You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/include/linux/pm.h

354 lines
12 KiB

/*
* pm.h - Power management interface
*
* Copyright (C) 2000 Andrew Henroid
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _LINUX_PM_H
#define _LINUX_PM_H
#ifdef __KERNEL__
#include <linux/list.h>
#include <asm/atomic.h>
/*
* Power management requests... these are passed to pm_send_all() and friends.
*
* these functions are old and deprecated, see below.
*/
typedef int __bitwise pm_request_t;
#define PM_SUSPEND ((__force pm_request_t) 1) /* enter D1-D3 */
#define PM_RESUME ((__force pm_request_t) 2) /* enter D0 */
/*
* Device types... these are passed to pm_register
*/
typedef int __bitwise pm_dev_t;
#define PM_UNKNOWN_DEV ((__force pm_dev_t) 0) /* generic */
#define PM_SYS_DEV ((__force pm_dev_t) 1) /* system device (fan, KB controller, ...) */
#define PM_PCI_DEV ((__force pm_dev_t) 2) /* PCI device */
#define PM_USB_DEV ((__force pm_dev_t) 3) /* USB device */
#define PM_SCSI_DEV ((__force pm_dev_t) 4) /* SCSI device */
#define PM_ISA_DEV ((__force pm_dev_t) 5) /* ISA device */
#define PM_MTD_DEV ((__force pm_dev_t) 6) /* Memory Technology Device */
/*
* System device hardware ID (PnP) values
*/
enum
{
PM_SYS_UNKNOWN = 0x00000000, /* generic */
PM_SYS_KBC = 0x41d00303, /* keyboard controller */
PM_SYS_COM = 0x41d00500, /* serial port */
PM_SYS_IRDA = 0x41d00510, /* IRDA controller */
PM_SYS_FDC = 0x41d00700, /* floppy controller */
PM_SYS_VGA = 0x41d00900, /* VGA controller */
PM_SYS_PCMCIA = 0x41d00e00, /* PCMCIA controller */
};
/*
* Device identifier
*/
#define PM_PCI_ID(dev) ((dev)->bus->number << 16 | (dev)->devfn)
/*
* Request handler callback
*/
struct pm_dev;
typedef int (*pm_callback)(struct pm_dev *dev, pm_request_t rqst, void *data);
/*
* Dynamic device information
*/
struct pm_dev
{
pm_dev_t type;
unsigned long id;
pm_callback callback;
void *data;
unsigned long flags;
unsigned long state;
unsigned long prev_state;
struct list_head entry;
};
/* Functions above this comment are list-based old-style power
* managment. Please avoid using them. */
/*
* Callbacks for platform drivers to implement.
*/
extern void (*pm_idle)(void);
extern void (*pm_power_off)(void);
typedef int __bitwise suspend_state_t;
#define PM_SUSPEND_ON ((__force suspend_state_t) 0)
#define PM_SUSPEND_STANDBY ((__force suspend_state_t) 1)
#define PM_SUSPEND_MEM ((__force suspend_state_t) 3)
#define PM_SUSPEND_DISK ((__force suspend_state_t) 4)
#define PM_SUSPEND_MAX ((__force suspend_state_t) 5)
typedef int __bitwise suspend_disk_method_t;
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
/* invalid must be 0 so struct pm_ops initialisers can leave it out */
#define PM_DISK_INVALID ((__force suspend_disk_method_t) 0)
#define PM_DISK_PLATFORM ((__force suspend_disk_method_t) 1)
#define PM_DISK_SHUTDOWN ((__force suspend_disk_method_t) 2)
#define PM_DISK_REBOOT ((__force suspend_disk_method_t) 3)
#define PM_DISK_TEST ((__force suspend_disk_method_t) 4)
#define PM_DISK_TESTPROC ((__force suspend_disk_method_t) 5)
#define PM_DISK_MAX ((__force suspend_disk_method_t) 6)
/**
* struct pm_ops - Callbacks for managing platform dependent suspend states.
* @valid: Callback to determine whether the given state can be entered.
* If %CONFIG_SOFTWARE_SUSPEND is set then %PM_SUSPEND_DISK is
* always valid and never passed to this call. If not assigned,
* no suspend states are valid.
* Valid states are advertised in /sys/power/state but can still
* be rejected by prepare or enter if the conditions aren't right.
* There is a %pm_valid_only_mem function available that can be assigned
* to this if you only implement mem sleep.
*
* @prepare: Prepare the platform for the given suspend state. Can return a
* negative error code if necessary.
*
* @enter: Enter the given suspend state, must be assigned. Can return a
* negative error code if necessary.
*
* @finish: Called when the system has left the given state and all devices
* are resumed. The return value is ignored.
*
rework pm_ops pm_disk_mode, kill misuse This patch series cleans up some misconceptions about pm_ops. Some users of the pm_ops structure attempt to use it to stop the user from entering suspend to disk, this, however, is not possible since the user can always use "shutdown" in /sys/power/disk and then the pm_ops are never invoked. Also, platforms that don't support suspend to disk simply should not allow configuring SOFTWARE_SUSPEND (read the help text on it, it only selects suspend to disk and nothing else, all the other stuff depends on PM). The pm_ops structure is actually intended to provide a way to enter platform-defined sleep states (currently supported states are "standby" and "mem" (suspend to ram)) and additionally (if SOFTWARE_SUSPEND is configured) allows a platform to support a platform specific way to enter low-power mode once everything has been saved to disk. This is currently only used by ACPI (S4). This patch: The pm_ops.pm_disk_mode is used in totally bogus ways since nobody really seems to understand what it actually does. This patch clarifies the pm_disk_mode description. It also removes all the arm and sh users that think they can veto suspend to disk via pm_ops; not so since the user can always do echo shutdown > /sys/power/disk, they need to find a better way involving Kconfig or such. ACPI is the only user left with a non-zero pm_disk_mode. The patch also sets the default mode to shutdown again, but when a new pm_ops is registered its pm_disk_mode is selected as default, that way the default stays for ACPI where it is apparently required. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Cc: David Brownell <david-b@pacbell.net> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <linux-pm@lists.linux-foundation.org> Cc: Len Brown <lenb@kernel.org> Acked-by: Russell King <rmk@arm.linux.org.uk> Cc: Greg KH <greg@kroah.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Acked-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
* @pm_disk_mode: The generic code always allows one of the shutdown methods
* %PM_DISK_SHUTDOWN, %PM_DISK_REBOOT, %PM_DISK_TEST and
* %PM_DISK_TESTPROC. If this variable is set, the mode it is set
* to is allowed in addition to those modes and is also made default.
* When this mode is sent selected, the @prepare call will be called
* before suspending to disk (if present), the @enter call should be
* present and will be called after all state has been saved and the
* machine is ready to be powered off; the @finish callback is called
* after state has been restored. All these calls are called with
* %PM_SUSPEND_DISK as the state.
*/
struct pm_ops {
int (*valid)(suspend_state_t state);
int (*prepare)(suspend_state_t state);
int (*enter)(suspend_state_t state);
int (*finish)(suspend_state_t state);
suspend_disk_method_t pm_disk_mode;
};
/**
* pm_set_ops - set platform dependent power management ops
* @pm_ops: The new power management operations to set.
*/
extern void pm_set_ops(struct pm_ops *pm_ops);
extern struct pm_ops *pm_ops;
extern int pm_suspend(suspend_state_t state);
extern int pm_valid_only_mem(suspend_state_t state);
/**
* arch_suspend_disable_irqs - disable IRQs for suspend
*
* Disables IRQs (in the default case). This is a weak symbol in the common
* code and thus allows architectures to override it if more needs to be
* done. Not called for suspend to disk.
*/
extern void arch_suspend_disable_irqs(void);
/**
* arch_suspend_enable_irqs - enable IRQs after suspend
*
* Enables IRQs (in the default case). This is a weak symbol in the common
* code and thus allows architectures to override it if more needs to be
* done. Not called for suspend to disk.
*/
extern void arch_suspend_enable_irqs(void);
/*
* Device power management
*/
struct device;
typedef struct pm_message {
int event;
} pm_message_t;
/*
* Several driver power state transitions are externally visible, affecting
* the state of pending I/O queues and (for drivers that touch hardware)
* interrupts, wakeups, DMA, and other hardware state. There may also be
* internal transitions to various low power modes, which are transparent
* to the rest of the driver stack (such as a driver that's ON gating off
* clocks which are not in active use).
*
* One transition is triggered by resume(), after a suspend() call; the
* message is implicit:
*
* ON Driver starts working again, responding to hardware events
* and software requests. The hardware may have gone through
* a power-off reset, or it may have maintained state from the
* previous suspend() which the driver will rely on while
* resuming. On most platforms, there are no restrictions on
* availability of resources like clocks during resume().
*
* Other transitions are triggered by messages sent using suspend(). All
* these transitions quiesce the driver, so that I/O queues are inactive.
* That commonly entails turning off IRQs and DMA; there may be rules
* about how to quiesce that are specific to the bus or the device's type.
* (For example, network drivers mark the link state.) Other details may
* differ according to the message:
*
* SUSPEND Quiesce, enter a low power device state appropriate for
* the upcoming system state (such as PCI_D3hot), and enable
* wakeup events as appropriate.
*
* FREEZE Quiesce operations so that a consistent image can be saved;
* but do NOT otherwise enter a low power device state, and do
* NOT emit system wakeup events.
*
* PRETHAW Quiesce as if for FREEZE; additionally, prepare for restoring
* the system from a snapshot taken after an earlier FREEZE.
* Some drivers will need to reset their hardware state instead
* of preserving it, to ensure that it's never mistaken for the
* state which that earlier snapshot had set up.
*
* A minimally power-aware driver treats all messages as SUSPEND, fully
* reinitializes its device during resume() -- whether or not it was reset
* during the suspend/resume cycle -- and can't issue wakeup events.
*
* More power-aware drivers may also use low power states at runtime as
* well as during system sleep states like PM_SUSPEND_STANDBY. They may
* be able to use wakeup events to exit from runtime low-power states,
* or from system low-power states such as standby or suspend-to-RAM.
*/
#define PM_EVENT_ON 0
#define PM_EVENT_FREEZE 1
#define PM_EVENT_SUSPEND 2
#define PM_EVENT_PRETHAW 3
#define PMSG_FREEZE ((struct pm_message){ .event = PM_EVENT_FREEZE, })
#define PMSG_PRETHAW ((struct pm_message){ .event = PM_EVENT_PRETHAW, })
#define PMSG_SUSPEND ((struct pm_message){ .event = PM_EVENT_SUSPEND, })
#define PMSG_ON ((struct pm_message){ .event = PM_EVENT_ON, })
struct dev_pm_info {
pm_message_t power_state;
unsigned can_wakeup:1;
#ifdef CONFIG_PM
unsigned should_wakeup:1;
pm_message_t prev_state;
void * saved_state;
struct device * pm_parent;
struct list_head entry;
#endif
};
extern void device_pm_set_parent(struct device * dev, struct device * parent);
extern int device_power_down(pm_message_t state);
extern void device_power_up(void);
extern void device_resume(void);
#ifdef CONFIG_PM
extern suspend_disk_method_t pm_disk_mode;
extern int device_suspend(pm_message_t state);
extern int device_prepare_suspend(pm_message_t state);
#define device_set_wakeup_enable(dev,val) \
((dev)->power.should_wakeup = !!(val))
#define device_may_wakeup(dev) \
(device_can_wakeup(dev) && (dev)->power.should_wakeup)
extern int dpm_runtime_suspend(struct device *, pm_message_t);
extern void dpm_runtime_resume(struct device *);
extern void __suspend_report_result(const char *function, void *fn, int ret);
#define suspend_report_result(fn, ret) \
do { \
__suspend_report_result(__FUNCTION__, fn, ret); \
} while (0)
/*
* Platform hook to activate device wakeup capability, if that's not already
* handled by enable_irq_wake() etc.
* Returns zero on success, else negative errno
*/
extern int (*platform_enable_wakeup)(struct device *dev, int is_on);
static inline int call_platform_enable_wakeup(struct device *dev, int is_on)
{
if (platform_enable_wakeup)
return (*platform_enable_wakeup)(dev, is_on);
return 0;
}
#else /* !CONFIG_PM */
static inline int device_suspend(pm_message_t state)
{
return 0;
}
#define device_set_wakeup_enable(dev,val) do{}while(0)
#define device_may_wakeup(dev) (0)
static inline int dpm_runtime_suspend(struct device * dev, pm_message_t state)
{
return 0;
}
static inline void dpm_runtime_resume(struct device * dev)
{
}
#define suspend_report_result(fn, ret) do { } while (0)
static inline int call_platform_enable_wakeup(struct device *dev, int is_on)
{
return 0;
}
#endif
/* changes to device_may_wakeup take effect on the next pm state change.
* by default, devices should wakeup if they can.
*/
#define device_can_wakeup(dev) \
((dev)->power.can_wakeup)
#define device_init_wakeup(dev,val) \
do { \
device_can_wakeup(dev) = !!(val); \
device_set_wakeup_enable(dev,val); \
} while(0)
#endif /* __KERNEL__ */
#endif /* _LINUX_PM_H */