You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/net/wan/wanpipe_multppp.c

2359 lines
67 KiB

/*****************************************************************************
* wanpipe_multppp.c Multi-Port PPP driver module.
*
* Authors: Nenad Corbic <ncorbic@sangoma.com>
*
* Copyright: (c) 1995-2001 Sangoma Technologies Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
* ============================================================================
* Dec 15 2000 Updated for 2.4.X kernel
* Nov 15 2000 Fixed the SyncPPP support for kernels 2.2.16 and higher.
* The pppstruct has changed.
* Jul 13 2000 Using the kernel Syncppp module on top of RAW Wanpipe CHDLC
* module.
*****************************************************************************/
#include <linux/module.h>
#include <linux/kernel.h> /* printk(), and other useful stuff */
#include <linux/stddef.h> /* offsetof(), etc. */
#include <linux/errno.h> /* return codes */
#include <linux/string.h> /* inline memset(), etc. */
#include <linux/slab.h> /* kmalloc(), kfree() */
#include <linux/wanrouter.h> /* WAN router definitions */
#include <linux/wanpipe.h> /* WANPIPE common user API definitions */
#include <linux/if_arp.h> /* ARPHRD_* defines */
#include <linux/jiffies.h> /* time_after() macro */
#include <linux/in.h> /* sockaddr_in */
#include <linux/inet.h>
#include <linux/if.h>
#include <asm/byteorder.h> /* htons(), etc. */
#include <linux/sdlapci.h>
#include <asm/io.h>
#include <linux/sdla_chdlc.h> /* CHDLC firmware API definitions */
#include <linux/sdla_asy.h> /* CHDLC (async) API definitions */
#include <linux/if_wanpipe_common.h> /* Socket Driver common area */
#include <linux/if_wanpipe.h>
#include <linux/inetdevice.h>
#include <asm/uaccess.h>
#include <net/syncppp.h>
/****** Defines & Macros ****************************************************/
#ifdef _DEBUG_
#define STATIC
#else
#define STATIC static
#endif
/* reasons for enabling the timer interrupt on the adapter */
#define TMR_INT_ENABLED_UDP 0x01
#define TMR_INT_ENABLED_UPDATE 0x02
#define TMR_INT_ENABLED_CONFIG 0x04
#define CHDLC_DFLT_DATA_LEN 1500 /* default MTU */
#define CHDLC_HDR_LEN 1
#define IFF_POINTTOPOINT 0x10
#define CHDLC_API 0x01
#define PORT(x) (x == 0 ? "PRIMARY" : "SECONDARY" )
#define MAX_BH_BUFF 10
#define CRC_LENGTH 2
#define PPP_HEADER_LEN 4
/******Data Structures*****************************************************/
/* This structure is placed in the private data area of the device structure.
* The card structure used to occupy the private area but now the following
* structure will incorporate the card structure along with CHDLC specific data
*/
typedef struct chdlc_private_area
{
void *if_ptr; /* General Pointer used by SPPP */
wanpipe_common_t common;
sdla_t *card;
int TracingEnabled; /* For enabling Tracing */
unsigned long curr_trace_addr; /* Used for Tracing */
unsigned long start_trace_addr;
unsigned long end_trace_addr;
unsigned long base_addr_trace_buffer;
unsigned long end_addr_trace_buffer;
unsigned short number_trace_elements;
unsigned available_buffer_space;
unsigned long router_start_time;
unsigned char route_status;
unsigned char route_removed;
unsigned long tick_counter; /* For 5s timeout counter */
unsigned long router_up_time;
u32 IP_address; /* IP addressing */
u32 IP_netmask;
unsigned char mc; /* Mulitcast support on/off */
unsigned short udp_pkt_lgth; /* udp packet processing */
char udp_pkt_src;
char udp_pkt_data[MAX_LGTH_UDP_MGNT_PKT];
unsigned short timer_int_enabled;
char update_comms_stats; /* updating comms stats */
//FIXME: add driver stats as per frame relay!
} chdlc_private_area_t;
/* Route Status options */
#define NO_ROUTE 0x00
#define ADD_ROUTE 0x01
#define ROUTE_ADDED 0x02
#define REMOVE_ROUTE 0x03
/* variable for keeping track of enabling/disabling FT1 monitor status */
static int rCount = 0;
/* variable for tracking how many interfaces to open for WANPIPE on the
two ports */
extern void disable_irq(unsigned int);
extern void enable_irq(unsigned int);
/****** Function Prototypes *************************************************/
/* WAN link driver entry points. These are called by the WAN router module. */
static int update(struct wan_device* wandev);
static int new_if(struct wan_device* wandev, struct net_device* dev,
wanif_conf_t* conf);
static int del_if(struct wan_device* wandev, struct net_device* dev);
/* Network device interface */
static int if_init(struct net_device* dev);
static int if_open(struct net_device* dev);
static int if_close(struct net_device* dev);
static int if_send(struct sk_buff* skb, struct net_device* dev);
static struct net_device_stats* if_stats(struct net_device* dev);
static void if_tx_timeout(struct net_device *dev);
/* CHDLC Firmware interface functions */
static int chdlc_configure (sdla_t* card, void* data);
static int chdlc_comm_enable (sdla_t* card);
static int chdlc_comm_disable (sdla_t* card);
static int chdlc_read_version (sdla_t* card, char* str);
static int chdlc_set_intr_mode (sdla_t* card, unsigned mode);
static int chdlc_send (sdla_t* card, void* data, unsigned len);
static int chdlc_read_comm_err_stats (sdla_t* card);
static int chdlc_read_op_stats (sdla_t* card);
static int config_chdlc (sdla_t *card);
/* Miscellaneous CHDLC Functions */
static int set_chdlc_config (sdla_t* card);
static void init_chdlc_tx_rx_buff(sdla_t* card, struct net_device *dev);
static int chdlc_error (sdla_t *card, int err, CHDLC_MAILBOX_STRUCT *mb);
static int process_chdlc_exception(sdla_t *card);
static int process_global_exception(sdla_t *card);
static int update_comms_stats(sdla_t* card,
chdlc_private_area_t* chdlc_priv_area);
static void port_set_state (sdla_t *card, int);
/* Interrupt handlers */
static void wsppp_isr (sdla_t* card);
static void rx_intr (sdla_t* card);
static void timer_intr(sdla_t *);
/* Miscellaneous functions */
static int reply_udp( unsigned char *data, unsigned int mbox_len );
static int intr_test( sdla_t* card);
static int udp_pkt_type( struct sk_buff *skb , sdla_t* card);
static int store_udp_mgmt_pkt(char udp_pkt_src, sdla_t* card,
struct sk_buff *skb, struct net_device* dev,
chdlc_private_area_t* chdlc_priv_area);
static int process_udp_mgmt_pkt(sdla_t* card, struct net_device* dev,
chdlc_private_area_t* chdlc_priv_area);
static unsigned short calc_checksum (char *, int);
static void s508_lock (sdla_t *card, unsigned long *smp_flags);
static void s508_unlock (sdla_t *card, unsigned long *smp_flags);
static void send_ppp_term_request(struct net_device *dev);
static int Intr_test_counter;
/****** Public Functions ****************************************************/
/*============================================================================
* Cisco HDLC protocol initialization routine.
*
* This routine is called by the main WANPIPE module during setup. At this
* point adapter is completely initialized and firmware is running.
* o read firmware version (to make sure it's alive)
* o configure adapter
* o initialize protocol-specific fields of the adapter data space.
*
* Return: 0 o.k.
* < 0 failure.
*/
int wsppp_init (sdla_t* card, wandev_conf_t* conf)
{
unsigned char port_num;
int err;
unsigned long max_permitted_baud = 0;
SHARED_MEMORY_INFO_STRUCT *flags;
union
{
char str[80];
} u;
volatile CHDLC_MAILBOX_STRUCT* mb;
CHDLC_MAILBOX_STRUCT* mb1;
unsigned long timeout;
/* Verify configuration ID */
if (conf->config_id != WANCONFIG_MPPP) {
printk(KERN_INFO "%s: invalid configuration ID %u!\n",
card->devname, conf->config_id);
return -EINVAL;
}
/* Find out which Port to use */
if ((conf->comm_port == WANOPT_PRI) || (conf->comm_port == WANOPT_SEC)){
if (card->next){
if (conf->comm_port != card->next->u.c.comm_port){
card->u.c.comm_port = conf->comm_port;
}else{
printk(KERN_ERR "%s: ERROR - %s port used!\n",
card->wandev.name, PORT(conf->comm_port));
return -EINVAL;
}
}else{
card->u.c.comm_port = conf->comm_port;
}
}else{
printk(KERN_ERR "%s: ERROR - Invalid Port Selected!\n",
card->wandev.name);
return -EINVAL;
}
/* Initialize protocol-specific fields */
if(card->hw.type != SDLA_S514){
if (card->u.c.comm_port == WANOPT_PRI){
card->mbox = (void *) card->hw.dpmbase;
}else{
card->mbox = (void *) card->hw.dpmbase +
SEC_BASE_ADDR_MB_STRUCT - PRI_BASE_ADDR_MB_STRUCT;
}
}else{
/* for a S514 adapter, set a pointer to the actual mailbox in the */
/* allocated virtual memory area */
if (card->u.c.comm_port == WANOPT_PRI){
card->mbox = (void *) card->hw.dpmbase + PRI_BASE_ADDR_MB_STRUCT;
}else{
card->mbox = (void *) card->hw.dpmbase + SEC_BASE_ADDR_MB_STRUCT;
}
}
mb = mb1 = card->mbox;
if (!card->configured){
/* The board will place an 'I' in the return code to indicate that it is
ready to accept commands. We expect this to be completed in less
than 1 second. */
timeout = jiffies + 1 * HZ;
while (mb->return_code != 'I') /* Wait 1s for board to initialize */
if (time_after(jiffies, timeout)) break;
if (mb->return_code != 'I') {
printk(KERN_INFO
"%s: Initialization not completed by adapter\n",
card->devname);
printk(KERN_INFO "Please contact Sangoma representative.\n");
return -EIO;
}
}
/* Read firmware version. Note that when adapter initializes, it
* clears the mailbox, so it may appear that the first command was
* executed successfully when in fact it was merely erased. To work
* around this, we execute the first command twice.
*/
if (chdlc_read_version(card, u.str))
return -EIO;
printk(KERN_INFO "%s: Running Raw CHDLC firmware v%s\n"
"%s: for Multi-Port PPP protocol.\n",
card->devname,u.str,card->devname);
card->isr = &wsppp_isr;
card->poll = NULL;
card->exec = NULL;
card->wandev.update = &update;
card->wandev.new_if = &new_if;
card->wandev.del_if = &del_if;
card->wandev.udp_port = conf->udp_port;
card->wandev.new_if_cnt = 0;
/* reset the number of times the 'update()' proc has been called */
card->u.c.update_call_count = 0;
card->wandev.ttl = conf->ttl;
card->wandev.interface = conf->interface;
if ((card->u.c.comm_port == WANOPT_SEC && conf->interface == WANOPT_V35)&&
card->hw.type != SDLA_S514){
printk(KERN_INFO "%s: ERROR - V35 Interface not supported on S508 %s port \n",
card->devname, PORT(card->u.c.comm_port));
return -EIO;
}
card->wandev.clocking = conf->clocking;
port_num = card->u.c.comm_port;
/* Setup Port Bps */
if(card->wandev.clocking) {
if((port_num == WANOPT_PRI) || card->u.c.receive_only) {
/* For Primary Port 0 */
max_permitted_baud =
(card->hw.type == SDLA_S514) ?
PRI_MAX_BAUD_RATE_S514 :
PRI_MAX_BAUD_RATE_S508;
}
else if(port_num == WANOPT_SEC) {
/* For Secondary Port 1 */
max_permitted_baud =
(card->hw.type == SDLA_S514) ?
SEC_MAX_BAUD_RATE_S514 :
SEC_MAX_BAUD_RATE_S508;
}
if(conf->bps > max_permitted_baud) {
conf->bps = max_permitted_baud;
printk(KERN_INFO "%s: Baud too high!\n",
card->wandev.name);
printk(KERN_INFO "%s: Baud rate set to %lu bps\n",
card->wandev.name, max_permitted_baud);
}
card->wandev.bps = conf->bps;
}else{
card->wandev.bps = 0;
}
/* Setup the Port MTU */
if((port_num == WANOPT_PRI) || card->u.c.receive_only) {
/* For Primary Port 0 */
card->wandev.mtu =
(conf->mtu >= MIN_LGTH_CHDLC_DATA_CFG) ?
min_t(unsigned int, conf->mtu, PRI_MAX_NO_DATA_BYTES_IN_FRAME) :
CHDLC_DFLT_DATA_LEN;
} else if(port_num == WANOPT_SEC) {
/* For Secondary Port 1 */
card->wandev.mtu =
(conf->mtu >= MIN_LGTH_CHDLC_DATA_CFG) ?
min_t(unsigned int, conf->mtu, SEC_MAX_NO_DATA_BYTES_IN_FRAME) :
CHDLC_DFLT_DATA_LEN;
}
/* Add on a PPP Header */
card->wandev.mtu += PPP_HEADER_LEN;
/* Set up the interrupt status area */
/* Read the CHDLC Configuration and obtain:
* Ptr to shared memory infor struct
* Use this pointer to calculate the value of card->u.c.flags !
*/
mb1->buffer_length = 0;
mb1->command = READ_CHDLC_CONFIGURATION;
err = sdla_exec(mb1) ? mb1->return_code : CMD_TIMEOUT;
if(err != COMMAND_OK) {
clear_bit(1, (void*)&card->wandev.critical);
if(card->hw.type != SDLA_S514)
enable_irq(card->hw.irq);
chdlc_error(card, err, mb1);
return -EIO;
}
if(card->hw.type == SDLA_S514){
card->u.c.flags = (void *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb1->data)->
ptr_shared_mem_info_struct));
}else{
card->u.c.flags = (void *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb1->data)->
ptr_shared_mem_info_struct % SDLA_WINDOWSIZE));
}
flags = card->u.c.flags;
/* This is for the ports link state */
card->wandev.state = WAN_DUALPORT;
card->u.c.state = WAN_DISCONNECTED;
if (!card->wandev.piggyback){
err = intr_test(card);
if(err || (Intr_test_counter < MAX_INTR_TEST_COUNTER)) {
printk(KERN_ERR "%s: Interrupt test failed (%i)\n",
card->devname, Intr_test_counter);
printk(KERN_ERR "%s: Please choose another interrupt\n",
card->devname);
return -EIO;
}
printk(KERN_INFO "%s: Interrupt test passed (%i)\n",
card->devname, Intr_test_counter);
}
if (chdlc_set_intr_mode(card, APP_INT_ON_TIMER)){
printk (KERN_INFO "%s: Failed to set interrupt triggers!\n",
card->devname);
return -EIO;
}
/* Mask the Timer interrupt */
flags->interrupt_info_struct.interrupt_permission &=
~APP_INT_ON_TIMER;
printk(KERN_INFO "\n");
return 0;
}
/******* WAN Device Driver Entry Points *************************************/
/*============================================================================
* Update device status & statistics
* This procedure is called when updating the PROC file system and returns
* various communications statistics. These statistics are accumulated from 3
* different locations:
* 1) The 'if_stats' recorded for the device.
* 2) Communication error statistics on the adapter.
* 3) CHDLC operational statistics on the adapter.
* The board level statistics are read during a timer interrupt. Note that we
* read the error and operational statistics during consecitive timer ticks so
* as to minimize the time that we are inside the interrupt handler.
*
*/
static int update(struct wan_device* wandev)
{
sdla_t* card = wandev->private;
struct net_device* dev;
volatile chdlc_private_area_t* chdlc_priv_area;
SHARED_MEMORY_INFO_STRUCT *flags;
unsigned long timeout;
/* sanity checks */
if((wandev == NULL) || (wandev->private == NULL))
return -EFAULT;
if(wandev->state == WAN_UNCONFIGURED)
return -ENODEV;
/* more sanity checks */
if(!card->u.c.flags)
return -ENODEV;
if((dev=card->wandev.dev) == NULL)
return -ENODEV;
if((chdlc_priv_area=dev->priv) == NULL)
return -ENODEV;
flags = card->u.c.flags;
if(chdlc_priv_area->update_comms_stats){
return -EAGAIN;
}
/* we will need 2 timer interrupts to complete the */
/* reading of the statistics */
chdlc_priv_area->update_comms_stats = 2;
flags->interrupt_info_struct.interrupt_permission |= APP_INT_ON_TIMER;
chdlc_priv_area->timer_int_enabled = TMR_INT_ENABLED_UPDATE;
/* wait a maximum of 1 second for the statistics to be updated */
timeout = jiffies + 1 * HZ;
for(;;) {
if(chdlc_priv_area->update_comms_stats == 0)
break;
if (time_after(jiffies, timeout)){
chdlc_priv_area->update_comms_stats = 0;
chdlc_priv_area->timer_int_enabled &=
~TMR_INT_ENABLED_UPDATE;
return -EAGAIN;
}
}
return 0;
}
/*============================================================================
* Create new logical channel.
* This routine is called by the router when ROUTER_IFNEW IOCTL is being
* handled.
* o parse media- and hardware-specific configuration
* o make sure that a new channel can be created
* o allocate resources, if necessary
* o prepare network device structure for registaration.
*
* Return: 0 o.k.
* < 0 failure (channel will not be created)
*/
static int new_if(struct wan_device* wandev, struct net_device* pdev,
wanif_conf_t* conf)
{
struct ppp_device *pppdev = (struct ppp_device *)pdev;
struct net_device *dev = NULL;
struct sppp *sp;
sdla_t* card = wandev->private;
chdlc_private_area_t* chdlc_priv_area;
if ((conf->name[0] == '\0') || (strlen(conf->name) > WAN_IFNAME_SZ)) {
printk(KERN_INFO "%s: invalid interface name!\n",
card->devname);
return -EINVAL;
}
/* allocate and initialize private data */
chdlc_priv_area = kmalloc(sizeof(chdlc_private_area_t), GFP_KERNEL);
if(chdlc_priv_area == NULL)
return -ENOMEM;
memset(chdlc_priv_area, 0, sizeof(chdlc_private_area_t));
chdlc_priv_area->card = card;
/* initialize data */
strcpy(card->u.c.if_name, conf->name);
if(card->wandev.new_if_cnt > 0) {
kfree(chdlc_priv_area);
return -EEXIST;
}
card->wandev.new_if_cnt++;
chdlc_priv_area->TracingEnabled = 0;
//We don't need this any more
chdlc_priv_area->route_status = NO_ROUTE;
chdlc_priv_area->route_removed = 0;
printk(KERN_INFO "%s: Firmware running in HDLC STREAMING Mode\n",
wandev->name);
/* Setup wanpipe as a router (WANPIPE) or as an API */
if( strcmp(conf->usedby, "WANPIPE") == 0) {
printk(KERN_INFO "%s: Driver running in WANPIPE mode!\n",
wandev->name);
card->u.c.usedby = WANPIPE;
} else {
printk(KERN_INFO
"%s: API Mode is not supported for SyncPPP!\n",
wandev->name);
kfree(chdlc_priv_area);
return -EINVAL;
}
/* Get Multicast Information */
chdlc_priv_area->mc = conf->mc;
chdlc_priv_area->if_ptr = pppdev;
/* prepare network device data space for registration */
strcpy(dev->name,card->u.c.if_name);
/* Attach PPP protocol layer to pppdev
* The sppp_attach() will initilize the dev structure
* and setup ppp layer protocols.
* All we have to do is to bind in:
* if_open(), if_close(), if_send() and get_stats() functions.
*/
sppp_attach(pppdev);
dev = pppdev->dev;
sp = &pppdev->sppp;
/* Enable PPP Debugging */
// FIXME Fix this up somehow
//sp->pp_flags |= PP_DEBUG;
sp->pp_flags &= ~PP_CISCO;
dev->init = &if_init;
dev->priv = chdlc_priv_area;
return 0;
}
/*============================================================================
* Delete logical channel.
*/
static int del_if(struct wan_device* wandev, struct net_device* dev)
{
chdlc_private_area_t *chdlc_priv_area = dev->priv;
sdla_t *card = chdlc_priv_area->card;
unsigned long smp_lock;
/* Detach the PPP layer */
printk(KERN_INFO "%s: Detaching SyncPPP Module from %s\n",
wandev->name,dev->name);
lock_adapter_irq(&wandev->lock,&smp_lock);
sppp_detach(dev);
chdlc_priv_area->if_ptr=NULL;
chdlc_set_intr_mode(card, 0);
if (card->u.c.comm_enabled)
chdlc_comm_disable(card);
unlock_adapter_irq(&wandev->lock,&smp_lock);
port_set_state(card, WAN_DISCONNECTED);
return 0;
}
/****** Network Device Interface ********************************************/
/*============================================================================
* Initialize Linux network interface.
*
* This routine is called only once for each interface, during Linux network
* interface registration. Returning anything but zero will fail interface
* registration.
*/
static int if_init(struct net_device* dev)
{
chdlc_private_area_t* chdlc_priv_area = dev->priv;
sdla_t* card = chdlc_priv_area->card;
struct wan_device* wandev = &card->wandev;
/* NOTE: Most of the dev initialization was
* done in sppp_attach(), called by new_if()
* function. All we have to do here is
* to link four major routines below.
*/
/* Initialize device driver entry points */
dev->open = &if_open;
dev->stop = &if_close;
dev->hard_start_xmit = &if_send;
dev->get_stats = &if_stats;
dev->tx_timeout = &if_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
/* Initialize hardware parameters */
dev->irq = wandev->irq;
dev->dma = wandev->dma;
dev->base_addr = wandev->ioport;
dev->mem_start = wandev->maddr;
dev->mem_end = wandev->maddr + wandev->msize - 1;
/* Set transmit buffer queue length
* If we over fill this queue the packets will
* be droped by the kernel.
* sppp_attach() sets this to 10, but
* 100 will give us more room at low speeds.
*/
dev->tx_queue_len = 100;
return 0;
}
/*============================================================================
* Handle transmit timeout event from netif watchdog
*/
static void if_tx_timeout(struct net_device *dev)
{
chdlc_private_area_t* chan = dev->priv;
sdla_t *card = chan->card;
/* If our device stays busy for at least 5 seconds then we will
* kick start the device by making dev->tbusy = 0. We expect
* that our device never stays busy more than 5 seconds. So this
* is only used as a last resort.
*/
++card->wandev.stats.collisions;
printk (KERN_INFO "%s: Transmit timed out on %s\n", card->devname,dev->name);
netif_wake_queue (dev);
}
/*============================================================================
* Open network interface.
* o enable communications and interrupts.
* o prevent module from unloading by incrementing use count
*
* Return 0 if O.k. or errno.
*/
static int if_open(struct net_device* dev)
{
chdlc_private_area_t* chdlc_priv_area = dev->priv;
sdla_t* card = chdlc_priv_area->card;
struct timeval tv;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
/* Only one open per interface is allowed */
if (netif_running(dev))
return -EBUSY;
/* Start PPP Layer */
if (sppp_open(dev)){
return -EIO;
}
do_gettimeofday(&tv);
chdlc_priv_area->router_start_time = tv.tv_sec;
netif_start_queue(dev);
wanpipe_open(card);
chdlc_priv_area->timer_int_enabled |= TMR_INT_ENABLED_CONFIG;
flags->interrupt_info_struct.interrupt_permission |= APP_INT_ON_TIMER;
return 0;
}
/*============================================================================
* Close network interface.
* o if this is the last close, then disable communications and interrupts.
* o reset flags.
*/
static int if_close(struct net_device* dev)
{
chdlc_private_area_t* chdlc_priv_area = dev->priv;
sdla_t* card = chdlc_priv_area->card;
/* Stop the PPP Layer */
sppp_close(dev);
netif_stop_queue(dev);
wanpipe_close(card);
return 0;
}
/*============================================================================
* Send a packet on a network interface.
* o set tbusy flag (marks start of the transmission) to block a timer-based
* transmit from overlapping.
* o check link state. If link is not up, then drop the packet.
* o execute adapter send command.
* o free socket buffer
*
* Return: 0 complete (socket buffer must be freed)
* non-0 packet may be re-transmitted (tbusy must be set)
*
* Notes:
* 1. This routine is called either by the protocol stack or by the "net
* bottom half" (with interrupts enabled).
* 2. Setting tbusy flag will inhibit further transmit requests from the
* protocol stack and can be used for flow control with protocol layer.
*/
static int if_send(struct sk_buff* skb, struct net_device* dev)
{
chdlc_private_area_t *chdlc_priv_area = dev->priv;
sdla_t *card = chdlc_priv_area->card;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
INTERRUPT_INFORMATION_STRUCT *chdlc_int = &flags->interrupt_info_struct;
int udp_type = 0;
unsigned long smp_flags;
int err=0;
netif_stop_queue(dev);
if (skb == NULL){
/* If we get here, some higher layer thinks we've missed an
* tx-done interrupt.
*/
printk(KERN_INFO "%s: Received NULL skb buffer! interface %s got kicked!\n",
card->devname, dev->name);
netif_wake_queue(dev);
return 0;
}
if (ntohs(skb->protocol) != htons(PVC_PROT)){
/* check the udp packet type */
udp_type = udp_pkt_type(skb, card);
if (udp_type == UDP_CPIPE_TYPE){
if(store_udp_mgmt_pkt(UDP_PKT_FRM_STACK, card, skb, dev,
chdlc_priv_area)){
chdlc_int->interrupt_permission |=
APP_INT_ON_TIMER;
}
netif_start_queue(dev);
return 0;
}
}
/* Lock the 508 Card: SMP is supported */
if(card->hw.type != SDLA_S514){
s508_lock(card,&smp_flags);
}
if (test_and_set_bit(SEND_CRIT, (void*)&card->wandev.critical)){
printk(KERN_INFO "%s: Critical in if_send: %lx\n",
card->wandev.name,card->wandev.critical);
++card->wandev.stats.tx_dropped;
netif_start_queue(dev);
goto if_send_crit_exit;
}
if (card->wandev.state != WAN_CONNECTED){
++card->wandev.stats.tx_dropped;
netif_start_queue(dev);
goto if_send_crit_exit;
}
if (chdlc_send(card, skb->data, skb->len)){
netif_stop_queue(dev);
}else{
++card->wandev.stats.tx_packets;
card->wandev.stats.tx_bytes += skb->len;
dev->trans_start = jiffies;
netif_start_queue(dev);
}
if_send_crit_exit:
if (!(err=netif_queue_stopped(dev))){
dev_kfree_skb_any(skb);
}else{
chdlc_priv_area->tick_counter = jiffies;
chdlc_int->interrupt_permission |= APP_INT_ON_TX_FRAME;
}
clear_bit(SEND_CRIT, (void*)&card->wandev.critical);
if(card->hw.type != SDLA_S514){
s508_unlock(card,&smp_flags);
}
return err;
}
/*============================================================================
* Reply to UDP Management system.
* Return length of reply.
*/
static int reply_udp( unsigned char *data, unsigned int mbox_len )
{
unsigned short len, udp_length, temp, ip_length;
unsigned long ip_temp;
int even_bound = 0;
chdlc_udp_pkt_t *c_udp_pkt = (chdlc_udp_pkt_t *)data;
/* Set length of packet */
len = sizeof(ip_pkt_t)+
sizeof(udp_pkt_t)+
sizeof(wp_mgmt_t)+
sizeof(cblock_t)+
sizeof(trace_info_t)+
mbox_len;
/* fill in UDP reply */
c_udp_pkt->wp_mgmt.request_reply = UDPMGMT_REPLY;
/* fill in UDP length */
udp_length = sizeof(udp_pkt_t)+
sizeof(wp_mgmt_t)+
sizeof(cblock_t)+
sizeof(trace_info_t)+
mbox_len;
/* put it on an even boundary */
if ( udp_length & 0x0001 ) {
udp_length += 1;
len += 1;
even_bound = 1;
}
temp = (udp_length<<8)|(udp_length>>8);
c_udp_pkt->udp_pkt.udp_length = temp;
/* swap UDP ports */
temp = c_udp_pkt->udp_pkt.udp_src_port;
c_udp_pkt->udp_pkt.udp_src_port =
c_udp_pkt->udp_pkt.udp_dst_port;
c_udp_pkt->udp_pkt.udp_dst_port = temp;
/* add UDP pseudo header */
temp = 0x1100;
*((unsigned short *)(c_udp_pkt->data+mbox_len+even_bound)) = temp;
temp = (udp_length<<8)|(udp_length>>8);
*((unsigned short *)(c_udp_pkt->data+mbox_len+even_bound+2)) = temp;
/* calculate UDP checksum */
c_udp_pkt->udp_pkt.udp_checksum = 0;
c_udp_pkt->udp_pkt.udp_checksum = calc_checksum(&data[UDP_OFFSET],udp_length+UDP_OFFSET);
/* fill in IP length */
ip_length = len;
temp = (ip_length<<8)|(ip_length>>8);
c_udp_pkt->ip_pkt.total_length = temp;
/* swap IP addresses */
ip_temp = c_udp_pkt->ip_pkt.ip_src_address;
c_udp_pkt->ip_pkt.ip_src_address = c_udp_pkt->ip_pkt.ip_dst_address;
c_udp_pkt->ip_pkt.ip_dst_address = ip_temp;
/* fill in IP checksum */
c_udp_pkt->ip_pkt.hdr_checksum = 0;
c_udp_pkt->ip_pkt.hdr_checksum = calc_checksum(data,sizeof(ip_pkt_t));
return len;
} /* reply_udp */
unsigned short calc_checksum (char *data, int len)
{
unsigned short temp;
unsigned long sum=0;
int i;
for( i = 0; i <len; i+=2 ) {
memcpy(&temp,&data[i],2);
sum += (unsigned long)temp;
}
while (sum >> 16 ) {
sum = (sum & 0xffffUL) + (sum >> 16);
}
temp = (unsigned short)sum;
temp = ~temp;
if( temp == 0 )
temp = 0xffff;
return temp;
}
/*============================================================================
* Get ethernet-style interface statistics.
* Return a pointer to struct enet_statistics.
*/
static struct net_device_stats* if_stats(struct net_device* dev)
{
sdla_t *my_card;
chdlc_private_area_t* chdlc_priv_area;
/* Shutdown bug fix. In del_if() we kill
* dev->priv pointer. This function, gets
* called after del_if(), thus check
* if pointer has been deleted */
if ((chdlc_priv_area=dev->priv) == NULL)
return NULL;
my_card = chdlc_priv_area->card;
return &my_card->wandev.stats;
}
/****** Cisco HDLC Firmware Interface Functions *******************************/
/*============================================================================
* Read firmware code version.
* Put code version as ASCII string in str.
*/
static int chdlc_read_version (sdla_t* card, char* str)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
int len;
char err;
mb->buffer_length = 0;
mb->command = READ_CHDLC_CODE_VERSION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if(err != COMMAND_OK) {
chdlc_error(card,err,mb);
}
else if (str) { /* is not null */
len = mb->buffer_length;
memcpy(str, mb->data, len);
str[len] = '\0';
}
return (err);
}
/*-----------------------------------------------------------------------------
* Configure CHDLC firmware.
*/
static int chdlc_configure (sdla_t* card, void* data)
{
int err;
CHDLC_MAILBOX_STRUCT *mailbox = card->mbox;
int data_length = sizeof(CHDLC_CONFIGURATION_STRUCT);
mailbox->buffer_length = data_length;
memcpy(mailbox->data, data, data_length);
mailbox->command = SET_CHDLC_CONFIGURATION;
err = sdla_exec(mailbox) ? mailbox->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK) chdlc_error (card, err, mailbox);
return err;
}
/*============================================================================
* Set interrupt mode -- HDLC Version.
*/
static int chdlc_set_intr_mode (sdla_t* card, unsigned mode)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
CHDLC_INT_TRIGGERS_STRUCT* int_data =
(CHDLC_INT_TRIGGERS_STRUCT *)mb->data;
int err;
int_data->CHDLC_interrupt_triggers = mode;
int_data->IRQ = card->hw.irq;
int_data->interrupt_timer = 1;
mb->buffer_length = sizeof(CHDLC_INT_TRIGGERS_STRUCT);
mb->command = SET_CHDLC_INTERRUPT_TRIGGERS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error (card, err, mb);
return err;
}
/*============================================================================
* Enable communications.
*/
static int chdlc_comm_enable (sdla_t* card)
{
int err;
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
mb->buffer_length = 0;
mb->command = ENABLE_CHDLC_COMMUNICATIONS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error(card, err, mb);
else
card->u.c.comm_enabled=1;
return err;
}
/*============================================================================
* Disable communications and Drop the Modem lines (DCD and RTS).
*/
static int chdlc_comm_disable (sdla_t* card)
{
int err;
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
mb->buffer_length = 0;
mb->command = DISABLE_CHDLC_COMMUNICATIONS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error(card,err,mb);
return err;
}
/*============================================================================
* Read communication error statistics.
*/
static int chdlc_read_comm_err_stats (sdla_t* card)
{
int err;
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
mb->buffer_length = 0;
mb->command = READ_COMMS_ERROR_STATS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error(card,err,mb);
return err;
}
/*============================================================================
* Read CHDLC operational statistics.
*/
static int chdlc_read_op_stats (sdla_t* card)
{
int err;
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
mb->buffer_length = 0;
mb->command = READ_CHDLC_OPERATIONAL_STATS;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK)
chdlc_error(card,err,mb);
return err;
}
/*============================================================================
* Update communications error and general packet statistics.
*/
static int update_comms_stats(sdla_t* card,
chdlc_private_area_t* chdlc_priv_area)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
COMMS_ERROR_STATS_STRUCT* err_stats;
CHDLC_OPERATIONAL_STATS_STRUCT *op_stats;
/* on the first timer interrupt, read the comms error statistics */
if(chdlc_priv_area->update_comms_stats == 2) {
if(chdlc_read_comm_err_stats(card))
return 1;
err_stats = (COMMS_ERROR_STATS_STRUCT *)mb->data;
card->wandev.stats.rx_over_errors =
err_stats->Rx_overrun_err_count;
card->wandev.stats.rx_crc_errors =
err_stats->CRC_err_count;
card->wandev.stats.rx_frame_errors =
err_stats->Rx_abort_count;
card->wandev.stats.rx_fifo_errors =
err_stats->Rx_dis_pri_bfrs_full_count;
card->wandev.stats.rx_missed_errors =
card->wandev.stats.rx_fifo_errors;
card->wandev.stats.tx_aborted_errors =
err_stats->sec_Tx_abort_count;
}
/* on the second timer interrupt, read the operational statistics */
else {
if(chdlc_read_op_stats(card))
return 1;
op_stats = (CHDLC_OPERATIONAL_STATS_STRUCT *)mb->data;
card->wandev.stats.rx_length_errors =
(op_stats->Rx_Data_discard_short_count +
op_stats->Rx_Data_discard_long_count);
}
return 0;
}
/*============================================================================
* Send packet.
* Return: 0 - o.k.
* 1 - no transmit buffers available
*/
static int chdlc_send (sdla_t* card, void* data, unsigned len)
{
CHDLC_DATA_TX_STATUS_EL_STRUCT *txbuf = card->u.c.txbuf;
if (txbuf->opp_flag)
return 1;
sdla_poke(&card->hw, txbuf->ptr_data_bfr, data, len);
txbuf->frame_length = len;
txbuf->opp_flag = 1; /* start transmission */
/* Update transmit buffer control fields */
card->u.c.txbuf = ++txbuf;
if ((void*)txbuf > card->u.c.txbuf_last)
card->u.c.txbuf = card->u.c.txbuf_base;
return 0;
}
/****** Firmware Error Handler **********************************************/
/*============================================================================
* Firmware error handler.
* This routine is called whenever firmware command returns non-zero
* return code.
*
* Return zero if previous command has to be cancelled.
*/
static int chdlc_error (sdla_t *card, int err, CHDLC_MAILBOX_STRUCT *mb)
{
unsigned cmd = mb->command;
switch (err) {
case CMD_TIMEOUT:
printk(KERN_ERR "%s: command 0x%02X timed out!\n",
card->devname, cmd);
break;
case S514_BOTH_PORTS_SAME_CLK_MODE:
if(cmd == SET_CHDLC_CONFIGURATION) {
printk(KERN_INFO
"%s: Configure both ports for the same clock source\n",
card->devname);
break;
}
default:
printk(KERN_INFO "%s: command 0x%02X returned 0x%02X!\n",
card->devname, cmd, err);
}
return 0;
}
/****** Interrupt Handlers **************************************************/
/*============================================================================
* Cisco HDLC interrupt service routine.
*/
STATIC void wsppp_isr (sdla_t* card)
{
struct net_device* dev;
SHARED_MEMORY_INFO_STRUCT* flags = NULL;
int i;
sdla_t *my_card;
/* Check for which port the interrupt has been generated
* Since Secondary Port is piggybacking on the Primary
* the check must be done here.
*/
flags = card->u.c.flags;
if (!flags->interrupt_info_struct.interrupt_type){
/* Check for a second port (piggybacking) */
if((my_card = card->next)){
flags = my_card->u.c.flags;
if (flags->interrupt_info_struct.interrupt_type){
card = my_card;
card->isr(card);
return;
}
}
}
dev = card->wandev.dev;
card->in_isr = 1;
flags = card->u.c.flags;
/* If we get an interrupt with no network device, stop the interrupts
* and issue an error */
if ((!dev || !dev->priv) && flags->interrupt_info_struct.interrupt_type !=
COMMAND_COMPLETE_APP_INT_PEND){
goto isr_done;
}
/* if critical due to peripheral operations
* ie. update() or getstats() then reset the interrupt and
* wait for the board to retrigger.
*/
if(test_bit(PERI_CRIT, (void*)&card->wandev.critical)) {
flags->interrupt_info_struct.
interrupt_type = 0;
goto isr_done;
}
/* On a 508 Card, if critical due to if_send
* Major Error !!!
*/
if(card->hw.type != SDLA_S514) {
if(test_bit(0, (void*)&card->wandev.critical)) {
printk(KERN_INFO "%s: Critical while in ISR: %lx\n",
card->devname, card->wandev.critical);
goto isr_done;
}
}
switch(flags->interrupt_info_struct.interrupt_type) {
case RX_APP_INT_PEND: /* 0x01: receive interrupt */
rx_intr(card);
break;
case TX_APP_INT_PEND: /* 0x02: transmit interrupt */
flags->interrupt_info_struct.interrupt_permission &=
~APP_INT_ON_TX_FRAME;
netif_wake_queue(dev);
break;
case COMMAND_COMPLETE_APP_INT_PEND:/* 0x04: cmd cplt */
++ Intr_test_counter;
break;
case CHDLC_EXCEP_COND_APP_INT_PEND: /* 0x20 */
process_chdlc_exception(card);
break;
case GLOBAL_EXCEP_COND_APP_INT_PEND:
process_global_exception(card);
break;
case TIMER_APP_INT_PEND:
timer_intr(card);
break;
default:
printk(KERN_INFO "%s: spurious interrupt 0x%02X!\n",
card->devname,
flags->interrupt_info_struct.interrupt_type);
printk(KERN_INFO "Code name: ");
for(i = 0; i < 4; i ++)
printk(KERN_INFO "%c",
flags->global_info_struct.codename[i]);
printk(KERN_INFO "\nCode version: ");
for(i = 0; i < 4; i ++)
printk(KERN_INFO "%c",
flags->global_info_struct.codeversion[i]);
printk(KERN_INFO "\n");
break;
}
isr_done:
card->in_isr = 0;
flags->interrupt_info_struct.interrupt_type = 0;
}
/*============================================================================
* Receive interrupt handler.
*/
static void rx_intr (sdla_t* card)
{
struct net_device *dev;
chdlc_private_area_t *chdlc_priv_area;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
CHDLC_DATA_RX_STATUS_EL_STRUCT *rxbuf = card->u.c.rxmb;
struct sk_buff *skb;
unsigned len;
unsigned addr = rxbuf->ptr_data_bfr;
void *buf;
int i,udp_type;
if (rxbuf->opp_flag != 0x01) {
printk(KERN_INFO
"%s: corrupted Rx buffer @ 0x%X, flag = 0x%02X!\n",
card->devname, (unsigned)rxbuf, rxbuf->opp_flag);
printk(KERN_INFO "Code name: ");
for(i = 0; i < 4; i ++)
printk(KERN_INFO "%c",
flags->global_info_struct.codename[i]);
printk(KERN_INFO "\nCode version: ");
for(i = 0; i < 4; i ++)
printk(KERN_INFO "%c",
flags->global_info_struct.codeversion[i]);
printk(KERN_INFO "\n");
/* Bug Fix: Mar 6 2000
* If we get a corrupted mailbox, it measn that driver
* is out of sync with the firmware. There is no recovery.
* If we don't turn off all interrupts for this card
* the machine will crash.
*/
printk(KERN_INFO "%s: Critical router failure ...!!!\n", card->devname);
printk(KERN_INFO "Please contact Sangoma Technologies !\n");
chdlc_set_intr_mode(card,0);
return;
}
dev = card->wandev.dev;
if (!dev){
goto rx_exit;
}
if (!netif_running(dev)){
goto rx_exit;
}
chdlc_priv_area = dev->priv;
if (rxbuf->error_flag){
goto rx_exit;
}
/* Take off two CRC bytes */
if (rxbuf->frame_length < 7 || rxbuf->frame_length > 1506 ){
goto rx_exit;
}
len = rxbuf->frame_length - CRC_LENGTH;
/* Allocate socket buffer */
skb = dev_alloc_skb(len);
if (skb == NULL) {
if (net_ratelimit()){
printk(KERN_INFO "%s: no socket buffers available!\n",
card->devname);
}
++card->wandev.stats.rx_dropped;
goto rx_exit;
}
/* Copy data to the socket buffer */
if((addr + len) > card->u.c.rx_top + 1) {
unsigned tmp = card->u.c.rx_top - addr + 1;
buf = skb_put(skb, tmp);
sdla_peek(&card->hw, addr, buf, tmp);
addr = card->u.c.rx_base;
len -= tmp;
}
buf = skb_put(skb, len);
sdla_peek(&card->hw, addr, buf, len);
skb->protocol = htons(ETH_P_WAN_PPP);
card->wandev.stats.rx_packets ++;
card->wandev.stats.rx_bytes += skb->len;
udp_type = udp_pkt_type( skb, card );
if(udp_type == UDP_CPIPE_TYPE) {
if(store_udp_mgmt_pkt(UDP_PKT_FRM_NETWORK,
card, skb, dev, chdlc_priv_area)) {
flags->interrupt_info_struct.
interrupt_permission |=
APP_INT_ON_TIMER;
}
}else{
/* Pass it up the protocol stack */
skb->dev = dev;
skb->mac.raw = skb->data;
netif_rx(skb);
dev->last_rx = jiffies;
}
rx_exit:
/* Release buffer element and calculate a pointer to the next one */
rxbuf->opp_flag = 0x00;
card->u.c.rxmb = ++ rxbuf;
if((void*)rxbuf > card->u.c.rxbuf_last){
card->u.c.rxmb = card->u.c.rxbuf_base;
}
}
/*============================================================================
* Timer interrupt handler.
* The timer interrupt is used for two purposes:
* 1) Processing udp calls from 'cpipemon'.
* 2) Reading board-level statistics for updating the proc file system.
*/
void timer_intr(sdla_t *card)
{
struct net_device* dev;
chdlc_private_area_t* chdlc_priv_area = NULL;
SHARED_MEMORY_INFO_STRUCT* flags = NULL;
dev = card->wandev.dev;
chdlc_priv_area = dev->priv;
if (chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_CONFIG) {
if (!config_chdlc(card)){
chdlc_priv_area->timer_int_enabled &= ~TMR_INT_ENABLED_CONFIG;
}
}
/* process a udp call if pending */
if(chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_UDP) {
process_udp_mgmt_pkt(card, dev,
chdlc_priv_area);
chdlc_priv_area->timer_int_enabled &= ~TMR_INT_ENABLED_UDP;
}
/* read the communications statistics if required */
if(chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_UPDATE) {
update_comms_stats(card, chdlc_priv_area);
if(!(-- chdlc_priv_area->update_comms_stats)) {
chdlc_priv_area->timer_int_enabled &=
~TMR_INT_ENABLED_UPDATE;
}
}
/* only disable the timer interrupt if there are no udp or statistic */
/* updates pending */
if(!chdlc_priv_area->timer_int_enabled) {
flags = card->u.c.flags;
flags->interrupt_info_struct.interrupt_permission &=
~APP_INT_ON_TIMER;
}
}
/*------------------------------------------------------------------------------
Miscellaneous Functions
- set_chdlc_config() used to set configuration options on the board
------------------------------------------------------------------------------*/
static int set_chdlc_config(sdla_t* card)
{
CHDLC_CONFIGURATION_STRUCT cfg;
memset(&cfg, 0, sizeof(CHDLC_CONFIGURATION_STRUCT));
if(card->wandev.clocking)
cfg.baud_rate = card->wandev.bps;
cfg.line_config_options = (card->wandev.interface == WANOPT_RS232) ?
INTERFACE_LEVEL_RS232 : INTERFACE_LEVEL_V35;
cfg.modem_config_options = 0;
//API OPTIONS
cfg.CHDLC_API_options = DISCARD_RX_ERROR_FRAMES;
cfg.modem_status_timer = 100;
cfg.CHDLC_protocol_options = HDLC_STREAMING_MODE;
cfg.percent_data_buffer_for_Tx = 50;
cfg.CHDLC_statistics_options = (CHDLC_TX_DATA_BYTE_COUNT_STAT |
CHDLC_RX_DATA_BYTE_COUNT_STAT);
cfg.max_CHDLC_data_field_length = card->wandev.mtu;
cfg.transmit_keepalive_timer = 0;
cfg.receive_keepalive_timer = 0;
cfg.keepalive_error_tolerance = 0;
cfg.SLARP_request_timer = 0;
cfg.IP_address = 0;
cfg.IP_netmask = 0;
return chdlc_configure(card, &cfg);
}
/*============================================================================
* Process global exception condition
*/
static int process_global_exception(sdla_t *card)
{
CHDLC_MAILBOX_STRUCT* mbox = card->mbox;
int err;
mbox->buffer_length = 0;
mbox->command = READ_GLOBAL_EXCEPTION_CONDITION;
err = sdla_exec(mbox) ? mbox->return_code : CMD_TIMEOUT;
if(err != CMD_TIMEOUT ){
switch(mbox->return_code) {
case EXCEP_MODEM_STATUS_CHANGE:
printk(KERN_INFO "%s: Modem status change\n",
card->devname);
switch(mbox->data[0] & (DCD_HIGH | CTS_HIGH)) {
case (DCD_HIGH):
printk(KERN_INFO "%s: DCD high, CTS low\n",card->devname);
break;
case (CTS_HIGH):
printk(KERN_INFO "%s: DCD low, CTS high\n",card->devname);
break;
case ((DCD_HIGH | CTS_HIGH)):
printk(KERN_INFO "%s: DCD high, CTS high\n",card->devname);
break;
default:
printk(KERN_INFO "%s: DCD low, CTS low\n",card->devname);
break;
}
if (!(mbox->data[0] & DCD_HIGH) || !(mbox->data[0] & DCD_HIGH)){
//printk(KERN_INFO "Sending TERM Request Manually !\n");
send_ppp_term_request(card->wandev.dev);
}
break;
case EXCEP_TRC_DISABLED:
printk(KERN_INFO "%s: Line trace disabled\n",
card->devname);
break;
case EXCEP_IRQ_TIMEOUT:
printk(KERN_INFO "%s: IRQ timeout occurred\n",
card->devname);
break;
default:
printk(KERN_INFO "%s: Global exception %x\n",
card->devname, mbox->return_code);
break;
}
}
return 0;
}
/*============================================================================
* Process chdlc exception condition
*/
static int process_chdlc_exception(sdla_t *card)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
int err;
mb->buffer_length = 0;
mb->command = READ_CHDLC_EXCEPTION_CONDITION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if(err != CMD_TIMEOUT) {
switch (err) {
case EXCEP_LINK_ACTIVE:
port_set_state(card, WAN_CONNECTED);
break;
case EXCEP_LINK_INACTIVE_MODEM:
port_set_state(card, WAN_DISCONNECTED);
break;
case EXCEP_LOOPBACK_CONDITION:
printk(KERN_INFO "%s: Loopback Condition Detected.\n",
card->devname);
break;
case NO_CHDLC_EXCEP_COND_TO_REPORT:
printk(KERN_INFO "%s: No exceptions reported.\n",
card->devname);
break;
default:
printk(KERN_INFO "%s: Exception Condition %x!\n",
card->devname,err);
break;
}
}
return 0;
}
/*=============================================================================
* Store a UDP management packet for later processing.
*/
static int store_udp_mgmt_pkt(char udp_pkt_src, sdla_t* card,
struct sk_buff *skb, struct net_device* dev,
chdlc_private_area_t* chdlc_priv_area )
{
int udp_pkt_stored = 0;
if(!chdlc_priv_area->udp_pkt_lgth &&
(skb->len <= MAX_LGTH_UDP_MGNT_PKT)) {
chdlc_priv_area->udp_pkt_lgth = skb->len;
chdlc_priv_area->udp_pkt_src = udp_pkt_src;
memcpy(chdlc_priv_area->udp_pkt_data, skb->data, skb->len);
chdlc_priv_area->timer_int_enabled = TMR_INT_ENABLED_UDP;
udp_pkt_stored = 1;
}
if(udp_pkt_src == UDP_PKT_FRM_STACK)
dev_kfree_skb_any(skb);
else
dev_kfree_skb_any(skb);
return(udp_pkt_stored);
}
/*=============================================================================
* Process UDP management packet.
*/
static int process_udp_mgmt_pkt(sdla_t* card, struct net_device* dev,
chdlc_private_area_t* chdlc_priv_area )
{
unsigned char *buf;
unsigned int frames, len;
struct sk_buff *new_skb;
unsigned short buffer_length, real_len;
unsigned long data_ptr;
unsigned data_length;
int udp_mgmt_req_valid = 1;
CHDLC_MAILBOX_STRUCT *mb = card->mbox;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
chdlc_udp_pkt_t *chdlc_udp_pkt;
struct timeval tv;
int err;
char ut_char;
chdlc_udp_pkt = (chdlc_udp_pkt_t *) chdlc_priv_area->udp_pkt_data;
if(chdlc_priv_area->udp_pkt_src == UDP_PKT_FRM_NETWORK) {
switch(chdlc_udp_pkt->cblock.command) {
case READ_GLOBAL_STATISTICS:
case READ_MODEM_STATUS:
case READ_CHDLC_LINK_STATUS:
case CPIPE_ROUTER_UP_TIME:
case READ_COMMS_ERROR_STATS:
case READ_CHDLC_OPERATIONAL_STATS:
/* These two commands are executed for
* each request */
case READ_CHDLC_CONFIGURATION:
case READ_CHDLC_CODE_VERSION:
udp_mgmt_req_valid = 1;
break;
default:
udp_mgmt_req_valid = 0;
break;
}
}
if(!udp_mgmt_req_valid) {
/* set length to 0 */
chdlc_udp_pkt->cblock.buffer_length = 0;
/* set return code */
chdlc_udp_pkt->cblock.return_code = 0xCD;
if (net_ratelimit()){
printk(KERN_INFO
"%s: Warning, Illegal UDP command attempted from network: %x\n",
card->devname,chdlc_udp_pkt->cblock.command);
}
} else {
unsigned long trace_status_cfg_addr = 0;
TRACE_STATUS_EL_CFG_STRUCT trace_cfg_struct;
TRACE_STATUS_ELEMENT_STRUCT trace_element_struct;
switch(chdlc_udp_pkt->cblock.command) {
case CPIPE_ENABLE_TRACING:
if (!chdlc_priv_area->TracingEnabled) {
/* OPERATE_DATALINE_MONITOR */
mb->buffer_length = sizeof(LINE_TRACE_CONFIG_STRUCT);
mb->command = SET_TRACE_CONFIGURATION;
((LINE_TRACE_CONFIG_STRUCT *)mb->data)->
trace_config = TRACE_ACTIVE;
/* Trace delay mode is not used because it slows
down transfer and results in a standoff situation
when there is a lot of data */
/* Configure the Trace based on user inputs */
((LINE_TRACE_CONFIG_STRUCT *)mb->data)->trace_config |=
chdlc_udp_pkt->data[0];
((LINE_TRACE_CONFIG_STRUCT *)mb->data)->
trace_deactivation_timer = 4000;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK) {
chdlc_error(card,err,mb);
card->TracingEnabled = 0;
chdlc_udp_pkt->cblock.return_code = err;
mb->buffer_length = 0;
break;
}
/* Get the base address of the trace element list */
mb->buffer_length = 0;
mb->command = READ_TRACE_CONFIGURATION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK) {
chdlc_error(card,err,mb);
chdlc_priv_area->TracingEnabled = 0;
chdlc_udp_pkt->cblock.return_code = err;
mb->buffer_length = 0;
break;
}
trace_status_cfg_addr =((LINE_TRACE_CONFIG_STRUCT *)
mb->data) -> ptr_trace_stat_el_cfg_struct;
sdla_peek(&card->hw, trace_status_cfg_addr,
&trace_cfg_struct, sizeof(trace_cfg_struct));
chdlc_priv_area->start_trace_addr = trace_cfg_struct.
base_addr_trace_status_elements;
chdlc_priv_area->number_trace_elements =
trace_cfg_struct.number_trace_status_elements;
chdlc_priv_area->end_trace_addr = (unsigned long)
((TRACE_STATUS_ELEMENT_STRUCT *)
chdlc_priv_area->start_trace_addr +
(chdlc_priv_area->number_trace_elements - 1));
chdlc_priv_area->base_addr_trace_buffer =
trace_cfg_struct.base_addr_trace_buffer;
chdlc_priv_area->end_addr_trace_buffer =
trace_cfg_struct.end_addr_trace_buffer;
chdlc_priv_area->curr_trace_addr =
trace_cfg_struct.next_trace_element_to_use;
chdlc_priv_area->available_buffer_space = 2000 -
sizeof(ip_pkt_t) -
sizeof(udp_pkt_t) -
sizeof(wp_mgmt_t) -
sizeof(cblock_t) -
sizeof(trace_info_t);
}
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
mb->buffer_length = 0;
chdlc_priv_area->TracingEnabled = 1;
break;
case CPIPE_DISABLE_TRACING:
if (chdlc_priv_area->TracingEnabled) {
/* OPERATE_DATALINE_MONITOR */
mb->buffer_length = sizeof(LINE_TRACE_CONFIG_STRUCT);
mb->command = SET_TRACE_CONFIGURATION;
((LINE_TRACE_CONFIG_STRUCT *)mb->data)->
trace_config = TRACE_INACTIVE;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
}
chdlc_priv_area->TracingEnabled = 0;
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
mb->buffer_length = 0;
break;
case CPIPE_GET_TRACE_INFO:
if (!chdlc_priv_area->TracingEnabled) {
chdlc_udp_pkt->cblock.return_code = 1;
mb->buffer_length = 0;
break;
}
chdlc_udp_pkt->trace_info.ismoredata = 0x00;
buffer_length = 0; /* offset of packet already occupied */
for (frames=0; frames < chdlc_priv_area->number_trace_elements; frames++){
trace_pkt_t *trace_pkt = (trace_pkt_t *)
&chdlc_udp_pkt->data[buffer_length];
sdla_peek(&card->hw, chdlc_priv_area->curr_trace_addr,
(unsigned char *)&trace_element_struct,
sizeof(TRACE_STATUS_ELEMENT_STRUCT));
if (trace_element_struct.opp_flag == 0x00) {
break;
}
/* get pointer to real data */
data_ptr = trace_element_struct.ptr_data_bfr;
/* See if there is actual data on the trace buffer */
if (data_ptr){
data_length = trace_element_struct.trace_length;
}else{
data_length = 0;
chdlc_udp_pkt->trace_info.ismoredata = 0x01;
}
if( (chdlc_priv_area->available_buffer_space - buffer_length)
< ( sizeof(trace_pkt_t) + data_length) ) {
/* indicate there are more frames on board & exit */
chdlc_udp_pkt->trace_info.ismoredata = 0x01;
break;
}
trace_pkt->status = trace_element_struct.trace_type;
trace_pkt->time_stamp =
trace_element_struct.trace_time_stamp;
trace_pkt->real_length =
trace_element_struct.trace_length;
/* see if we can fit the frame into the user buffer */
real_len = trace_pkt->real_length;
if (data_ptr == 0) {
trace_pkt->data_avail = 0x00;
} else {
unsigned tmp = 0;
/* get the data from circular buffer
must check for end of buffer */
trace_pkt->data_avail = 0x01;
if ((data_ptr + real_len) >
chdlc_priv_area->end_addr_trace_buffer + 1){
tmp = chdlc_priv_area->end_addr_trace_buffer - data_ptr + 1;
sdla_peek(&card->hw, data_ptr,
trace_pkt->data,tmp);
data_ptr = chdlc_priv_area->base_addr_trace_buffer;
}
sdla_peek(&card->hw, data_ptr,
&trace_pkt->data[tmp], real_len - tmp);
}
/* zero the opp flag to show we got the frame */
ut_char = 0x00;
sdla_poke(&card->hw, chdlc_priv_area->curr_trace_addr, &ut_char, 1);
/* now move onto the next frame */
chdlc_priv_area->curr_trace_addr += sizeof(TRACE_STATUS_ELEMENT_STRUCT);
/* check if we went over the last address */
if ( chdlc_priv_area->curr_trace_addr > chdlc_priv_area->end_trace_addr ) {
chdlc_priv_area->curr_trace_addr = chdlc_priv_area->start_trace_addr;
}
if(trace_pkt->data_avail == 0x01) {
buffer_length += real_len - 1;
}
/* for the header */
buffer_length += sizeof(trace_pkt_t);
} /* For Loop */
if (frames == chdlc_priv_area->number_trace_elements){
chdlc_udp_pkt->trace_info.ismoredata = 0x01;
}
chdlc_udp_pkt->trace_info.num_frames = frames;
mb->buffer_length = buffer_length;
chdlc_udp_pkt->cblock.buffer_length = buffer_length;
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
break;
case CPIPE_FT1_READ_STATUS:
((unsigned char *)chdlc_udp_pkt->data )[0] =
flags->FT1_info_struct.parallel_port_A_input;
((unsigned char *)chdlc_udp_pkt->data )[1] =
flags->FT1_info_struct.parallel_port_B_input;
chdlc_udp_pkt->cblock.return_code = COMMAND_OK;
mb->buffer_length = 2;
break;
case CPIPE_ROUTER_UP_TIME:
do_gettimeofday( &tv );
chdlc_priv_area->router_up_time = tv.tv_sec -
chdlc_priv_area->router_start_time;
*(unsigned long *)&chdlc_udp_pkt->data =
chdlc_priv_area->router_up_time;
mb->buffer_length = sizeof(unsigned long);
break;
case FT1_MONITOR_STATUS_CTRL:
/* Enable FT1 MONITOR STATUS */
if ((chdlc_udp_pkt->data[0] & ENABLE_READ_FT1_STATUS) ||
(chdlc_udp_pkt->data[0] & ENABLE_READ_FT1_OP_STATS)) {
if( rCount++ != 0 ) {
chdlc_udp_pkt->cblock.
return_code = COMMAND_OK;
mb->buffer_length = 1;
break;
}
}
/* Disable FT1 MONITOR STATUS */
if( chdlc_udp_pkt->data[0] == 0) {
if( --rCount != 0) {
chdlc_udp_pkt->cblock.
return_code = COMMAND_OK;
mb->buffer_length = 1;
break;
}
}
default:
/* it's a board command */
mb->command = chdlc_udp_pkt->cblock.command;
mb->buffer_length = chdlc_udp_pkt->cblock.buffer_length;
if (mb->buffer_length) {
memcpy(&mb->data, (unsigned char *) chdlc_udp_pkt->
data, mb->buffer_length);
}
/* run the command on the board */
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if (err != COMMAND_OK) {
break;
}
/* copy the result back to our buffer */
memcpy(&chdlc_udp_pkt->cblock, mb, sizeof(cblock_t));
if (mb->buffer_length) {
memcpy(&chdlc_udp_pkt->data, &mb->data,
mb->buffer_length);
}
} /* end of switch */
} /* end of else */
/* Fill UDP TTL */
chdlc_udp_pkt->ip_pkt.ttl = card->wandev.ttl;
len = reply_udp(chdlc_priv_area->udp_pkt_data, mb->buffer_length);
if(chdlc_priv_area->udp_pkt_src == UDP_PKT_FRM_NETWORK) {
if(!chdlc_send(card, chdlc_priv_area->udp_pkt_data, len)) {
++ card->wandev.stats.tx_packets;
card->wandev.stats.tx_bytes += len;
}
} else {
/* Pass it up the stack
Allocate socket buffer */
if ((new_skb = dev_alloc_skb(len)) != NULL) {
/* copy data into new_skb */
buf = skb_put(new_skb, len);
memcpy(buf, chdlc_priv_area->udp_pkt_data, len);
/* Decapsulate pkt and pass it up the protocol stack */
new_skb->protocol = htons(ETH_P_IP);
new_skb->dev = dev;
new_skb->mac.raw = new_skb->data;
netif_rx(new_skb);
dev->last_rx = jiffies;
} else {
printk(KERN_INFO "%s: no socket buffers available!\n",
card->devname);
}
}
chdlc_priv_area->udp_pkt_lgth = 0;
return 0;
}
/*============================================================================
* Initialize Receive and Transmit Buffers.
*/
static void init_chdlc_tx_rx_buff(sdla_t* card, struct net_device *dev)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
CHDLC_TX_STATUS_EL_CFG_STRUCT *tx_config;
CHDLC_RX_STATUS_EL_CFG_STRUCT *rx_config;
char err;
mb->buffer_length = 0;
mb->command = READ_CHDLC_CONFIGURATION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
if(err != COMMAND_OK) {
chdlc_error(card,err,mb);
return;
}
if(card->hw.type == SDLA_S514) {
tx_config = (CHDLC_TX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb->data)->
ptr_CHDLC_Tx_stat_el_cfg_struct));
rx_config = (CHDLC_RX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb->data)->
ptr_CHDLC_Rx_stat_el_cfg_struct));
/* Setup Head and Tails for buffers */
card->u.c.txbuf_base = (void *)(card->hw.dpmbase +
tx_config->base_addr_Tx_status_elements);
card->u.c.txbuf_last =
(CHDLC_DATA_TX_STATUS_EL_STRUCT *)
card->u.c.txbuf_base +
(tx_config->number_Tx_status_elements - 1);
card->u.c.rxbuf_base = (void *)(card->hw.dpmbase +
rx_config->base_addr_Rx_status_elements);
card->u.c.rxbuf_last =
(CHDLC_DATA_RX_STATUS_EL_STRUCT *)
card->u.c.rxbuf_base +
(rx_config->number_Rx_status_elements - 1);
/* Set up next pointer to be used */
card->u.c.txbuf = (void *)(card->hw.dpmbase +
tx_config->next_Tx_status_element_to_use);
card->u.c.rxmb = (void *)(card->hw.dpmbase +
rx_config->next_Rx_status_element_to_use);
}
else {
tx_config = (CHDLC_TX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb->data)->
ptr_CHDLC_Tx_stat_el_cfg_struct % SDLA_WINDOWSIZE));
rx_config = (CHDLC_RX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase +
(((CHDLC_CONFIGURATION_STRUCT *)mb->data)->
ptr_CHDLC_Rx_stat_el_cfg_struct % SDLA_WINDOWSIZE));
/* Setup Head and Tails for buffers */
card->u.c.txbuf_base = (void *)(card->hw.dpmbase +
(tx_config->base_addr_Tx_status_elements % SDLA_WINDOWSIZE));
card->u.c.txbuf_last =
(CHDLC_DATA_TX_STATUS_EL_STRUCT *)card->u.c.txbuf_base
+ (tx_config->number_Tx_status_elements - 1);
card->u.c.rxbuf_base = (void *)(card->hw.dpmbase +
(rx_config->base_addr_Rx_status_elements % SDLA_WINDOWSIZE));
card->u.c.rxbuf_last =
(CHDLC_DATA_RX_STATUS_EL_STRUCT *)card->u.c.rxbuf_base
+ (rx_config->number_Rx_status_elements - 1);
/* Set up next pointer to be used */
card->u.c.txbuf = (void *)(card->hw.dpmbase +
(tx_config->next_Tx_status_element_to_use % SDLA_WINDOWSIZE));
card->u.c.rxmb = (void *)(card->hw.dpmbase +
(rx_config->next_Rx_status_element_to_use % SDLA_WINDOWSIZE));
}
/* Setup Actual Buffer Start and end addresses */
card->u.c.rx_base = rx_config->base_addr_Rx_buffer;
card->u.c.rx_top = rx_config->end_addr_Rx_buffer;
}
/*=============================================================================
* Perform Interrupt Test by running READ_CHDLC_CODE_VERSION command MAX_INTR
* _TEST_COUNTER times.
*/
static int intr_test( sdla_t* card)
{
CHDLC_MAILBOX_STRUCT* mb = card->mbox;
int err,i;
Intr_test_counter = 0;
/* The critical flag is unset because during initialization (if_open)
* we want the interrupts to be enabled so that when the wpc_isr is
* called it does not exit due to critical flag set.
*/
err = chdlc_set_intr_mode(card, APP_INT_ON_COMMAND_COMPLETE);
if (err == CMD_OK) {
for (i = 0; i < MAX_INTR_TEST_COUNTER; i ++) {
mb->buffer_length = 0;
mb->command = READ_CHDLC_CODE_VERSION;
err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT;
}
}
else {
return err;
}
err = chdlc_set_intr_mode(card, 0);
if (err != CMD_OK)
return err;
return 0;
}
/*==============================================================================
* Determine what type of UDP call it is. CPIPEAB ?
*/
static int udp_pkt_type(struct sk_buff *skb, sdla_t* card)
{
chdlc_udp_pkt_t *chdlc_udp_pkt = (chdlc_udp_pkt_t *)skb->data;
if (!strncmp(chdlc_udp_pkt->wp_mgmt.signature,UDPMGMT_SIGNATURE,8) &&
(chdlc_udp_pkt->udp_pkt.udp_dst_port == ntohs(card->wandev.udp_port)) &&
(chdlc_udp_pkt->ip_pkt.protocol == UDPMGMT_UDP_PROTOCOL) &&
(chdlc_udp_pkt->wp_mgmt.request_reply == UDPMGMT_REQUEST)) {
return UDP_CPIPE_TYPE;
}
else return UDP_INVALID_TYPE;
}
/*============================================================================
* Set PORT state.
*/
static void port_set_state (sdla_t *card, int state)
{
struct net_device *dev = card->wandev.dev;
chdlc_private_area_t *chdlc_priv_area = dev->priv;
if (card->u.c.state != state)
{
switch (state)
{
case WAN_CONNECTED:
printk (KERN_INFO "%s: HDLC link connected!\n",
card->devname);
break;
case WAN_CONNECTING:
printk (KERN_INFO "%s: HDLC link connecting...\n",
card->devname);
break;
case WAN_DISCONNECTED:
printk (KERN_INFO "%s: HDLC link disconnected!\n",
card->devname);
break;
}
card->wandev.state = card->u.c.state = state;
chdlc_priv_area->common.state = state;
}
}
void s508_lock (sdla_t *card, unsigned long *smp_flags)
{
spin_lock_irqsave(&card->wandev.lock, *smp_flags);
if (card->next){
/* It is ok to use spin_lock here, since we
* already turned off interrupts */
spin_lock(&card->next->wandev.lock);
}
}
void s508_unlock (sdla_t *card, unsigned long *smp_flags)
{
if (card->next){
spin_unlock(&card->next->wandev.lock);
}
spin_unlock_irqrestore(&card->wandev.lock, *smp_flags);
}
/*===========================================================================
* config_chdlc
*
* Configure the chdlc protocol and enable communications.
*
* The if_open() function binds this function to the poll routine.
* Therefore, this function will run every time the chdlc interface
* is brought up. We cannot run this function from the if_open
* because if_open does not have access to the remote IP address.
*
* If the communications are not enabled, proceed to configure
* the card and enable communications.
*
* If the communications are enabled, it means that the interface
* was shutdown by ether the user or driver. In this case, we
* have to check that the IP addresses have not changed. If
* the IP addresses have changed, we have to reconfigure the firmware
* and update the changed IP addresses. Otherwise, just exit.
*
*/
static int config_chdlc (sdla_t *card)
{
struct net_device *dev = card->wandev.dev;
SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags;
if (card->u.c.comm_enabled){
chdlc_comm_disable(card);
port_set_state(card, WAN_DISCONNECTED);
}
if (set_chdlc_config(card)) {
printk(KERN_INFO "%s: CHDLC Configuration Failed!\n",
card->devname);
return 0;
}
init_chdlc_tx_rx_buff(card, dev);
/* Set interrupt mode and mask */
if (chdlc_set_intr_mode(card, APP_INT_ON_RX_FRAME |
APP_INT_ON_GLOBAL_EXCEP_COND |
APP_INT_ON_TX_FRAME |
APP_INT_ON_CHDLC_EXCEP_COND | APP_INT_ON_TIMER)){
printk (KERN_INFO "%s: Failed to set interrupt triggers!\n",
card->devname);
return 0;
}
/* Mask the Transmit and Timer interrupt */
flags->interrupt_info_struct.interrupt_permission &=
~(APP_INT_ON_TX_FRAME | APP_INT_ON_TIMER);
if (chdlc_comm_enable(card) != 0) {
printk(KERN_INFO "%s: Failed to enable chdlc communications!\n",
card->devname);
flags->interrupt_info_struct.interrupt_permission = 0;
card->u.c.comm_enabled=0;
chdlc_set_intr_mode(card,0);
return 0;
}
/* Initialize Rx/Tx buffer control fields */
port_set_state(card, WAN_CONNECTING);
return 0;
}
static void send_ppp_term_request(struct net_device *dev)
{
struct sk_buff *new_skb;
unsigned char *buf;
if ((new_skb = dev_alloc_skb(8)) != NULL) {
/* copy data into new_skb */
buf = skb_put(new_skb, 8);
sprintf(buf,"%c%c%c%c%c%c%c%c", 0xFF,0x03,0xC0,0x21,0x05,0x98,0x00,0x07);
/* Decapsulate pkt and pass it up the protocol stack */
new_skb->protocol = htons(ETH_P_WAN_PPP);
new_skb->dev = dev;
new_skb->mac.raw = new_skb->data;
netif_rx(new_skb);
dev->last_rx = jiffies;
}
}
MODULE_LICENSE("GPL");
/****** End ****************************************************************/