != CMD_OK)
return err;
return 0;
}
/*==============================================================================
* Determine what type of UDP call it is. CPIPEAB ?
*/
static int udp_pkt_type(struct sk_buff *skb, sdla_t* card)
{
chdlc_udp_pkt_t *chdlc_udp_pkt = (chdlc_udp_pkt_t *)skb->data;
#ifdef _WAN_UDP_DEBUG
printk(KERN_INFO "SIG %s = %s\n\
UPP %x = %x\n\
PRT %x = %x\n\
REQ %i = %i\n\
36 th = %x 37th = %x\n",
chdlc_udp_pkt->wp_mgmt.signature,
UDPMGMT_SIGNATURE,
chdlc_udp_pkt->udp_pkt.udp_dst_port,
ntohs(card->wandev.udp_port),
chdlc_udp_pkt->ip_pkt.protocol,
UDPMGMT_UDP_PROTOCOL,
chdlc_udp_pkt->wp_mgmt.request_reply,
UDPMGMT_REQUEST,
skb->data[36], skb->data[37]);
#endif
if (!strncmp(chdlc_udp_pkt->wp_mgmt.signature,UDPMGMT_SIGNATURE,8) &&
(chdlc_udp_pkt->udp_pkt.udp_dst_port == ntohs(card->wandev.udp_port)) &&
(chdlc_udp_pkt->ip_pkt.protocol == UDPMGMT_UDP_PROTOCOL) &&
(chdlc_udp_pkt->wp_mgmt.request_reply == UDPMGMT_REQUEST)) {
return UDP_CPIPE_TYPE;
}else{
return UDP_INVALID_TYPE;
}
}
/*============================================================================
* Set PORT state.
*/
static void port_set_state (sdla_t *card, int state)
{
if (card->u.c.state != state)
{
switch (state)
{
case WAN_CONNECTED:
printk (KERN_INFO "%s: Link connected!\n",
card->devname);
break;
case WAN_CONNECTING:
printk (KERN_INFO "%s: Link connecting...\n",
card->devname);
break;
case WAN_DISCONNECTED:
printk (KERN_INFO "%s: Link disconnected!\n",
card->devname);
break;
}
card->wandev.state = card->u.c.state = state;
if (card->wandev.dev){
struct net_device *dev = card->wandev.dev;
chdlc_private_area_t *chdlc_priv_area = dev->priv;
chdlc_priv_area->common.state = state;
}
}
}
/*===========================================================================
* config_chdlc
*
* Configure the chdlc protocol and enable communications.
*
* The if_open() function binds this function to the poll routine.
* Therefore, this function will run every time the chdlc interface
* is brought up. We cannot run this function from the if_open
* because if_open does not have access to the remote IP address.
*
* If the communications are not enabled, proceed to configure
* the card and enable communications.
*
* If the communications are enabled, it means that the interface
* was shutdown by ether the user or driver. In this case, we
* have to check that the IP addresses have not changed. If
* the IP addresses have changed, we have to reconfigure the firmware
* and update the changed IP addresses. Otherwise, just exit.
*
*/
static int config_chdlc (sdla_t *card)
{
struct net_device *dev = card->wandev.dev;
chdlc_private_area_t *chdlc_priv_area = dev->priv;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
if (card->u.c.comm_enabled){
/* Jun 20. 2000: NC
* IP addresses are not used in the API mode */
if ((chdlc_priv_area->ip_local_tmp != chdlc_priv_area->ip_local ||
chdlc_priv_area->ip_remote_tmp != chdlc_priv_area->ip_remote) &&
card->u.c.usedby == WANPIPE) {
/* The IP addersses have changed, we must
* stop the communications and reconfigure
* the card. Reason: the firmware must know
* the local and remote IP addresses. */
disable_comm(card);
port_set_state(card, WAN_DISCONNECTED);
printk(KERN_INFO
"%s: IP addresses changed!\n",
card->devname);
printk(KERN_INFO
"%s: Restarting communications ...\n",
card->devname);
}else{
/* IP addresses are the same and the link is up,
* we don't have to do anything here. Therefore, exit */
return 0;
}
}
chdlc_priv_area->ip_local = chdlc_priv_area->ip_local_tmp;
chdlc_priv_area->ip_remote = chdlc_priv_area->ip_remote_tmp;
/* Setup the Board for asynchronous mode */
if (card->u.c.async_mode){
if (set_asy_config(card)) {
printk (KERN_INFO "%s: Failed CHDLC Async configuration!\n",
card->devname);
return 0;
}
}else{
/* Setup the Board for CHDLC */
if (set_chdlc_config(card)) {
printk (KERN_INFO "%s: Failed CHDLC configuration!\n",
card->devname);
return 0;
}
}
/* Set interrupt mode and mask */
if (chdlc_set_intr_mode(card, APP_INT_ON_RX_FRAME |
APP_INT_ON_GLOBAL_EXCEP_COND |
APP_INT_ON_TX_FRAME |
APP_INT_ON_CHDLC_EXCEP_COND | APP_INT_ON_TIMER)){
printk (KERN_INFO "%s: Failed to set interrupt triggers!\n",
card->devname);
return 0;
}
/* Mask the Transmit and Timer interrupt */
flags->interrupt_info_struct.interrupt_permission &=
~(APP_INT_ON_TX_FRAME | APP_INT_ON_TIMER);
/* In TTY mode, receive interrupt will be enabled during
* wanpipe_tty_open() operation */
if (card->tty_opt){
flags->interrupt_info_struct.interrupt_permission &= ~APP_INT_ON_RX_FRAME;
}
/* Enable communications */
if (card->u.c.async_mode){
if (asy_comm_enable(card) != 0) {
printk(KERN_INFO "%s: Failed to enable async commnunication!\n",
card->devname);
flags->interrupt_info_struct.interrupt_permission = 0;
card->u.c.comm_enabled=0;
chdlc_set_intr_mode(card,0);
return 0;
}
}else{
if (chdlc_comm_enable(card) != 0) {
printk(KERN_INFO "%s: Failed to enable chdlc communications!\n",
card->devname);
flags->interrupt_info_struct.interrupt_permission = 0;
card->u.c.comm_enabled=0;
chdlc_set_intr_mode(card,0);
return 0;
}
}
/* Initialize Rx/Tx buffer control fields */
init_chdlc_tx_rx_buff(card);
port_set_state(card, WAN_CONNECTING);
return 0;
}
/*============================================================
* chdlc_poll
*
* Rationale:
* We cannot manipulate the routing tables, or
* ip addresses withing the interrupt. Therefore
* we must perform such actons outside an interrupt
* at a later time.
*
* Description:
* CHDLC polling routine, responsible for
* shutting down interfaces upon disconnect
* and adding/removing routes.
*
* Usage:
* This function is executed for each CHDLC
* interface through a tq_schedule bottom half.
*
* trigger_chdlc_poll() function is used to kick
* the chldc_poll routine.
*/
static void chdlc_poll(struct net_device *dev)
{
chdlc_private_area_t *chdlc_priv_area;
sdla_t *card;
u8 check_gateway=0;
SHARED_MEMORY_INFO_STRUCT* flags;
if (!dev || (chdlc_priv_area=dev->priv) == NULL)
return;
card = chdlc_priv_area->card;
flags = card->u.c.flags;
/* (Re)Configuraiton is in progress, stop what you are
* doing and get out */
if (test_bit(PERI_CRIT,&card->wandev.critical)){
clear_bit(POLL_CRIT,&card->wandev.critical);
return;
}
/* if_open() function has triggered the polling routine
* to determine the configured IP addresses. Once the
* addresses are found, trigger the chdlc configuration */
if (test_bit(0,&chdlc_priv_area->config_chdlc)){
chdlc_priv_area->ip_local_tmp = get_ip_address(dev,WAN_LOCAL_IP);
chdlc_priv_area->ip_remote_tmp = get_ip_address(dev,WAN_POINTOPOINT_IP);
/* Jun 20. 2000 Bug Fix
* Only perform this check in WANPIPE mode, since
* IP addresses are not used in the API mode. */
if (chdlc_priv_area->ip_local_tmp == chdlc_priv_area->ip_remote_tmp &&
card->u.c.slarp_timer == 0x00 &&
!card->u.c.backup &&
card->u.c.usedby == WANPIPE){
if (++chdlc_priv_area->ip_error > MAX_IP_ERRORS){
printk(KERN_INFO "\n%s: --- WARNING ---\n",
card->devname);
printk(KERN_INFO
"%s: The local IP address is the same as the\n",
card->devname);
printk(KERN_INFO
"%s: Point-to-Point IP address.\n",
card->devname);
printk(KERN_INFO "%s: --- WARNING ---\n\n",
card->devname);
}else{
clear_bit(POLL_CRIT,&card->wandev.critical);
chdlc_priv_area->poll_delay_timer.expires = jiffies+HZ;
add_timer(&chdlc_priv_area->poll_delay_timer);
return;
}
}
clear_bit(0,&chdlc_priv_area->config_chdlc);
clear_bit(POLL_CRIT,&card->wandev.critical);
chdlc_priv_area->timer_int_enabled |= TMR_INT_ENABLED_CONFIG;
flags->interrupt_info_struct.interrupt_permission |= APP_INT_ON_TIMER;
return;
}
/* Dynamic interface implementation, as well as dynamic
* routing. */
switch (card->u.c.state){
case WAN_DISCONNECTED:
/* If the dynamic interface configuration is on, and interface
* is up, then bring down the netowrk interface */
if (test_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down) &&
!test_bit(DEV_DOWN, &chdlc_priv_area->interface_down) &&
card->wandev.dev->flags & IFF_UP){
printk(KERN_INFO "%s: Interface %s down.\n",
card->devname,card->wandev.dev->name);
change_dev_flags(card->wandev.dev,(card->wandev.dev->flags&~IFF_UP));
set_bit(DEV_DOWN,&chdlc_priv_area->interface_down);
chdlc_priv_area->route_status = NO_ROUTE;
}else{
/* We need to check if the local IP address is
* zero. If it is, we shouldn't try to remove it.
*/
if (card->wandev.dev->flags & IFF_UP &&
get_ip_address(card->wandev.dev,WAN_LOCAL_IP) &&
chdlc_priv_area->route_status != NO_ROUTE &&
card->u.c.slarp_timer){
process_route(card);
}
}
break;
case WAN_CONNECTED:
/* In SMP machine this code can execute before the interface
* comes up. In this case, we must make sure that we do not
* try to bring up the interface before dev_open() is finished */
/* DEV_DOWN will be set only when we bring down the interface
* for the very first time. This way we know that it was us
* that brought the interface down */
if (test_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down) &&
test_bit(DEV_DOWN, &chdlc_priv_area->interface_down) &&
!(card->wandev.dev->flags & IFF_UP)){
printk(KERN_INFO "%s: Interface %s up.\n",
card->devname,card->wandev.dev->name);
change_dev_flags(card->wandev.dev,(card->wandev.dev->flags|IFF_UP));
clear_bit(DEV_DOWN,&chdlc_priv_area->interface_down);
check_gateway=1;
}
if (chdlc_priv_area->route_status == ADD_ROUTE &&
card->u.c.slarp_timer){
process_route(card);
check_gateway=1;
}
if (chdlc_priv_area->gateway && check_gateway)
add_gateway(card,dev);
break;
}
clear_bit(POLL_CRIT,&card->wandev.critical);
}
/*============================================================
* trigger_chdlc_poll
*
* Description:
* Add a chdlc_poll() work entry into the keventd work queue
* for a specific dlci/interface. This will kick
* the fr_poll() routine at a later time.
*
* Usage:
* Interrupts use this to defer a taks to
* a polling routine.
*
*/
static void trigger_chdlc_poll(struct net_device *dev)
{
chdlc_private_area_t *chdlc_priv_area;
sdla_t *card;
if (!dev)
return;
if ((chdlc_priv_area = dev->priv)==NULL)
return;
card = chdlc_priv_area->card;
if (test_and_set_bit(POLL_CRIT,&card->wandev.critical)){
return;
}
if (test_bit(PERI_CRIT,&card->wandev.critical)){
return;
}
schedule_work(&chdlc_priv_area->poll_work);
}
static void chdlc_poll_delay (unsigned long dev_ptr)
{
struct net_device *dev = (struct net_device *)dev_ptr;
trigger_chdlc_poll(dev);
}
void s508_lock (sdla_t *card, unsigned long *smp_flags)
{
spin_lock_irqsave(&card->wandev.lock, *smp_flags);
if (card->next){
spin_lock(&card->next->wandev.lock);
}
}
void s508_unlock (sdla_t *card, unsigned long *smp_flags)
{
if (card->next){
spin_unlock(&card->next->wandev.lock);
}
spin_unlock_irqrestore(&card->wandev.lock, *smp_flags);
}
//*********** TTY SECTION ****************
static void wanpipe_tty_trigger_tx_irq(sdla_t *card)
{
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
INTERRUPT_INFORMATION_STRUCT *chdlc_int = &flags->interrupt_info_struct;
chdlc_int->interrupt_permission |= APP_INT_ON_TX_FRAME;
}
static void wanpipe_tty_trigger_poll(sdla_t *card)
{
schedule_work(&card->tty_work);
}
static void tty_poll_work (void* data)
{
sdla_t *card = (sdla_t*)data;
struct tty_struct *tty;
if ((tty=card->tty)==NULL)
return;
tty_wakeup(tty);
#if defined(SERIAL_HAVE_POLL_WAIT)
wake_up_interruptible(&tty->poll_wait);
#endif
return;
}
static void wanpipe_tty_close(struct tty_struct *tty, struct file * filp)
{
sdla_t *card;
unsigned long smp_flags;
if (!tty || !tty->driver_data){
return;
}
card = (sdla_t*)tty->driver_data;
if (!card)
return;
printk(KERN_INFO "%s: Closing TTY Driver!\n",
card->devname);
/* Sanity Check */
if (!card->tty_open)
return;
wanpipe_close(card);
if (--card->tty_open == 0){
lock_adapter_irq(&card->wandev.lock,&smp_flags);
card->tty=NULL;
chdlc_disable_comm_shutdown(card);
unlock_adapter_irq(&card->wandev.lock,&smp_flags);
kfree(card->tty_buf);
card->tty_buf = NULL;
kfree(card->tty_rx);
card->tty_rx = NULL;
}
return;
}
static int wanpipe_tty_open(struct tty_struct *tty, struct file * filp)
{
unsigned long smp_flags;
sdla_t *card;
if (!tty){
return -ENODEV;
}
if (!tty->driver_data){
int port;
port = tty->index;
if ((port < 0) || (port >= NR_PORTS))
return -ENODEV;
tty->driver_data = WAN_CARD(port);
if (!tty->driver_data)
return -ENODEV;
}
card = (sdla_t*)tty->driver_data;
if (!card){
lock_adapter_irq(&card->wandev.lock,&smp_flags);
card->tty=NULL;
unlock_adapter_irq(&card->wandev.lock,&smp_flags);
return -ENODEV;
}
printk(KERN_INFO "%s: Opening TTY Driver!\n",
card->devname);
if (card->tty_open == 0){
lock_adapter_irq(&card->wandev.lock,&smp_flags);
card->tty=tty;
unlock_adapter_irq(&card->wandev.lock,&smp_flags);
if (!card->tty_buf){
card->tty_buf = kmalloc(TTY_CHDLC_MAX_MTU, GFP_KERNEL);
if (!card->tty_buf){
card->tty_buf=NULL;
card->tty=NULL;
return -ENOMEM;
}
}
if (!card->tty_rx){
card->tty_rx = kmalloc(TTY_CHDLC_MAX_MTU, GFP_KERNEL);
if (!card->tty_rx){
/* Free the buffer above */
kfree(card->tty_buf);
card->tty_buf=NULL;
card->tty=NULL;
return -ENOMEM;
}
}
}
++card->tty_open;
wanpipe_open(card);
return 0;
}
static int wanpipe_tty_write(struct tty_struct * tty, const unsigned char *buf, int count)
{
unsigned long smp_flags=0;
sdla_t *card=NULL;
if (!tty){
dbg_printk(KERN_INFO "NO TTY in Write\n");
return -ENODEV;
}
card = (sdla_t *)tty->driver_data;
if (!card){
dbg_printk(KERN_INFO "No Card in TTY Write\n");
return -ENODEV;
}
if (count > card->wandev.mtu){
dbg_printk(KERN_INFO "Frame too big in Write %i Max: %i\n",
count,card->wandev.mtu);
return -EINVAL;
}
if (card->wandev.state != WAN_CONNECTED){
dbg_printk(KERN_INFO "Card not connected in TTY Write\n");
return -EINVAL;
}
/* Lock the 508 Card: SMP is supported */
if(card->hw.type != SDLA_S514){
s508_lock(card,&smp_flags);
}
if (test_and_set_bit(SEND_CRIT,(void*)&card->wandev.critical)){
printk(KERN_INFO "%s: Critical in TTY Write\n",
card->devname);
/* Lock the 508 Card: SMP is supported */
if(card->hw.type != SDLA_S514)
s508_unlock(card,&smp_flags);
return -EINVAL;
}
if (chdlc_send(card,(void*)buf,count)){
dbg_printk(KERN_INFO "%s: Failed to send, retry later: kernel!\n",
card->devname);
clear_bit(SEND_CRIT,(void*)&card->wandev.critical);
wanpipe_tty_trigger_tx_irq(card);
if(card->hw.type != SDLA_S514)
s508_unlock(card,&smp_flags);
return 0;
}
dbg_printk(KERN_INFO "%s: Packet sent OK: %i\n",card->devname,count);
clear_bit(SEND_CRIT,(void*)&card->wandev.critical);
if(card->hw.type != SDLA_S514)
s508_unlock(card,&smp_flags);
return count;
}
static void wanpipe_tty_receive(sdla_t *card, unsigned addr, unsigned int len)
{
unsigned offset=0;
unsigned olen=len;
char fp=0;
struct tty_struct *tty;
int i;
struct tty_ldisc *ld;
if (!card->tty_open){
dbg_printk(KERN_INFO "%s: TTY not open during receive\n",
card->devname);
return;
}
if ((tty=card->tty) == NULL){
dbg_printk(KERN_INFO "%s: No TTY on receive\n",
card->devname);
return;
}
if (!tty->driver_data){
dbg_printk(KERN_INFO "%s: No Driver Data, or Flip on receive\n",
card->devname);
return;
}
if (card->u.c.async_mode){
if ((tty->flip.count+len) >= TTY_FLIPBUF_SIZE){
if (net_ratelimit()){
printk(KERN_INFO
"%s: Received packet size too big: %i bytes, Max: %i!\n",
card->devname,len,TTY_FLIPBUF_SIZE);
}
return;
}
if((addr + len) > card->u.c.rx_top + 1) {
offset = card->u.c.rx_top - addr + 1;
sdla_peek(&card->hw, addr, tty->flip.char_buf_ptr, offset);
addr = card->u.c.rx_base;
len -= offset;
tty->flip.char_buf_ptr+=offset;
tty->flip.count+=offset;
for (i=0;i<offset;i++){
*tty->flip.flag_buf_ptr = 0;
tty->flip.flag_buf_ptr++;
}
}
sdla_peek(&card->hw, addr, tty->flip.char_buf_ptr, len);
tty->flip.char_buf_ptr+=len;
card->tty->flip.count+=len;
for (i=0;i<len;i++){
*tty->flip.flag_buf_ptr = 0;
tty->flip.flag_buf_ptr++;
}
tty->low_latency=1;
tty_flip_buffer_push(tty);
}else{
if (!card->tty_rx){
if (net_ratelimit()){
printk(KERN_INFO
"%s: Receive sync buffer not available!\n",
card->devname);
}
return;
}
if (len > TTY_CHDLC_MAX_MTU){
if (net_ratelimit()){
printk(KERN_INFO
"%s: Received packet size too big: %i bytes, Max: %i!\n",
card->devname,len,TTY_FLIPBUF_SIZE);
}
return;
}
if((addr + len) > card->u.c.rx_top + 1) {
offset = card->u.c.rx_top - addr + 1;
sdla_peek(&card->hw, addr, card->tty_rx, offset);
addr = card->u.c.rx_base;
len -= offset;
}
sdla_peek(&card->hw, addr, card->tty_rx+offset, len);
ld = tty_ldisc_ref(tty);
if (ld) {
if (ld->receive_buf)
ld->receive_buf(tty,card->tty_rx,&fp,olen);
tty_ldisc_deref(ld);
}else{
if (net_ratelimit()){
printk(KERN_INFO
"%s: NO TTY Sync line discipline!\n",
card->devname);
}
}
}
dbg_printk(KERN_INFO "%s: Received Data %i\n",card->devname,olen);
return;
}
#if 0
static int wanpipe_tty_ioctl(struct tty_struct *tty, struct file * file,
unsigned int cmd, unsigned long arg)
{
return -ENOIOCTLCMD;
}
#endif
static void wanpipe_tty_stop(struct tty_struct *tty)
{
return;
}
static void wanpipe_tty_start(struct tty_struct *tty)
{
return;
}
static int config_tty (sdla_t *card)
{
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
/* Setup the Board for asynchronous mode */
if (card->u.c.async_mode){
if (set_asy_config(card)) {
printk (KERN_INFO "%s: Failed CHDLC Async configuration!\n",
card->devname);
return -EINVAL;
}
}else{
/* Setup the Board for CHDLC */
if (set_chdlc_config(card)) {
printk (KERN_INFO "%s: Failed CHDLC configuration!\n",
card->devname);
return -EINVAL;
}
}
/* Set interrupt mode and mask */
if (chdlc_set_intr_mode(card, APP_INT_ON_RX_FRAME |
APP_INT_ON_GLOBAL_EXCEP_COND |
APP_INT_ON_TX_FRAME |
APP_INT_ON_CHDLC_EXCEP_COND | APP_INT_ON_TIMER)){
printk (KERN_INFO "%s: Failed to set interrupt triggers!\n",
card->devname);
return -EINVAL;
}
/* Mask the Transmit and Timer interrupt */
flags->interrupt_info_struct.interrupt_permission &=
~(APP_INT_ON_TX_FRAME | APP_INT_ON_TIMER);
/* Enable communications */
if (card->u.c.async_mode){
if (asy_comm_enable(card) != 0) {
printk(KERN_INFO "%s: Failed to enable async commnunication!\n",
card->devname);
flags->interrupt_info_struct.interrupt_permission = 0;
card->u.c.comm_enabled=0;
chdlc_set_intr_mode(card,0);
return -EINVAL;
}
}else{
if (chdlc_comm_enable(card) != 0) {
printk(KERN_INFO "%s: Failed to enable chdlc communications!\n",
card->devname);
flags->interrupt_info_struct.interrupt_permission = 0;
card->u.c.comm_enabled=0;
chdlc_set_intr_mode(card,0);
return -EINVAL;
}
}
/* Initialize Rx/Tx buffer control fields */
init_chdlc_tx_rx_buff(card);
port_set_state(card, WAN_CONNECTING);
return 0;
}
static int change_speed(sdla_t *card, struct tty_struct *tty,
struct termios *old_termios)
{
int baud, ret=0;
unsigned cflag;
int dbits,sbits,parity,handshaking;
cflag = tty->termios->c_cflag;
/* There is always one stop bit */
sbits=WANOPT_ONE;
/* Parity is defaulted to NONE */
parity = WANOPT_NONE;
handshaking=0;
/* byte size and parity */
switch (cflag & CSIZE) {
case CS5: dbits = 5; break;
case CS6: dbits = 6; break;
case CS7: dbits = 7; break;
case CS8: dbits = 8; break;
/* Never happens, but GCC is too dumb to figure it out */
default: dbits = 8; break;
}
/* One more stop bit should be supported, thus increment
* the number of stop bits Max=2 */
if (cflag & CSTOPB) {
sbits = WANOPT_TWO;
}
if (cflag & PARENB) {
parity = WANOPT_EVEN;
}
if (cflag & PARODD){
parity = WANOPT_ODD;
}
/* Determine divisor based on baud rate */
baud = tty_get_baud_rate(tty);
if (!baud)
baud = 9600; /* B0 transition handled in rs_set_termios */
if (cflag & CRTSCTS) {
handshaking|=ASY_RTS_HS_FOR_RX;
}
if (I_IGNPAR(tty))
parity = WANOPT_NONE;
if (I_IXOFF(tty)){
handshaking|=ASY_XON_XOFF_HS_FOR_RX;
handshaking|=ASY_XON_XOFF_HS_FOR_TX;
}
if (I_IXON(tty)){
handshaking|=ASY_XON_XOFF_HS_FOR_RX;
handshaking|=ASY_XON_XOFF_HS_FOR_TX;
}
if (card->u.c.async_mode){
if (card->wandev.bps != baud)
ret=1;
card->wandev.bps = baud;
}
if (card->u.c.async_mode){
if (card->u.c.protocol_options != handshaking)
ret=1;
card->u.c.protocol_options = handshaking;
if (card->u.c.tx_bits_per_char != dbits)
ret=1;
card->u.c.tx_bits_per_char = dbits;
if (card->u.c.rx_bits_per_char != dbits)
ret=1;
card->u.c.rx_bits_per_char = dbits;
if (card->u.c.stop_bits != sbits)
ret=1;
card->u.c.stop_bits = sbits;
if (card->u.c.parity != parity)
ret=1;
card->u.c.parity = parity;
card->u.c.break_timer = 50;
card->u.c.inter_char_timer = 10;
card->u.c.rx_complete_length = 100;
card->u.c.xon_char = 0xFE;
}else{
card->u.c.protocol_options = HDLC_STREAMING_MODE;
}
return ret;
}
static void wanpipe_tty_set_termios(struct tty_struct *tty, struct termios *old_termios)
{
sdla_t *card;
int err=1;
if (!tty){
return;
}
card = (sdla_t *)tty->driver_data;
if (!card)
return;
if (change_speed(card, tty, old_termios) || !card->u.c.comm_enabled){
unsigned long smp_flags;
if (card->u.c.comm_enabled){
lock_adapter_irq(&card->wandev.lock,&smp_flags);
chdlc_disable_comm_shutdown(card);
unlock_adapter_irq(&card->wandev.lock,&smp_flags);
}
lock_adapter_irq(&card->wandev.lock,&smp_flags);
err = config_tty(card);
unlock_adapter_irq(&card->wandev.lock,&smp_flags);
if (card->u.c.async_mode){
printk(KERN_INFO "%s: TTY Async Configuration:\n"
" Baud =%i\n"
" Handshaking =%s\n"
" Tx Dbits =%i\n"
" Rx Dbits =%i\n"
" Parity =%s\n"
" Stop Bits =%i\n",
card->devname,
card->wandev.bps,
opt_decode[card->u.c.protocol_options],
card->u.c.tx_bits_per_char,
card->u.c.rx_bits_per_char,
p_decode[card->u.c.parity] ,
card->u.c.stop_bits);
}else{
printk(KERN_INFO "%s: TTY Sync Configuration:\n"
" Baud =%i\n"
" Protocol =HDLC_STREAMING\n",
card->devname,card->wandev.bps);
}
if (!err){
port_set_state(card,WAN_CONNECTED);
}else{
port_set_state(card,WAN_DISCONNECTED);
}
}
return;
}
static void wanpipe_tty_put_char(struct tty_struct *tty, unsigned char ch)
{
sdla_t *card;
unsigned long smp_flags=0;
if (!tty){
return;
}
card = (sdla_t *)tty->driver_data;
if (!card)
return;
if (card->wandev.state != WAN_CONNECTED)
return;
if(card->hw.type != SDLA_S514)
s508_lock(card,&smp_flags);
if (test_and_set_bit(SEND_CRIT,(void*)&card->wandev.critical)){
wanpipe_tty_trigger_tx_irq(card);
if(card->hw.type != SDLA_S514)
s508_unlock(card,&smp_flags);
return;
}
if (chdlc_send(card,(void*)&ch,1)){
wanpipe_tty_trigger_tx_irq(card);
dbg_printk("%s: Failed to TX char!\n",card->devname);
}
dbg_printk("%s: Char TX OK\n",card->devname);
clear_bit(SEND_CRIT,(void*)&card->wandev.critical);
if(card->hw.type != SDLA_S514)
s508_unlock(card,&smp_flags);
return;
}
static void wanpipe_tty_flush_chars(struct tty_struct *tty)
{
return;
}
static void wanpipe_tty_flush_buffer(struct tty_struct *tty)
{
if (!tty)
return;
#if defined(SERIAL_HAVE_POLL_WAIT)
wake_up_interruptible(&tty->poll_wait);
#endif
tty_wakeup(tty);
return;
}
/*
* This function is used to send a high-priority XON/XOFF character to
* the device
*/
static void wanpipe_tty_send_xchar(struct tty_struct *tty, char ch)
{
return;
}
static int wanpipe_tty_chars_in_buffer(struct tty_struct *tty)
{
return 0;
}
static int wanpipe_tty_write_room(struct tty_struct *tty)
{
sdla_t *card;
printk(KERN_INFO "TTY Write Room\n");
if (!tty){
return 0;
}
card = (sdla_t *)tty->driver_data;
if (!card)
return 0;
if (card->wandev.state != WAN_CONNECTED)
return 0;
return SEC_MAX_NO_DATA_BYTES_IN_FRAME;
}
static int set_modem_status(sdla_t *card, unsigned char data)
{
CHDLC_MAILBOX_STRUCT *mb = card->mbox;
int err;
mb->buffer_length=1;
mb->command=SET_MODEM_STATUS;
mb->data[0]=data;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error (card, err, mb);
return err;
}
static void wanpipe_tty_hangup(struct tty_struct *tty)
{
sdla_t *card;
unsigned long smp_flags;
printk(KERN_INFO "TTY Hangup!\n");
if (!tty){
return;
}
card = (sdla_t *)tty->driver_data;
if (!card)
return;
lock_adapter_irq(&card->wandev.lock,&smp_flags);
set_modem_status(card,0);
unlock_adapter_irq(&card->wandev.lock,&smp_flags);
return;
}
static void wanpipe_tty_break(struct tty_struct *tty, int break_state)
{
return;
}
static void wanpipe_tty_wait_until_sent(struct tty_struct *tty, int timeout)
{
return;
}
static void wanpipe_tty_throttle(struct tty_struct * tty)
{
return;
}
static void wanpipe_tty_unthrottle(struct tty_struct * tty)
{
return;
}
int wanpipe_tty_read_proc(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
return 0;
}
/*
* The serial driver boot-time initialization code!
*/
int wanpipe_tty_init(sdla_t *card)
{
struct serial_state * state;
/* Initialize the tty_driver structure */
if (card->tty_minor < 0 || card->tty_minor > NR_PORTS){
printk(KERN_INFO "%s: Illegal Minor TTY number (0-4): %i\n",
card->devname,card->tty_minor);
return -EINVAL;
}
if (WAN_CARD(card->tty_minor)){
printk(KERN_INFO "%s: TTY Minor %i, already in use\n",
card->devname,card->tty_minor);
return -EBUSY;
}
if (tty_init_cnt==0){
printk(KERN_INFO "%s: TTY %s Driver Init: Major %i, Minor Range %i-%i\n",
card->devname,
card->u.c.async_mode ? "ASYNC" : "SYNC",
WAN_TTY_MAJOR,MIN_PORT,MAX_PORT);
tty_driver_mode = card->u.c.async_mode;
memset(&serial_driver, 0, sizeof(struct tty_driver));
serial_driver.magic = TTY_DRIVER_MAGIC;
serial_driver.owner = THIS_MODULE;
serial_driver.driver_name = "wanpipe_tty";
serial_driver.name = "ttyW";
serial_driver.major = WAN_TTY_MAJOR;
serial_driver.minor_start = WAN_TTY_MINOR;
serial_driver.num = NR_PORTS;
serial_driver.type = TTY_DRIVER_TYPE_SERIAL;
serial_driver.subtype = SERIAL_TYPE_NORMAL;
serial_driver.init_termios = tty_std_termios;
serial_driver.init_termios.c_cflag =
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
serial_driver.flags = TTY_DRIVER_REAL_RAW;
serial_driver.refcount = 1; /* !@!@^#^&!! */
serial_driver.open = wanpipe_tty_open;
serial_driver.close = wanpipe_tty_close;
serial_driver.write = wanpipe_tty_write;
serial_driver.put_char = wanpipe_tty_put_char;
serial_driver.flush_chars = wanpipe_tty_flush_chars;
serial_driver.write_room = wanpipe_tty_write_room;
serial_driver.chars_in_buffer = wanpipe_tty_chars_in_buffer;
serial_driver.flush_buffer = wanpipe_tty_flush_buffer;
//serial_driver.ioctl = wanpipe_tty_ioctl;
serial_driver.throttle = wanpipe_tty_throttle;
serial_driver.unthrottle = wanpipe_tty_unthrottle;
serial_driver.send_xchar = wanpipe_tty_send_xchar;
serial_driver.set_termios = wanpipe_tty_set_termios;
serial_driver.stop = wanpipe_tty_stop;
serial_driver.start = wanpipe_tty_start;
serial_driver.hangup = wanpipe_tty_hangup;
serial_driver.break_ctl = wanpipe_tty_break;
serial_driver.wait_until_sent = wanpipe_tty_wait_until_sent;
serial_driver.read_proc = wanpipe_tty_read_proc;
if (tty_register_driver(&serial_driver)){
printk(KERN_INFO "%s: Failed to register serial driver!\n",
card->devname);
}
}
/* The subsequent ports must comply to the initial configuration */
if (tty_driver_mode != card->u.c.async_mode){
printk(KERN_INFO "%s: Error: TTY Driver operation mode mismatch!\n",
card->devname);
printk(KERN_INFO "%s: The TTY driver is configured for %s!\n",
card->devname, tty_driver_mode ? "ASYNC" : "SYNC");
return -EINVAL;
}
tty_init_cnt++;
printk(KERN_INFO "%s: Initializing TTY %s Driver Minor %i\n",
card->devname,
tty_driver_mode ? "ASYNC" : "SYNC",
card->tty_minor);
tty_card_map[card->tty_minor] = card;
state = &rs_table[card->tty_minor];
state->magic = SSTATE_MAGIC;
state->line = 0;
state->type = PORT_UNKNOWN;
state->custom_divisor = 0;
state->close_delay = 5*HZ/10;
state->closing_wait = 30*HZ;
state->icount.cts = state->icount.dsr =
state->icount.rng = state->icount.dcd = 0;
state->icount.rx = state->icount.tx = 0;
state->icount.frame = state->icount.parity = 0;
state->icount.overrun = state->icount.brk = 0;
state->irq = card->wandev.irq;
INIT_WORK(&card->tty_work, tty_poll_work, (void*)card);
return 0;
}
MODULE_LICENSE("GPL");
/****** End ****************************************************************/