You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1206 lines
33 KiB
1206 lines
33 KiB
20 years ago
|
/* SCTP kernel reference Implementation
|
||
|
* (C) Copyright IBM Corp. 2001, 2004
|
||
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
||
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
||
|
* Copyright (c) 2001 Intel Corp.
|
||
|
* Copyright (c) 2001 La Monte H.P. Yarroll
|
||
|
*
|
||
|
* This file is part of the SCTP kernel reference Implementation
|
||
|
*
|
||
|
* This module provides the abstraction for an SCTP association.
|
||
|
*
|
||
|
* The SCTP reference implementation is free software;
|
||
|
* you can redistribute it and/or modify it under the terms of
|
||
|
* the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2, or (at your option)
|
||
|
* any later version.
|
||
|
*
|
||
|
* The SCTP reference implementation is distributed in the hope that it
|
||
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
||
|
* ************************
|
||
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
* See the GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with GNU CC; see the file COPYING. If not, write to
|
||
|
* the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 02111-1307, USA.
|
||
|
*
|
||
|
* Please send any bug reports or fixes you make to the
|
||
|
* email address(es):
|
||
|
* lksctp developers <lksctp-developers@lists.sourceforge.net>
|
||
|
*
|
||
|
* Or submit a bug report through the following website:
|
||
|
* http://www.sf.net/projects/lksctp
|
||
|
*
|
||
|
* Written or modified by:
|
||
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
||
|
* Karl Knutson <karl@athena.chicago.il.us>
|
||
|
* Jon Grimm <jgrimm@us.ibm.com>
|
||
|
* Xingang Guo <xingang.guo@intel.com>
|
||
|
* Hui Huang <hui.huang@nokia.com>
|
||
|
* Sridhar Samudrala <sri@us.ibm.com>
|
||
|
* Daisy Chang <daisyc@us.ibm.com>
|
||
|
* Ryan Layer <rmlayer@us.ibm.com>
|
||
|
* Kevin Gao <kevin.gao@intel.com>
|
||
|
*
|
||
|
* Any bugs reported given to us we will try to fix... any fixes shared will
|
||
|
* be incorporated into the next SCTP release.
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/fcntl.h>
|
||
|
#include <linux/poll.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/sched.h>
|
||
|
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/in.h>
|
||
|
#include <net/ipv6.h>
|
||
|
#include <net/sctp/sctp.h>
|
||
|
#include <net/sctp/sm.h>
|
||
|
|
||
|
/* Forward declarations for internal functions. */
|
||
|
static void sctp_assoc_bh_rcv(struct sctp_association *asoc);
|
||
|
|
||
|
|
||
|
/* 1st Level Abstractions. */
|
||
|
|
||
|
/* Initialize a new association from provided memory. */
|
||
|
static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
|
||
|
const struct sctp_endpoint *ep,
|
||
|
const struct sock *sk,
|
||
|
sctp_scope_t scope,
|
||
|
int gfp)
|
||
|
{
|
||
|
struct sctp_sock *sp;
|
||
|
int i;
|
||
|
|
||
|
/* Retrieve the SCTP per socket area. */
|
||
|
sp = sctp_sk((struct sock *)sk);
|
||
|
|
||
|
/* Init all variables to a known value. */
|
||
|
memset(asoc, 0, sizeof(struct sctp_association));
|
||
|
|
||
|
/* Discarding const is appropriate here. */
|
||
|
asoc->ep = (struct sctp_endpoint *)ep;
|
||
|
sctp_endpoint_hold(asoc->ep);
|
||
|
|
||
|
/* Hold the sock. */
|
||
|
asoc->base.sk = (struct sock *)sk;
|
||
|
sock_hold(asoc->base.sk);
|
||
|
|
||
|
/* Initialize the common base substructure. */
|
||
|
asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
|
||
|
|
||
|
/* Initialize the object handling fields. */
|
||
|
atomic_set(&asoc->base.refcnt, 1);
|
||
|
asoc->base.dead = 0;
|
||
|
asoc->base.malloced = 0;
|
||
|
|
||
|
/* Initialize the bind addr area. */
|
||
|
sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
|
||
|
rwlock_init(&asoc->base.addr_lock);
|
||
|
|
||
|
asoc->state = SCTP_STATE_CLOSED;
|
||
|
|
||
|
/* Set these values from the socket values, a conversion between
|
||
|
* millsecons to seconds/microseconds must also be done.
|
||
|
*/
|
||
|
asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
|
||
|
asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
|
||
|
* 1000;
|
||
|
asoc->pmtu = 0;
|
||
|
asoc->frag_point = 0;
|
||
|
|
||
|
/* Set the association max_retrans and RTO values from the
|
||
|
* socket values.
|
||
|
*/
|
||
|
asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
|
||
|
asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
|
||
|
asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
|
||
|
asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
|
||
|
|
||
|
asoc->overall_error_count = 0;
|
||
|
|
||
|
/* Initialize the maximum mumber of new data packets that can be sent
|
||
|
* in a burst.
|
||
|
*/
|
||
|
asoc->max_burst = sctp_max_burst;
|
||
|
|
||
|
/* Copy things from the endpoint. */
|
||
|
for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
|
||
|
asoc->timeouts[i] = ep->timeouts[i];
|
||
|
init_timer(&asoc->timers[i]);
|
||
|
asoc->timers[i].function = sctp_timer_events[i];
|
||
|
asoc->timers[i].data = (unsigned long) asoc;
|
||
|
}
|
||
|
|
||
|
/* Pull default initialization values from the sock options.
|
||
|
* Note: This assumes that the values have already been
|
||
|
* validated in the sock.
|
||
|
*/
|
||
|
asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
|
||
|
asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
|
||
|
asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
|
||
|
|
||
|
asoc->max_init_timeo =
|
||
|
msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
|
||
|
|
||
|
/* Allocate storage for the ssnmap after the inbound and outbound
|
||
|
* streams have been negotiated during Init.
|
||
|
*/
|
||
|
asoc->ssnmap = NULL;
|
||
|
|
||
|
/* Set the local window size for receive.
|
||
|
* This is also the rcvbuf space per association.
|
||
|
* RFC 6 - A SCTP receiver MUST be able to receive a minimum of
|
||
|
* 1500 bytes in one SCTP packet.
|
||
|
*/
|
||
|
if (sk->sk_rcvbuf < SCTP_DEFAULT_MINWINDOW)
|
||
|
asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
|
||
|
else
|
||
|
asoc->rwnd = sk->sk_rcvbuf;
|
||
|
|
||
|
asoc->a_rwnd = asoc->rwnd;
|
||
|
|
||
|
asoc->rwnd_over = 0;
|
||
|
|
||
|
/* Use my own max window until I learn something better. */
|
||
|
asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
|
||
|
|
||
|
/* Set the sndbuf size for transmit. */
|
||
|
asoc->sndbuf_used = 0;
|
||
|
|
||
|
init_waitqueue_head(&asoc->wait);
|
||
|
|
||
|
asoc->c.my_vtag = sctp_generate_tag(ep);
|
||
|
asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
|
||
|
asoc->c.peer_vtag = 0;
|
||
|
asoc->c.my_ttag = 0;
|
||
|
asoc->c.peer_ttag = 0;
|
||
|
asoc->c.my_port = ep->base.bind_addr.port;
|
||
|
|
||
|
asoc->c.initial_tsn = sctp_generate_tsn(ep);
|
||
|
|
||
|
asoc->next_tsn = asoc->c.initial_tsn;
|
||
|
|
||
|
asoc->ctsn_ack_point = asoc->next_tsn - 1;
|
||
|
asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
|
||
|
asoc->highest_sacked = asoc->ctsn_ack_point;
|
||
|
asoc->last_cwr_tsn = asoc->ctsn_ack_point;
|
||
|
asoc->unack_data = 0;
|
||
|
|
||
|
SCTP_DEBUG_PRINTK("myctsnap for %s INIT as 0x%x.\n",
|
||
|
asoc->ep->debug_name,
|
||
|
asoc->ctsn_ack_point);
|
||
|
|
||
|
/* ADDIP Section 4.1 Asconf Chunk Procedures
|
||
|
*
|
||
|
* When an endpoint has an ASCONF signaled change to be sent to the
|
||
|
* remote endpoint it should do the following:
|
||
|
* ...
|
||
|
* A2) a serial number should be assigned to the chunk. The serial
|
||
|
* number SHOULD be a monotonically increasing number. The serial
|
||
|
* numbers SHOULD be initialized at the start of the
|
||
|
* association to the same value as the initial TSN.
|
||
|
*/
|
||
|
asoc->addip_serial = asoc->c.initial_tsn;
|
||
|
|
||
|
skb_queue_head_init(&asoc->addip_chunks);
|
||
|
|
||
|
/* Make an empty list of remote transport addresses. */
|
||
|
INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
|
||
|
|
||
|
/* RFC 2960 5.1 Normal Establishment of an Association
|
||
|
*
|
||
|
* After the reception of the first data chunk in an
|
||
|
* association the endpoint must immediately respond with a
|
||
|
* sack to acknowledge the data chunk. Subsequent
|
||
|
* acknowledgements should be done as described in Section
|
||
|
* 6.2.
|
||
|
*
|
||
|
* [We implement this by telling a new association that it
|
||
|
* already received one packet.]
|
||
|
*/
|
||
|
asoc->peer.sack_needed = 1;
|
||
|
|
||
|
/* Assume that the peer recongizes ASCONF until reported otherwise
|
||
|
* via an ERROR chunk.
|
||
|
*/
|
||
|
asoc->peer.asconf_capable = 1;
|
||
|
|
||
|
/* Create an input queue. */
|
||
|
sctp_inq_init(&asoc->base.inqueue);
|
||
|
sctp_inq_set_th_handler(&asoc->base.inqueue,
|
||
|
(void (*)(void *))sctp_assoc_bh_rcv,
|
||
|
asoc);
|
||
|
|
||
|
/* Create an output queue. */
|
||
|
sctp_outq_init(asoc, &asoc->outqueue);
|
||
|
|
||
|
if (!sctp_ulpq_init(&asoc->ulpq, asoc))
|
||
|
goto fail_init;
|
||
|
|
||
|
/* Set up the tsn tracking. */
|
||
|
sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
|
||
|
|
||
|
asoc->need_ecne = 0;
|
||
|
|
||
|
asoc->assoc_id = 0;
|
||
|
|
||
|
/* Assume that peer would support both address types unless we are
|
||
|
* told otherwise.
|
||
|
*/
|
||
|
asoc->peer.ipv4_address = 1;
|
||
|
asoc->peer.ipv6_address = 1;
|
||
|
INIT_LIST_HEAD(&asoc->asocs);
|
||
|
|
||
|
asoc->autoclose = sp->autoclose;
|
||
|
|
||
|
asoc->default_stream = sp->default_stream;
|
||
|
asoc->default_ppid = sp->default_ppid;
|
||
|
asoc->default_flags = sp->default_flags;
|
||
|
asoc->default_context = sp->default_context;
|
||
|
asoc->default_timetolive = sp->default_timetolive;
|
||
|
|
||
|
return asoc;
|
||
|
|
||
|
fail_init:
|
||
|
sctp_endpoint_put(asoc->ep);
|
||
|
sock_put(asoc->base.sk);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Allocate and initialize a new association */
|
||
|
struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
|
||
|
const struct sock *sk,
|
||
|
sctp_scope_t scope, int gfp)
|
||
|
{
|
||
|
struct sctp_association *asoc;
|
||
|
|
||
|
asoc = t_new(struct sctp_association, gfp);
|
||
|
if (!asoc)
|
||
|
goto fail;
|
||
|
|
||
|
if (!sctp_association_init(asoc, ep, sk, scope, gfp))
|
||
|
goto fail_init;
|
||
|
|
||
|
asoc->base.malloced = 1;
|
||
|
SCTP_DBG_OBJCNT_INC(assoc);
|
||
|
|
||
|
return asoc;
|
||
|
|
||
|
fail_init:
|
||
|
kfree(asoc);
|
||
|
fail:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Free this association if possible. There may still be users, so
|
||
|
* the actual deallocation may be delayed.
|
||
|
*/
|
||
|
void sctp_association_free(struct sctp_association *asoc)
|
||
|
{
|
||
|
struct sock *sk = asoc->base.sk;
|
||
|
struct sctp_transport *transport;
|
||
|
struct list_head *pos, *temp;
|
||
|
int i;
|
||
|
|
||
|
list_del(&asoc->asocs);
|
||
|
|
||
|
/* Decrement the backlog value for a TCP-style listening socket. */
|
||
|
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
|
||
|
sk->sk_ack_backlog--;
|
||
|
|
||
|
/* Mark as dead, so other users can know this structure is
|
||
|
* going away.
|
||
|
*/
|
||
|
asoc->base.dead = 1;
|
||
|
|
||
|
/* Dispose of any data lying around in the outqueue. */
|
||
|
sctp_outq_free(&asoc->outqueue);
|
||
|
|
||
|
/* Dispose of any pending messages for the upper layer. */
|
||
|
sctp_ulpq_free(&asoc->ulpq);
|
||
|
|
||
|
/* Dispose of any pending chunks on the inqueue. */
|
||
|
sctp_inq_free(&asoc->base.inqueue);
|
||
|
|
||
|
/* Free ssnmap storage. */
|
||
|
sctp_ssnmap_free(asoc->ssnmap);
|
||
|
|
||
|
/* Clean up the bound address list. */
|
||
|
sctp_bind_addr_free(&asoc->base.bind_addr);
|
||
|
|
||
|
/* Do we need to go through all of our timers and
|
||
|
* delete them? To be safe we will try to delete all, but we
|
||
|
* should be able to go through and make a guess based
|
||
|
* on our state.
|
||
|
*/
|
||
|
for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
|
||
|
if (timer_pending(&asoc->timers[i]) &&
|
||
|
del_timer(&asoc->timers[i]))
|
||
|
sctp_association_put(asoc);
|
||
|
}
|
||
|
|
||
|
/* Free peer's cached cookie. */
|
||
|
if (asoc->peer.cookie) {
|
||
|
kfree(asoc->peer.cookie);
|
||
|
}
|
||
|
|
||
|
/* Release the transport structures. */
|
||
|
list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
|
||
|
transport = list_entry(pos, struct sctp_transport, transports);
|
||
|
list_del(pos);
|
||
|
sctp_transport_free(transport);
|
||
|
}
|
||
|
|
||
|
/* Free any cached ASCONF_ACK chunk. */
|
||
|
if (asoc->addip_last_asconf_ack)
|
||
|
sctp_chunk_free(asoc->addip_last_asconf_ack);
|
||
|
|
||
|
/* Free any cached ASCONF chunk. */
|
||
|
if (asoc->addip_last_asconf)
|
||
|
sctp_chunk_free(asoc->addip_last_asconf);
|
||
|
|
||
|
sctp_association_put(asoc);
|
||
|
}
|
||
|
|
||
|
/* Cleanup and free up an association. */
|
||
|
static void sctp_association_destroy(struct sctp_association *asoc)
|
||
|
{
|
||
|
SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
|
||
|
|
||
|
sctp_endpoint_put(asoc->ep);
|
||
|
sock_put(asoc->base.sk);
|
||
|
|
||
|
if (asoc->assoc_id != 0) {
|
||
|
spin_lock_bh(&sctp_assocs_id_lock);
|
||
|
idr_remove(&sctp_assocs_id, asoc->assoc_id);
|
||
|
spin_unlock_bh(&sctp_assocs_id_lock);
|
||
|
}
|
||
|
|
||
|
if (asoc->base.malloced) {
|
||
|
kfree(asoc);
|
||
|
SCTP_DBG_OBJCNT_DEC(assoc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Change the primary destination address for the peer. */
|
||
|
void sctp_assoc_set_primary(struct sctp_association *asoc,
|
||
|
struct sctp_transport *transport)
|
||
|
{
|
||
|
asoc->peer.primary_path = transport;
|
||
|
|
||
|
/* Set a default msg_name for events. */
|
||
|
memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
|
||
|
sizeof(union sctp_addr));
|
||
|
|
||
|
/* If the primary path is changing, assume that the
|
||
|
* user wants to use this new path.
|
||
|
*/
|
||
|
if (transport->active)
|
||
|
asoc->peer.active_path = transport;
|
||
|
|
||
|
/*
|
||
|
* SFR-CACC algorithm:
|
||
|
* Upon the receipt of a request to change the primary
|
||
|
* destination address, on the data structure for the new
|
||
|
* primary destination, the sender MUST do the following:
|
||
|
*
|
||
|
* 1) If CHANGEOVER_ACTIVE is set, then there was a switch
|
||
|
* to this destination address earlier. The sender MUST set
|
||
|
* CYCLING_CHANGEOVER to indicate that this switch is a
|
||
|
* double switch to the same destination address.
|
||
|
*/
|
||
|
if (transport->cacc.changeover_active)
|
||
|
transport->cacc.cycling_changeover = 1;
|
||
|
|
||
|
/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
|
||
|
* a changeover has occurred.
|
||
|
*/
|
||
|
transport->cacc.changeover_active = 1;
|
||
|
|
||
|
/* 3) The sender MUST store the next TSN to be sent in
|
||
|
* next_tsn_at_change.
|
||
|
*/
|
||
|
transport->cacc.next_tsn_at_change = asoc->next_tsn;
|
||
|
}
|
||
|
|
||
|
/* Add a transport address to an association. */
|
||
|
struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
|
||
|
const union sctp_addr *addr,
|
||
|
int gfp)
|
||
|
{
|
||
|
struct sctp_transport *peer;
|
||
|
struct sctp_sock *sp;
|
||
|
unsigned short port;
|
||
|
|
||
|
sp = sctp_sk(asoc->base.sk);
|
||
|
|
||
|
/* AF_INET and AF_INET6 share common port field. */
|
||
|
port = addr->v4.sin_port;
|
||
|
|
||
|
/* Set the port if it has not been set yet. */
|
||
|
if (0 == asoc->peer.port)
|
||
|
asoc->peer.port = port;
|
||
|
|
||
|
/* Check to see if this is a duplicate. */
|
||
|
peer = sctp_assoc_lookup_paddr(asoc, addr);
|
||
|
if (peer)
|
||
|
return peer;
|
||
|
|
||
|
peer = sctp_transport_new(addr, gfp);
|
||
|
if (!peer)
|
||
|
return NULL;
|
||
|
|
||
|
sctp_transport_set_owner(peer, asoc);
|
||
|
|
||
|
/* Initialize the pmtu of the transport. */
|
||
|
sctp_transport_pmtu(peer);
|
||
|
|
||
|
/* If this is the first transport addr on this association,
|
||
|
* initialize the association PMTU to the peer's PMTU.
|
||
|
* If not and the current association PMTU is higher than the new
|
||
|
* peer's PMTU, reset the association PMTU to the new peer's PMTU.
|
||
|
*/
|
||
|
if (asoc->pmtu)
|
||
|
asoc->pmtu = min_t(int, peer->pmtu, asoc->pmtu);
|
||
|
else
|
||
|
asoc->pmtu = peer->pmtu;
|
||
|
|
||
|
SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
|
||
|
"%d\n", asoc, asoc->pmtu);
|
||
|
|
||
|
asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
|
||
|
|
||
|
/* The asoc->peer.port might not be meaningful yet, but
|
||
|
* initialize the packet structure anyway.
|
||
|
*/
|
||
|
sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
|
||
|
asoc->peer.port);
|
||
|
|
||
|
/* 7.2.1 Slow-Start
|
||
|
*
|
||
|
* o The initial cwnd before DATA transmission or after a sufficiently
|
||
|
* long idle period MUST be set to
|
||
|
* min(4*MTU, max(2*MTU, 4380 bytes))
|
||
|
*
|
||
|
* o The initial value of ssthresh MAY be arbitrarily high
|
||
|
* (for example, implementations MAY use the size of the
|
||
|
* receiver advertised window).
|
||
|
*/
|
||
|
peer->cwnd = min(4*asoc->pmtu, max_t(__u32, 2*asoc->pmtu, 4380));
|
||
|
|
||
|
/* At this point, we may not have the receiver's advertised window,
|
||
|
* so initialize ssthresh to the default value and it will be set
|
||
|
* later when we process the INIT.
|
||
|
*/
|
||
|
peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
|
||
|
|
||
|
peer->partial_bytes_acked = 0;
|
||
|
peer->flight_size = 0;
|
||
|
|
||
|
/* By default, enable heartbeat for peer address. */
|
||
|
peer->hb_allowed = 1;
|
||
|
|
||
|
/* Initialize the peer's heartbeat interval based on the
|
||
|
* sock configured value.
|
||
|
*/
|
||
|
peer->hb_interval = msecs_to_jiffies(sp->paddrparam.spp_hbinterval);
|
||
|
|
||
|
/* Set the path max_retrans. */
|
||
|
peer->max_retrans = sp->paddrparam.spp_pathmaxrxt;
|
||
|
|
||
|
/* Set the transport's RTO.initial value */
|
||
|
peer->rto = asoc->rto_initial;
|
||
|
|
||
|
/* Attach the remote transport to our asoc. */
|
||
|
list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
|
||
|
|
||
|
/* If we do not yet have a primary path, set one. */
|
||
|
if (!asoc->peer.primary_path) {
|
||
|
sctp_assoc_set_primary(asoc, peer);
|
||
|
asoc->peer.retran_path = peer;
|
||
|
}
|
||
|
|
||
|
if (asoc->peer.active_path == asoc->peer.retran_path)
|
||
|
asoc->peer.retran_path = peer;
|
||
|
|
||
|
return peer;
|
||
|
}
|
||
|
|
||
|
/* Delete a transport address from an association. */
|
||
|
void sctp_assoc_del_peer(struct sctp_association *asoc,
|
||
|
const union sctp_addr *addr)
|
||
|
{
|
||
|
struct list_head *pos;
|
||
|
struct list_head *temp;
|
||
|
struct sctp_transport *peer = NULL;
|
||
|
struct sctp_transport *transport;
|
||
|
|
||
|
list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
|
||
|
transport = list_entry(pos, struct sctp_transport, transports);
|
||
|
if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
|
||
|
peer = transport;
|
||
|
list_del(pos);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The address we want delete is not in the association. */
|
||
|
if (!peer)
|
||
|
return;
|
||
|
|
||
|
/* Get the first transport of asoc. */
|
||
|
pos = asoc->peer.transport_addr_list.next;
|
||
|
transport = list_entry(pos, struct sctp_transport, transports);
|
||
|
|
||
|
/* Update any entries that match the peer to be deleted. */
|
||
|
if (asoc->peer.primary_path == peer)
|
||
|
sctp_assoc_set_primary(asoc, transport);
|
||
|
if (asoc->peer.active_path == peer)
|
||
|
asoc->peer.active_path = transport;
|
||
|
if (asoc->peer.retran_path == peer)
|
||
|
asoc->peer.retran_path = transport;
|
||
|
if (asoc->peer.last_data_from == peer)
|
||
|
asoc->peer.last_data_from = transport;
|
||
|
|
||
|
sctp_transport_free(peer);
|
||
|
}
|
||
|
|
||
|
/* Lookup a transport by address. */
|
||
|
struct sctp_transport *sctp_assoc_lookup_paddr(
|
||
|
const struct sctp_association *asoc,
|
||
|
const union sctp_addr *address)
|
||
|
{
|
||
|
struct sctp_transport *t;
|
||
|
struct list_head *pos;
|
||
|
|
||
|
/* Cycle through all transports searching for a peer address. */
|
||
|
|
||
|
list_for_each(pos, &asoc->peer.transport_addr_list) {
|
||
|
t = list_entry(pos, struct sctp_transport, transports);
|
||
|
if (sctp_cmp_addr_exact(address, &t->ipaddr))
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Engage in transport control operations.
|
||
|
* Mark the transport up or down and send a notification to the user.
|
||
|
* Select and update the new active and retran paths.
|
||
|
*/
|
||
|
void sctp_assoc_control_transport(struct sctp_association *asoc,
|
||
|
struct sctp_transport *transport,
|
||
|
sctp_transport_cmd_t command,
|
||
|
sctp_sn_error_t error)
|
||
|
{
|
||
|
struct sctp_transport *t = NULL;
|
||
|
struct sctp_transport *first;
|
||
|
struct sctp_transport *second;
|
||
|
struct sctp_ulpevent *event;
|
||
|
struct list_head *pos;
|
||
|
int spc_state = 0;
|
||
|
|
||
|
/* Record the transition on the transport. */
|
||
|
switch (command) {
|
||
|
case SCTP_TRANSPORT_UP:
|
||
|
transport->active = SCTP_ACTIVE;
|
||
|
spc_state = SCTP_ADDR_AVAILABLE;
|
||
|
break;
|
||
|
|
||
|
case SCTP_TRANSPORT_DOWN:
|
||
|
transport->active = SCTP_INACTIVE;
|
||
|
spc_state = SCTP_ADDR_UNREACHABLE;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return;
|
||
|
};
|
||
|
|
||
|
/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
|
||
|
* user.
|
||
|
*/
|
||
|
event = sctp_ulpevent_make_peer_addr_change(asoc,
|
||
|
(struct sockaddr_storage *) &transport->ipaddr,
|
||
|
0, spc_state, error, GFP_ATOMIC);
|
||
|
if (event)
|
||
|
sctp_ulpq_tail_event(&asoc->ulpq, event);
|
||
|
|
||
|
/* Select new active and retran paths. */
|
||
|
|
||
|
/* Look for the two most recently used active transports.
|
||
|
*
|
||
|
* This code produces the wrong ordering whenever jiffies
|
||
|
* rolls over, but we still get usable transports, so we don't
|
||
|
* worry about it.
|
||
|
*/
|
||
|
first = NULL; second = NULL;
|
||
|
|
||
|
list_for_each(pos, &asoc->peer.transport_addr_list) {
|
||
|
t = list_entry(pos, struct sctp_transport, transports);
|
||
|
|
||
|
if (!t->active)
|
||
|
continue;
|
||
|
if (!first || t->last_time_heard > first->last_time_heard) {
|
||
|
second = first;
|
||
|
first = t;
|
||
|
}
|
||
|
if (!second || t->last_time_heard > second->last_time_heard)
|
||
|
second = t;
|
||
|
}
|
||
|
|
||
|
/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
|
||
|
*
|
||
|
* By default, an endpoint should always transmit to the
|
||
|
* primary path, unless the SCTP user explicitly specifies the
|
||
|
* destination transport address (and possibly source
|
||
|
* transport address) to use.
|
||
|
*
|
||
|
* [If the primary is active but not most recent, bump the most
|
||
|
* recently used transport.]
|
||
|
*/
|
||
|
if (asoc->peer.primary_path->active &&
|
||
|
first != asoc->peer.primary_path) {
|
||
|
second = first;
|
||
|
first = asoc->peer.primary_path;
|
||
|
}
|
||
|
|
||
|
/* If we failed to find a usable transport, just camp on the
|
||
|
* primary, even if it is inactive.
|
||
|
*/
|
||
|
if (!first) {
|
||
|
first = asoc->peer.primary_path;
|
||
|
second = asoc->peer.primary_path;
|
||
|
}
|
||
|
|
||
|
/* Set the active and retran transports. */
|
||
|
asoc->peer.active_path = first;
|
||
|
asoc->peer.retran_path = second;
|
||
|
}
|
||
|
|
||
|
/* Hold a reference to an association. */
|
||
|
void sctp_association_hold(struct sctp_association *asoc)
|
||
|
{
|
||
|
atomic_inc(&asoc->base.refcnt);
|
||
|
}
|
||
|
|
||
|
/* Release a reference to an association and cleanup
|
||
|
* if there are no more references.
|
||
|
*/
|
||
|
void sctp_association_put(struct sctp_association *asoc)
|
||
|
{
|
||
|
if (atomic_dec_and_test(&asoc->base.refcnt))
|
||
|
sctp_association_destroy(asoc);
|
||
|
}
|
||
|
|
||
|
/* Allocate the next TSN, Transmission Sequence Number, for the given
|
||
|
* association.
|
||
|
*/
|
||
|
__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
|
||
|
{
|
||
|
/* From Section 1.6 Serial Number Arithmetic:
|
||
|
* Transmission Sequence Numbers wrap around when they reach
|
||
|
* 2**32 - 1. That is, the next TSN a DATA chunk MUST use
|
||
|
* after transmitting TSN = 2*32 - 1 is TSN = 0.
|
||
|
*/
|
||
|
__u32 retval = asoc->next_tsn;
|
||
|
asoc->next_tsn++;
|
||
|
asoc->unack_data++;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Compare two addresses to see if they match. Wildcard addresses
|
||
|
* only match themselves.
|
||
|
*/
|
||
|
int sctp_cmp_addr_exact(const union sctp_addr *ss1,
|
||
|
const union sctp_addr *ss2)
|
||
|
{
|
||
|
struct sctp_af *af;
|
||
|
|
||
|
af = sctp_get_af_specific(ss1->sa.sa_family);
|
||
|
if (unlikely(!af))
|
||
|
return 0;
|
||
|
|
||
|
return af->cmp_addr(ss1, ss2);
|
||
|
}
|
||
|
|
||
|
/* Return an ecne chunk to get prepended to a packet.
|
||
|
* Note: We are sly and return a shared, prealloced chunk. FIXME:
|
||
|
* No we don't, but we could/should.
|
||
|
*/
|
||
|
struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
|
||
|
{
|
||
|
struct sctp_chunk *chunk;
|
||
|
|
||
|
/* Send ECNE if needed.
|
||
|
* Not being able to allocate a chunk here is not deadly.
|
||
|
*/
|
||
|
if (asoc->need_ecne)
|
||
|
chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
|
||
|
else
|
||
|
chunk = NULL;
|
||
|
|
||
|
return chunk;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find which transport this TSN was sent on.
|
||
|
*/
|
||
|
struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
|
||
|
__u32 tsn)
|
||
|
{
|
||
|
struct sctp_transport *active;
|
||
|
struct sctp_transport *match;
|
||
|
struct list_head *entry, *pos;
|
||
|
struct sctp_transport *transport;
|
||
|
struct sctp_chunk *chunk;
|
||
|
__u32 key = htonl(tsn);
|
||
|
|
||
|
match = NULL;
|
||
|
|
||
|
/*
|
||
|
* FIXME: In general, find a more efficient data structure for
|
||
|
* searching.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The general strategy is to search each transport's transmitted
|
||
|
* list. Return which transport this TSN lives on.
|
||
|
*
|
||
|
* Let's be hopeful and check the active_path first.
|
||
|
* Another optimization would be to know if there is only one
|
||
|
* outbound path and not have to look for the TSN at all.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
active = asoc->peer.active_path;
|
||
|
|
||
|
list_for_each(entry, &active->transmitted) {
|
||
|
chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
|
||
|
|
||
|
if (key == chunk->subh.data_hdr->tsn) {
|
||
|
match = active;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If not found, go search all the other transports. */
|
||
|
list_for_each(pos, &asoc->peer.transport_addr_list) {
|
||
|
transport = list_entry(pos, struct sctp_transport, transports);
|
||
|
|
||
|
if (transport == active)
|
||
|
break;
|
||
|
list_for_each(entry, &transport->transmitted) {
|
||
|
chunk = list_entry(entry, struct sctp_chunk,
|
||
|
transmitted_list);
|
||
|
if (key == chunk->subh.data_hdr->tsn) {
|
||
|
match = transport;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
return match;
|
||
|
}
|
||
|
|
||
|
/* Is this the association we are looking for? */
|
||
|
struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
|
||
|
const union sctp_addr *laddr,
|
||
|
const union sctp_addr *paddr)
|
||
|
{
|
||
|
struct sctp_transport *transport;
|
||
|
|
||
|
sctp_read_lock(&asoc->base.addr_lock);
|
||
|
|
||
|
if ((asoc->base.bind_addr.port == laddr->v4.sin_port) &&
|
||
|
(asoc->peer.port == paddr->v4.sin_port)) {
|
||
|
transport = sctp_assoc_lookup_paddr(asoc, paddr);
|
||
|
if (!transport)
|
||
|
goto out;
|
||
|
|
||
|
if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
|
||
|
sctp_sk(asoc->base.sk)))
|
||
|
goto out;
|
||
|
}
|
||
|
transport = NULL;
|
||
|
|
||
|
out:
|
||
|
sctp_read_unlock(&asoc->base.addr_lock);
|
||
|
return transport;
|
||
|
}
|
||
|
|
||
|
/* Do delayed input processing. This is scheduled by sctp_rcv(). */
|
||
|
static void sctp_assoc_bh_rcv(struct sctp_association *asoc)
|
||
|
{
|
||
|
struct sctp_endpoint *ep;
|
||
|
struct sctp_chunk *chunk;
|
||
|
struct sock *sk;
|
||
|
struct sctp_inq *inqueue;
|
||
|
int state;
|
||
|
sctp_subtype_t subtype;
|
||
|
int error = 0;
|
||
|
|
||
|
/* The association should be held so we should be safe. */
|
||
|
ep = asoc->ep;
|
||
|
sk = asoc->base.sk;
|
||
|
|
||
|
inqueue = &asoc->base.inqueue;
|
||
|
sctp_association_hold(asoc);
|
||
|
while (NULL != (chunk = sctp_inq_pop(inqueue))) {
|
||
|
state = asoc->state;
|
||
|
subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
|
||
|
|
||
|
/* Remember where the last DATA chunk came from so we
|
||
|
* know where to send the SACK.
|
||
|
*/
|
||
|
if (sctp_chunk_is_data(chunk))
|
||
|
asoc->peer.last_data_from = chunk->transport;
|
||
|
else
|
||
|
SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
|
||
|
|
||
|
if (chunk->transport)
|
||
|
chunk->transport->last_time_heard = jiffies;
|
||
|
|
||
|
/* Run through the state machine. */
|
||
|
error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
|
||
|
state, ep, asoc, chunk, GFP_ATOMIC);
|
||
|
|
||
|
/* Check to see if the association is freed in response to
|
||
|
* the incoming chunk. If so, get out of the while loop.
|
||
|
*/
|
||
|
if (asoc->base.dead)
|
||
|
break;
|
||
|
|
||
|
/* If there is an error on chunk, discard this packet. */
|
||
|
if (error && chunk)
|
||
|
chunk->pdiscard = 1;
|
||
|
}
|
||
|
sctp_association_put(asoc);
|
||
|
}
|
||
|
|
||
|
/* This routine moves an association from its old sk to a new sk. */
|
||
|
void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
|
||
|
{
|
||
|
struct sctp_sock *newsp = sctp_sk(newsk);
|
||
|
struct sock *oldsk = assoc->base.sk;
|
||
|
|
||
|
/* Delete the association from the old endpoint's list of
|
||
|
* associations.
|
||
|
*/
|
||
|
list_del_init(&assoc->asocs);
|
||
|
|
||
|
/* Decrement the backlog value for a TCP-style socket. */
|
||
|
if (sctp_style(oldsk, TCP))
|
||
|
oldsk->sk_ack_backlog--;
|
||
|
|
||
|
/* Release references to the old endpoint and the sock. */
|
||
|
sctp_endpoint_put(assoc->ep);
|
||
|
sock_put(assoc->base.sk);
|
||
|
|
||
|
/* Get a reference to the new endpoint. */
|
||
|
assoc->ep = newsp->ep;
|
||
|
sctp_endpoint_hold(assoc->ep);
|
||
|
|
||
|
/* Get a reference to the new sock. */
|
||
|
assoc->base.sk = newsk;
|
||
|
sock_hold(assoc->base.sk);
|
||
|
|
||
|
/* Add the association to the new endpoint's list of associations. */
|
||
|
sctp_endpoint_add_asoc(newsp->ep, assoc);
|
||
|
}
|
||
|
|
||
|
/* Update an association (possibly from unexpected COOKIE-ECHO processing). */
|
||
|
void sctp_assoc_update(struct sctp_association *asoc,
|
||
|
struct sctp_association *new)
|
||
|
{
|
||
|
struct sctp_transport *trans;
|
||
|
struct list_head *pos, *temp;
|
||
|
|
||
|
/* Copy in new parameters of peer. */
|
||
|
asoc->c = new->c;
|
||
|
asoc->peer.rwnd = new->peer.rwnd;
|
||
|
asoc->peer.sack_needed = new->peer.sack_needed;
|
||
|
asoc->peer.i = new->peer.i;
|
||
|
sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
|
||
|
asoc->peer.i.initial_tsn);
|
||
|
|
||
|
/* Remove any peer addresses not present in the new association. */
|
||
|
list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
|
||
|
trans = list_entry(pos, struct sctp_transport, transports);
|
||
|
if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
|
||
|
sctp_assoc_del_peer(asoc, &trans->ipaddr);
|
||
|
}
|
||
|
|
||
|
/* If the case is A (association restart), use
|
||
|
* initial_tsn as next_tsn. If the case is B, use
|
||
|
* current next_tsn in case data sent to peer
|
||
|
* has been discarded and needs retransmission.
|
||
|
*/
|
||
|
if (asoc->state >= SCTP_STATE_ESTABLISHED) {
|
||
|
asoc->next_tsn = new->next_tsn;
|
||
|
asoc->ctsn_ack_point = new->ctsn_ack_point;
|
||
|
asoc->adv_peer_ack_point = new->adv_peer_ack_point;
|
||
|
|
||
|
/* Reinitialize SSN for both local streams
|
||
|
* and peer's streams.
|
||
|
*/
|
||
|
sctp_ssnmap_clear(asoc->ssnmap);
|
||
|
|
||
|
} else {
|
||
|
/* Add any peer addresses from the new association. */
|
||
|
list_for_each(pos, &new->peer.transport_addr_list) {
|
||
|
trans = list_entry(pos, struct sctp_transport,
|
||
|
transports);
|
||
|
if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
|
||
|
sctp_assoc_add_peer(asoc, &trans->ipaddr,
|
||
|
GFP_ATOMIC);
|
||
|
}
|
||
|
|
||
|
asoc->ctsn_ack_point = asoc->next_tsn - 1;
|
||
|
asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
|
||
|
if (!asoc->ssnmap) {
|
||
|
/* Move the ssnmap. */
|
||
|
asoc->ssnmap = new->ssnmap;
|
||
|
new->ssnmap = NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Update the retran path for sending a retransmitted packet.
|
||
|
* Round-robin through the active transports, else round-robin
|
||
|
* through the inactive transports as this is the next best thing
|
||
|
* we can try.
|
||
|
*/
|
||
|
void sctp_assoc_update_retran_path(struct sctp_association *asoc)
|
||
|
{
|
||
|
struct sctp_transport *t, *next;
|
||
|
struct list_head *head = &asoc->peer.transport_addr_list;
|
||
|
struct list_head *pos;
|
||
|
|
||
|
/* Find the next transport in a round-robin fashion. */
|
||
|
t = asoc->peer.retran_path;
|
||
|
pos = &t->transports;
|
||
|
next = NULL;
|
||
|
|
||
|
while (1) {
|
||
|
/* Skip the head. */
|
||
|
if (pos->next == head)
|
||
|
pos = head->next;
|
||
|
else
|
||
|
pos = pos->next;
|
||
|
|
||
|
t = list_entry(pos, struct sctp_transport, transports);
|
||
|
|
||
|
/* Try to find an active transport. */
|
||
|
|
||
|
if (t->active) {
|
||
|
break;
|
||
|
} else {
|
||
|
/* Keep track of the next transport in case
|
||
|
* we don't find any active transport.
|
||
|
*/
|
||
|
if (!next)
|
||
|
next = t;
|
||
|
}
|
||
|
|
||
|
/* We have exhausted the list, but didn't find any
|
||
|
* other active transports. If so, use the next
|
||
|
* transport.
|
||
|
*/
|
||
|
if (t == asoc->peer.retran_path) {
|
||
|
t = next;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
asoc->peer.retran_path = t;
|
||
|
}
|
||
|
|
||
|
/* Choose the transport for sending a SHUTDOWN packet. */
|
||
|
struct sctp_transport *sctp_assoc_choose_shutdown_transport(
|
||
|
struct sctp_association *asoc)
|
||
|
{
|
||
|
/* If this is the first time SHUTDOWN is sent, use the active path,
|
||
|
* else use the retran path. If the last SHUTDOWN was sent over the
|
||
|
* retran path, update the retran path and use it.
|
||
|
*/
|
||
|
if (!asoc->shutdown_last_sent_to)
|
||
|
return asoc->peer.active_path;
|
||
|
else {
|
||
|
if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
|
||
|
sctp_assoc_update_retran_path(asoc);
|
||
|
return asoc->peer.retran_path;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/* Update the association's pmtu and frag_point by going through all the
|
||
|
* transports. This routine is called when a transport's PMTU has changed.
|
||
|
*/
|
||
|
void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
|
||
|
{
|
||
|
struct sctp_transport *t;
|
||
|
struct list_head *pos;
|
||
|
__u32 pmtu = 0;
|
||
|
|
||
|
if (!asoc)
|
||
|
return;
|
||
|
|
||
|
/* Get the lowest pmtu of all the transports. */
|
||
|
list_for_each(pos, &asoc->peer.transport_addr_list) {
|
||
|
t = list_entry(pos, struct sctp_transport, transports);
|
||
|
if (!pmtu || (t->pmtu < pmtu))
|
||
|
pmtu = t->pmtu;
|
||
|
}
|
||
|
|
||
|
if (pmtu) {
|
||
|
struct sctp_sock *sp = sctp_sk(asoc->base.sk);
|
||
|
asoc->pmtu = pmtu;
|
||
|
asoc->frag_point = sctp_frag_point(sp, pmtu);
|
||
|
}
|
||
|
|
||
|
SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
|
||
|
__FUNCTION__, asoc, asoc->pmtu, asoc->frag_point);
|
||
|
}
|
||
|
|
||
|
/* Should we send a SACK to update our peer? */
|
||
|
static inline int sctp_peer_needs_update(struct sctp_association *asoc)
|
||
|
{
|
||
|
switch (asoc->state) {
|
||
|
case SCTP_STATE_ESTABLISHED:
|
||
|
case SCTP_STATE_SHUTDOWN_PENDING:
|
||
|
case SCTP_STATE_SHUTDOWN_RECEIVED:
|
||
|
case SCTP_STATE_SHUTDOWN_SENT:
|
||
|
if ((asoc->rwnd > asoc->a_rwnd) &&
|
||
|
((asoc->rwnd - asoc->a_rwnd) >=
|
||
|
min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pmtu)))
|
||
|
return 1;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Increase asoc's rwnd by len and send any window update SACK if needed. */
|
||
|
void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
|
||
|
{
|
||
|
struct sctp_chunk *sack;
|
||
|
struct timer_list *timer;
|
||
|
|
||
|
if (asoc->rwnd_over) {
|
||
|
if (asoc->rwnd_over >= len) {
|
||
|
asoc->rwnd_over -= len;
|
||
|
} else {
|
||
|
asoc->rwnd += (len - asoc->rwnd_over);
|
||
|
asoc->rwnd_over = 0;
|
||
|
}
|
||
|
} else {
|
||
|
asoc->rwnd += len;
|
||
|
}
|
||
|
|
||
|
SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
|
||
|
"- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
|
||
|
asoc->rwnd_over, asoc->a_rwnd);
|
||
|
|
||
|
/* Send a window update SACK if the rwnd has increased by at least the
|
||
|
* minimum of the association's PMTU and half of the receive buffer.
|
||
|
* The algorithm used is similar to the one described in
|
||
|
* Section 4.2.3.3 of RFC 1122.
|
||
|
*/
|
||
|
if (sctp_peer_needs_update(asoc)) {
|
||
|
asoc->a_rwnd = asoc->rwnd;
|
||
|
SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
|
||
|
"rwnd: %u a_rwnd: %u\n", __FUNCTION__,
|
||
|
asoc, asoc->rwnd, asoc->a_rwnd);
|
||
|
sack = sctp_make_sack(asoc);
|
||
|
if (!sack)
|
||
|
return;
|
||
|
|
||
|
asoc->peer.sack_needed = 0;
|
||
|
|
||
|
sctp_outq_tail(&asoc->outqueue, sack);
|
||
|
|
||
|
/* Stop the SACK timer. */
|
||
|
timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
|
||
|
if (timer_pending(timer) && del_timer(timer))
|
||
|
sctp_association_put(asoc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Decrease asoc's rwnd by len. */
|
||
|
void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
|
||
|
{
|
||
|
SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
|
||
|
SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
|
||
|
if (asoc->rwnd >= len) {
|
||
|
asoc->rwnd -= len;
|
||
|
} else {
|
||
|
asoc->rwnd_over = len - asoc->rwnd;
|
||
|
asoc->rwnd = 0;
|
||
|
}
|
||
|
SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
|
||
|
__FUNCTION__, asoc, len, asoc->rwnd,
|
||
|
asoc->rwnd_over);
|
||
|
}
|
||
|
|
||
|
/* Build the bind address list for the association based on info from the
|
||
|
* local endpoint and the remote peer.
|
||
|
*/
|
||
|
int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, int gfp)
|
||
|
{
|
||
|
sctp_scope_t scope;
|
||
|
int flags;
|
||
|
|
||
|
/* Use scoping rules to determine the subset of addresses from
|
||
|
* the endpoint.
|
||
|
*/
|
||
|
scope = sctp_scope(&asoc->peer.active_path->ipaddr);
|
||
|
flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
|
||
|
if (asoc->peer.ipv4_address)
|
||
|
flags |= SCTP_ADDR4_PEERSUPP;
|
||
|
if (asoc->peer.ipv6_address)
|
||
|
flags |= SCTP_ADDR6_PEERSUPP;
|
||
|
|
||
|
return sctp_bind_addr_copy(&asoc->base.bind_addr,
|
||
|
&asoc->ep->base.bind_addr,
|
||
|
scope, gfp, flags);
|
||
|
}
|
||
|
|
||
|
/* Build the association's bind address list from the cookie. */
|
||
|
int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
|
||
|
struct sctp_cookie *cookie, int gfp)
|
||
|
{
|
||
|
int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
|
||
|
int var_size3 = cookie->raw_addr_list_len;
|
||
|
__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
|
||
|
|
||
|
return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
|
||
|
asoc->ep->base.bind_addr.port, gfp);
|
||
|
}
|
||
|
|
||
|
/* Lookup laddr in the bind address list of an association. */
|
||
|
int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
|
||
|
const union sctp_addr *laddr)
|
||
|
{
|
||
|
int found;
|
||
|
|
||
|
sctp_read_lock(&asoc->base.addr_lock);
|
||
|
if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
|
||
|
sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
|
||
|
sctp_sk(asoc->base.sk))) {
|
||
|
found = 1;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
found = 0;
|
||
|
out:
|
||
|
sctp_read_unlock(&asoc->base.addr_lock);
|
||
|
return found;
|
||
|
}
|