|
|
|
/*
|
|
|
|
* linux/arch/x86-64/mm/fault.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
|
|
* Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/signal.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/mman.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/smp.h>
|
|
|
|
#include <linux/smp_lock.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/tty.h>
|
|
|
|
#include <linux/vt_kern.h> /* For unblank_screen() */
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/kprobes.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include <asm/smp.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include <asm/proto.h>
|
|
|
|
#include <asm/kdebug.h>
|
|
|
|
#include <asm-generic/sections.h>
|
|
|
|
|
|
|
|
/* Page fault error code bits */
|
|
|
|
#define PF_PROT (1<<0) /* or no page found */
|
|
|
|
#define PF_WRITE (1<<1)
|
|
|
|
#define PF_USER (1<<2)
|
|
|
|
#define PF_RSVD (1<<3)
|
|
|
|
#define PF_INSTR (1<<4)
|
|
|
|
|
|
|
|
static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
|
|
|
|
|
|
|
|
/* Hook to register for page fault notifications */
|
|
|
|
int register_page_fault_notifier(struct notifier_block *nb)
|
|
|
|
{
|
|
|
|
vmalloc_sync_all();
|
|
|
|
return atomic_notifier_chain_register(¬ify_page_fault_chain, nb);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(register_page_fault_notifier);
|
|
|
|
|
|
|
|
int unregister_page_fault_notifier(struct notifier_block *nb)
|
|
|
|
{
|
|
|
|
return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
|
|
|
|
|
|
|
|
static inline int notify_page_fault(enum die_val val, const char *str,
|
|
|
|
struct pt_regs *regs, long err, int trap, int sig)
|
|
|
|
{
|
|
|
|
struct die_args args = {
|
|
|
|
.regs = regs,
|
|
|
|
.str = str,
|
|
|
|
.err = err,
|
|
|
|
.trapnr = trap,
|
|
|
|
.signr = sig
|
|
|
|
};
|
|
|
|
return atomic_notifier_call_chain(¬ify_page_fault_chain, val, &args);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Sometimes the CPU reports invalid exceptions on prefetch.
|
|
|
|
Check that here and ignore.
|
|
|
|
Opcode checker based on code by Richard Brunner */
|
|
|
|
static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
|
|
|
unsigned long error_code)
|
|
|
|
{
|
|
|
|
unsigned char *instr;
|
|
|
|
int scan_more = 1;
|
|
|
|
int prefetch = 0;
|
|
|
|
unsigned char *max_instr;
|
|
|
|
|
|
|
|
/* If it was a exec fault ignore */
|
|
|
|
if (error_code & PF_INSTR)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
instr = (unsigned char __user *)convert_rip_to_linear(current, regs);
|
|
|
|
max_instr = instr + 15;
|
|
|
|
|
|
|
|
if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
while (scan_more && instr < max_instr) {
|
|
|
|
unsigned char opcode;
|
|
|
|
unsigned char instr_hi;
|
|
|
|
unsigned char instr_lo;
|
|
|
|
|
|
|
|
if (probe_kernel_address(instr, opcode))
|
|
|
|
break;
|
|
|
|
|
|
|
|
instr_hi = opcode & 0xf0;
|
|
|
|
instr_lo = opcode & 0x0f;
|
|
|
|
instr++;
|
|
|
|
|
|
|
|
switch (instr_hi) {
|
|
|
|
case 0x20:
|
|
|
|
case 0x30:
|
|
|
|
/* Values 0x26,0x2E,0x36,0x3E are valid x86
|
|
|
|
prefixes. In long mode, the CPU will signal
|
|
|
|
invalid opcode if some of these prefixes are
|
|
|
|
present so we will never get here anyway */
|
|
|
|
scan_more = ((instr_lo & 7) == 0x6);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x40:
|
|
|
|
/* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
|
|
|
|
Need to figure out under what instruction mode the
|
|
|
|
instruction was issued ... */
|
|
|
|
/* Could check the LDT for lm, but for now it's good
|
|
|
|
enough to assume that long mode only uses well known
|
|
|
|
segments or kernel. */
|
|
|
|
scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x60:
|
|
|
|
/* 0x64 thru 0x67 are valid prefixes in all modes. */
|
|
|
|
scan_more = (instr_lo & 0xC) == 0x4;
|
|
|
|
break;
|
|
|
|
case 0xF0:
|
|
|
|
/* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
|
|
|
|
scan_more = !instr_lo || (instr_lo>>1) == 1;
|
|
|
|
break;
|
|
|
|
case 0x00:
|
|
|
|
/* Prefetch instruction is 0x0F0D or 0x0F18 */
|
|
|
|
scan_more = 0;
|
|
|
|
if (probe_kernel_address(instr, opcode))
|
|
|
|
break;
|
|
|
|
prefetch = (instr_lo == 0xF) &&
|
|
|
|
(opcode == 0x0D || opcode == 0x18);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
scan_more = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return prefetch;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bad_address(void *p)
|
|
|
|
{
|
|
|
|
unsigned long dummy;
|
|
|
|
return probe_kernel_address((unsigned long *)p, dummy);
|
|
|
|
}
|
|
|
|
|
|
|
|
void dump_pagetable(unsigned long address)
|
|
|
|
{
|
|
|
|
pgd_t *pgd;
|
|
|
|
pud_t *pud;
|
|
|
|
pmd_t *pmd;
|
|
|
|
pte_t *pte;
|
|
|
|
|
|
|
|
asm("movq %%cr3,%0" : "=r" (pgd));
|
|
|
|
|
|
|
|
pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
|
|
|
|
pgd += pgd_index(address);
|
|
|
|
if (bad_address(pgd)) goto bad;
|
|
|
|
printk("PGD %lx ", pgd_val(*pgd));
|
|
|
|
if (!pgd_present(*pgd)) goto ret;
|
|
|
|
|
|
|
|
pud = pud_offset(pgd, address);
|
|
|
|
if (bad_address(pud)) goto bad;
|
|
|
|
printk("PUD %lx ", pud_val(*pud));
|
|
|
|
if (!pud_present(*pud)) goto ret;
|
|
|
|
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
|
|
if (bad_address(pmd)) goto bad;
|
|
|
|
printk("PMD %lx ", pmd_val(*pmd));
|
|
|
|
if (!pmd_present(*pmd)) goto ret;
|
|
|
|
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
|
|
if (bad_address(pte)) goto bad;
|
|
|
|
printk("PTE %lx", pte_val(*pte));
|
|
|
|
ret:
|
|
|
|
printk("\n");
|
|
|
|
return;
|
|
|
|
bad:
|
|
|
|
printk("BAD\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char errata93_warning[] =
|
|
|
|
KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
|
|
|
|
KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
|
|
|
|
KERN_ERR "******* Please consider a BIOS update.\n"
|
|
|
|
KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
|
|
|
|
|
|
|
|
/* Workaround for K8 erratum #93 & buggy BIOS.
|
|
|
|
BIOS SMM functions are required to use a specific workaround
|
|
|
|
to avoid corruption of the 64bit RIP register on C stepping K8.
|
|
|
|
A lot of BIOS that didn't get tested properly miss this.
|
|
|
|
The OS sees this as a page fault with the upper 32bits of RIP cleared.
|
|
|
|
Try to work around it here.
|
|
|
|
Note we only handle faults in kernel here. */
|
|
|
|
|
|
|
|
static int is_errata93(struct pt_regs *regs, unsigned long address)
|
|
|
|
{
|
|
|
|
static int warned;
|
|
|
|
if (address != regs->rip)
|
|
|
|
return 0;
|
|
|
|
if ((address >> 32) != 0)
|
|
|
|
return 0;
|
|
|
|
address |= 0xffffffffUL << 32;
|
|
|
|
if ((address >= (u64)_stext && address <= (u64)_etext) ||
|
|
|
|
(address >= MODULES_VADDR && address <= MODULES_END)) {
|
|
|
|
if (!warned) {
|
|
|
|
printk(errata93_warning);
|
|
|
|
warned = 1;
|
|
|
|
}
|
|
|
|
regs->rip = address;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int unhandled_signal(struct task_struct *tsk, int sig)
|
|
|
|
{
|
|
|
|
if (is_init(tsk))
|
|
|
|
return 1;
|
|
|
|
if (tsk->ptrace & PT_PTRACED)
|
|
|
|
return 0;
|
|
|
|
return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
|
|
|
|
(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
|
|
|
|
unsigned long error_code)
|
|
|
|
{
|
|
|
|
unsigned long flags = oops_begin();
|
|
|
|
struct task_struct *tsk;
|
|
|
|
|
|
|
|
printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
|
|
|
|
current->comm, address);
|
|
|
|
dump_pagetable(address);
|
|
|
|
tsk = current;
|
|
|
|
tsk->thread.cr2 = address;
|
|
|
|
tsk->thread.trap_no = 14;
|
|
|
|
tsk->thread.error_code = error_code;
|
|
|
|
__die("Bad pagetable", regs, error_code);
|
|
|
|
oops_end(flags);
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle a fault on the vmalloc area
|
|
|
|
*
|
|
|
|
* This assumes no large pages in there.
|
|
|
|
*/
|
|
|
|
static int vmalloc_fault(unsigned long address)
|
|
|
|
{
|
|
|
|
pgd_t *pgd, *pgd_ref;
|
|
|
|
pud_t *pud, *pud_ref;
|
|
|
|
pmd_t *pmd, *pmd_ref;
|
|
|
|
pte_t *pte, *pte_ref;
|
|
|
|
|
|
|
|
/* Copy kernel mappings over when needed. This can also
|
|
|
|
happen within a race in page table update. In the later
|
|
|
|
case just flush. */
|
|
|
|
|
|
|
|
pgd = pgd_offset(current->mm ?: &init_mm, address);
|
|
|
|
pgd_ref = pgd_offset_k(address);
|
|
|
|
if (pgd_none(*pgd_ref))
|
|
|
|
return -1;
|
|
|
|
if (pgd_none(*pgd))
|
|
|
|
set_pgd(pgd, *pgd_ref);
|
|
|
|
else
|
|
|
|
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
|
|
|
|
|
|
|
/* Below here mismatches are bugs because these lower tables
|
|
|
|
are shared */
|
|
|
|
|
|
|
|
pud = pud_offset(pgd, address);
|
|
|
|
pud_ref = pud_offset(pgd_ref, address);
|
|
|
|
if (pud_none(*pud_ref))
|
|
|
|
return -1;
|
|
|
|
if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
|
|
|
|
BUG();
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
|
|
pmd_ref = pmd_offset(pud_ref, address);
|
|
|
|
if (pmd_none(*pmd_ref))
|
|
|
|
return -1;
|
|
|
|
if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
|
|
|
|
BUG();
|
|
|
|
pte_ref = pte_offset_kernel(pmd_ref, address);
|
|
|
|
if (!pte_present(*pte_ref))
|
|
|
|
return -1;
|
|
|
|
pte = pte_offset_kernel(pmd, address);
|
|
|
|
/* Don't use pte_page here, because the mappings can point
|
|
|
|
outside mem_map, and the NUMA hash lookup cannot handle
|
|
|
|
that. */
|
|
|
|
if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
|
|
|
|
BUG();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int page_fault_trace = 0;
|
|
|
|
int exception_trace = 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This routine handles page faults. It determines the address,
|
|
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
|
|
* routines.
|
|
|
|
*/
|
|
|
|
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|
|
|
unsigned long error_code)
|
|
|
|
{
|
|
|
|
struct task_struct *tsk;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
struct vm_area_struct * vma;
|
|
|
|
unsigned long address;
|
|
|
|
const struct exception_table_entry *fixup;
|
|
|
|
int write;
|
|
|
|
unsigned long flags;
|
|
|
|
siginfo_t info;
|
|
|
|
|
|
|
|
tsk = current;
|
|
|
|
mm = tsk->mm;
|
|
|
|
prefetchw(&mm->mmap_sem);
|
|
|
|
|
|
|
|
/* get the address */
|
|
|
|
__asm__("movq %%cr2,%0":"=r" (address));
|
|
|
|
|
|
|
|
info.si_code = SEGV_MAPERR;
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We fault-in kernel-space virtual memory on-demand. The
|
|
|
|
* 'reference' page table is init_mm.pgd.
|
|
|
|
*
|
|
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
|
|
* be in an interrupt or a critical region, and should
|
|
|
|
* only copy the information from the master page table,
|
|
|
|
* nothing more.
|
|
|
|
*
|
|
|
|
* This verifies that the fault happens in kernel space
|
|
|
|
* (error_code & 4) == 0, and that the fault was not a
|
|
|
|
* protection error (error_code & 9) == 0.
|
|
|
|
*/
|
[PATCH] x86_64: TASK_SIZE fixes for compatibility mode processes
Appended patch will setup compatibility mode TASK_SIZE properly. This will
fix atleast three known bugs that can be encountered while running
compatibility mode apps.
a) A malicious 32bit app can have an elf section at 0xffffe000. During
exec of this app, we will have a memory leak as insert_vm_struct() is
not checking for return value in syscall32_setup_pages() and thus not
freeing the vma allocated for the vsyscall page. And instead of exec
failing (as it has addresses > TASK_SIZE), we were allowing it to
succeed previously.
b) With a 32bit app, hugetlb_get_unmapped_area/arch_get_unmapped_area
may return addresses beyond 32bits, ultimately causing corruption
because of wrap-around and resulting in SEGFAULT, instead of returning
ENOMEM.
c) 32bit app doing this below mmap will now fail.
mmap((void *)(0xFFFFE000UL), 0x10000UL, PROT_READ|PROT_WRITE,
MAP_FIXED|MAP_PRIVATE|MAP_ANON, 0, 0);
Signed-off-by: Zou Nan hai <nanhai.zou@intel.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
if (unlikely(address >= TASK_SIZE64)) {
|
|
|
|
/*
|
|
|
|
* Don't check for the module range here: its PML4
|
|
|
|
* is always initialized because it's shared with the main
|
|
|
|
* kernel text. Only vmalloc may need PML4 syncups.
|
|
|
|
*/
|
|
|
|
if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
|
|
|
|
((address >= VMALLOC_START && address < VMALLOC_END))) {
|
|
|
|
if (vmalloc_fault(address) >= 0)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
|
|
|
|
SIGSEGV) == NOTIFY_STOP)
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* Don't take the mm semaphore here. If we fixup a prefetch
|
|
|
|
* fault we could otherwise deadlock.
|
|
|
|
*/
|
|
|
|
goto bad_area_nosemaphore;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
|
|
|
|
SIGSEGV) == NOTIFY_STOP)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (likely(regs->eflags & X86_EFLAGS_IF))
|
|
|
|
local_irq_enable();
|
|
|
|
|
|
|
|
if (unlikely(page_fault_trace))
|
|
|
|
printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
|
|
|
|
regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
|
|
|
|
|
|
|
|
if (unlikely(error_code & PF_RSVD))
|
|
|
|
pgtable_bad(address, regs, error_code);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we're in an interrupt or have no user
|
|
|
|
* context, we must not take the fault..
|
|
|
|
*/
|
|
|
|
if (unlikely(in_atomic() || !mm))
|
|
|
|
goto bad_area_nosemaphore;
|
|
|
|
|
|
|
|
again:
|
|
|
|
/* When running in the kernel we expect faults to occur only to
|
|
|
|
* addresses in user space. All other faults represent errors in the
|
|
|
|
* kernel and should generate an OOPS. Unfortunatly, in the case of an
|
|
|
|
* erroneous fault occurring in a code path which already holds mmap_sem
|
|
|
|
* we will deadlock attempting to validate the fault against the
|
|
|
|
* address space. Luckily the kernel only validly references user
|
|
|
|
* space from well defined areas of code, which are listed in the
|
|
|
|
* exceptions table.
|
|
|
|
*
|
|
|
|
* As the vast majority of faults will be valid we will only perform
|
|
|
|
* the source reference check when there is a possibilty of a deadlock.
|
|
|
|
* Attempt to lock the address space, if we cannot we then validate the
|
|
|
|
* source. If this is invalid we can skip the address space check,
|
|
|
|
* thus avoiding the deadlock.
|
|
|
|
*/
|
|
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
|
|
if ((error_code & PF_USER) == 0 &&
|
|
|
|
!search_exception_tables(regs->rip))
|
|
|
|
goto bad_area_nosemaphore;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
vma = find_vma(mm, address);
|
|
|
|
if (!vma)
|
|
|
|
goto bad_area;
|
|
|
|
if (likely(vma->vm_start <= address))
|
|
|
|
goto good_area;
|
|
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
|
|
goto bad_area;
|
|
|
|
if (error_code & 4) {
|
|
|
|
/* Allow userspace just enough access below the stack pointer
|
|
|
|
* to let the 'enter' instruction work.
|
|
|
|
*/
|
|
|
|
if (address + 65536 + 32 * sizeof(unsigned long) < regs->rsp)
|
|
|
|
goto bad_area;
|
|
|
|
}
|
|
|
|
if (expand_stack(vma, address))
|
|
|
|
goto bad_area;
|
|
|
|
/*
|
|
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
|
|
* we can handle it..
|
|
|
|
*/
|
|
|
|
good_area:
|
|
|
|
info.si_code = SEGV_ACCERR;
|
|
|
|
write = 0;
|
|
|
|
switch (error_code & (PF_PROT|PF_WRITE)) {
|
|
|
|
default: /* 3: write, present */
|
|
|
|
/* fall through */
|
|
|
|
case PF_WRITE: /* write, not present */
|
|
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
|
|
goto bad_area;
|
|
|
|
write++;
|
|
|
|
break;
|
|
|
|
case PF_PROT: /* read, present */
|
|
|
|
goto bad_area;
|
|
|
|
case 0: /* read, not present */
|
[PATCH] make PROT_WRITE imply PROT_READ
Make PROT_WRITE imply PROT_READ for a number of architectures which don't
support write only in hardware.
While looking at this, I noticed that some architectures which do not
support write only mappings already take the exact same approach. For
example, in arch/alpha/mm/fault.c:
"
if (cause < 0) {
if (!(vma->vm_flags & VM_EXEC))
goto bad_area;
} else if (!cause) {
/* Allow reads even for write-only mappings */
if (!(vma->vm_flags & (VM_READ | VM_WRITE)))
goto bad_area;
} else {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
}
"
Thus, this patch brings other architectures which do not support write only
mappings in-line and consistent with the rest. I've verified the patch on
ia64, x86_64 and x86.
Additional discussion:
Several architectures, including x86, can not support write-only mappings.
The pte for x86 reserves a single bit for protection and its two states are
read only or read/write. Thus, write only is not supported in h/w.
Currently, if i 'mmap' a page write-only, the first read attempt on that page
creates a page fault and will SEGV. That check is enforced in
arch/blah/mm/fault.c. However, if i first write that page it will fault in
and the pte will be set to read/write. Thus, any subsequent reads to the page
will succeed. It is this inconsistency in behavior that this patch is
attempting to address. Furthermore, if the page is swapped out, and then
brought back the first read will also cause a SEGV. Thus, any arbitrary read
on a page can potentially result in a SEGV.
According to the SuSv3 spec, "if the application requests only PROT_WRITE, the
implementation may also allow read access." Also as mentioned, some
archtectures, such as alpha, shown above already take the approach that i am
suggesting.
The counter-argument to this raised by Arjan, is that the kernel is enforcing
the write only mapping the best it can given the h/w limitations. This is
true, however Alan Cox, and myself would argue that the inconsitency in
behavior, that is applications can sometimes work/sometimes fails is highly
undesireable. If you read through the thread, i think people, came to an
agreement on the last patch i posted, as nobody has objected to it...
Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Andi Kleen <ak@muc.de>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Ian Molton <spyro@f2s.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
|
|
|
goto bad_area;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If for any reason at all we couldn't handle the fault,
|
|
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
|
|
* the fault.
|
|
|
|
*/
|
|
|
|
switch (handle_mm_fault(mm, vma, address, write)) {
|
|
|
|
case VM_FAULT_MINOR:
|
|
|
|
tsk->min_flt++;
|
|
|
|
break;
|
|
|
|
case VM_FAULT_MAJOR:
|
|
|
|
tsk->maj_flt++;
|
|
|
|
break;
|
|
|
|
case VM_FAULT_SIGBUS:
|
|
|
|
goto do_sigbus;
|
|
|
|
default:
|
|
|
|
goto out_of_memory;
|
|
|
|
}
|
|
|
|
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Something tried to access memory that isn't in our memory map..
|
|
|
|
* Fix it, but check if it's kernel or user first..
|
|
|
|
*/
|
|
|
|
bad_area:
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
|
|
|
|
bad_area_nosemaphore:
|
|
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
|
|
if (error_code & PF_USER) {
|
|
|
|
if (is_prefetch(regs, address, error_code))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Work around K8 erratum #100 K8 in compat mode
|
|
|
|
occasionally jumps to illegal addresses >4GB. We
|
|
|
|
catch this here in the page fault handler because
|
|
|
|
these addresses are not reachable. Just detect this
|
|
|
|
case and return. Any code segment in LDT is
|
|
|
|
compatibility mode. */
|
|
|
|
if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
|
|
|
|
(address >> 32))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
|
|
|
|
printk(
|
|
|
|
"%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
|
|
|
|
tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
|
|
|
|
tsk->comm, tsk->pid, address, regs->rip,
|
|
|
|
regs->rsp, error_code);
|
|
|
|
}
|
|
|
|
|
|
|
|
tsk->thread.cr2 = address;
|
|
|
|
/* Kernel addresses are always protection faults */
|
|
|
|
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
|
|
|
|
tsk->thread.trap_no = 14;
|
|
|
|
info.si_signo = SIGSEGV;
|
|
|
|
info.si_errno = 0;
|
|
|
|
/* info.si_code has been set above */
|
|
|
|
info.si_addr = (void __user *)address;
|
|
|
|
force_sig_info(SIGSEGV, &info, tsk);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
no_context:
|
|
|
|
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
|
|
fixup = search_exception_tables(regs->rip);
|
|
|
|
if (fixup) {
|
|
|
|
regs->rip = fixup->fixup;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hall of shame of CPU/BIOS bugs.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (is_prefetch(regs, address, error_code))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (is_errata93(regs, address))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
|
|
* terminate things with extreme prejudice.
|
|
|
|
*/
|
|
|
|
|
|
|
|
flags = oops_begin();
|
|
|
|
|
|
|
|
if (address < PAGE_SIZE)
|
|
|
|
printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
|
|
|
|
else
|
|
|
|
printk(KERN_ALERT "Unable to handle kernel paging request");
|
|
|
|
printk(" at %016lx RIP: \n" KERN_ALERT,address);
|
|
|
|
printk_address(regs->rip);
|
|
|
|
dump_pagetable(address);
|
|
|
|
tsk->thread.cr2 = address;
|
|
|
|
tsk->thread.trap_no = 14;
|
|
|
|
tsk->thread.error_code = error_code;
|
|
|
|
__die("Oops", regs, error_code);
|
|
|
|
/* Executive summary in case the body of the oops scrolled away */
|
|
|
|
printk(KERN_EMERG "CR2: %016lx\n", address);
|
|
|
|
oops_end(flags);
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We ran out of memory, or some other thing happened to us that made
|
|
|
|
* us unable to handle the page fault gracefully.
|
|
|
|
*/
|
|
|
|
out_of_memory:
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
if (is_init(current)) {
|
|
|
|
yield();
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
printk("VM: killing process %s\n", tsk->comm);
|
|
|
|
if (error_code & 4)
|
|
|
|
do_exit(SIGKILL);
|
|
|
|
goto no_context;
|
|
|
|
|
|
|
|
do_sigbus:
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
|
|
if (!(error_code & PF_USER))
|
|
|
|
goto no_context;
|
|
|
|
|
|
|
|
tsk->thread.cr2 = address;
|
|
|
|
tsk->thread.error_code = error_code;
|
|
|
|
tsk->thread.trap_no = 14;
|
|
|
|
info.si_signo = SIGBUS;
|
|
|
|
info.si_errno = 0;
|
|
|
|
info.si_code = BUS_ADRERR;
|
|
|
|
info.si_addr = (void __user *)address;
|
|
|
|
force_sig_info(SIGBUS, &info, tsk);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEFINE_SPINLOCK(pgd_lock);
|
|
|
|
struct page *pgd_list;
|
|
|
|
|
|
|
|
void vmalloc_sync_all(void)
|
|
|
|
{
|
|
|
|
/* Note that races in the updates of insync and start aren't
|
|
|
|
problematic:
|
|
|
|
insync can only get set bits added, and updates to start are only
|
|
|
|
improving performance (without affecting correctness if undone). */
|
|
|
|
static DECLARE_BITMAP(insync, PTRS_PER_PGD);
|
|
|
|
static unsigned long start = VMALLOC_START & PGDIR_MASK;
|
|
|
|
unsigned long address;
|
|
|
|
|
|
|
|
for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
|
|
|
|
if (!test_bit(pgd_index(address), insync)) {
|
|
|
|
const pgd_t *pgd_ref = pgd_offset_k(address);
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (pgd_none(*pgd_ref))
|
|
|
|
continue;
|
|
|
|
spin_lock(&pgd_lock);
|
|
|
|
for (page = pgd_list; page;
|
|
|
|
page = (struct page *)page->index) {
|
|
|
|
pgd_t *pgd;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(address);
|
|
|
|
if (pgd_none(*pgd))
|
|
|
|
set_pgd(pgd, *pgd_ref);
|
|
|
|
else
|
|
|
|
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
|
|
|
}
|
|
|
|
spin_unlock(&pgd_lock);
|
|
|
|
set_bit(pgd_index(address), insync);
|
|
|
|
}
|
|
|
|
if (address == start)
|
|
|
|
start = address + PGDIR_SIZE;
|
|
|
|
}
|
|
|
|
/* Check that there is no need to do the same for the modules area. */
|
|
|
|
BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
|
|
|
|
BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
|
|
|
|
(__START_KERNEL & PGDIR_MASK)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init enable_pagefaulttrace(char *str)
|
|
|
|
{
|
|
|
|
page_fault_trace = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("pagefaulttrace", enable_pagefaulttrace);
|