|
|
|
/*
|
|
|
|
* pata_mpiix.c - Intel MPIIX PATA for new ATA layer
|
|
|
|
* (C) 2005-2006 Red Hat Inc
|
|
|
|
* Alan Cox <alan@lxorguk.ukuu.org.uk>
|
|
|
|
*
|
|
|
|
* The MPIIX is different enough to the PIIX4 and friends that we give it
|
|
|
|
* a separate driver. The old ide/pci code handles this by just not tuning
|
|
|
|
* MPIIX at all.
|
|
|
|
*
|
|
|
|
* The MPIIX also differs in another important way from the majority of PIIX
|
|
|
|
* devices. The chip is a bridge (pardon the pun) between the old world of
|
|
|
|
* ISA IDE and PCI IDE. Although the ATA timings are PCI configured the actual
|
|
|
|
* IDE controller is not decoded in PCI space and the chip does not claim to
|
|
|
|
* be IDE class PCI. This requires slightly non-standard probe logic compared
|
|
|
|
* with PCI IDE and also that we do not disable the device when our driver is
|
|
|
|
* unloaded (as it has many other functions).
|
|
|
|
*
|
|
|
|
* The driver conciously keeps this logic internally to avoid pushing quirky
|
|
|
|
* PATA history into the clean libata layer.
|
|
|
|
*
|
|
|
|
* Thinkpad specific note: If you boot an MPIIX using a thinkpad with a PCMCIA
|
|
|
|
* hard disk present this driver will not detect it. This is not a bug. In this
|
|
|
|
* configuration the secondary port of the MPIIX is disabled and the addresses
|
|
|
|
* are decoded by the PCMCIA bridge and therefore are for a generic IDE driver
|
|
|
|
* to operate.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/blkdev.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <scsi/scsi_host.h>
|
|
|
|
#include <linux/libata.h>
|
|
|
|
|
|
|
|
#define DRV_NAME "pata_mpiix"
|
|
|
|
#define DRV_VERSION "0.7.7"
|
|
|
|
|
|
|
|
enum {
|
|
|
|
IDETIM = 0x6C, /* IDE control register */
|
|
|
|
IORDY = (1 << 1),
|
|
|
|
PPE = (1 << 2),
|
|
|
|
FTIM = (1 << 0),
|
|
|
|
ENABLED = (1 << 15),
|
|
|
|
SECONDARY = (1 << 14)
|
|
|
|
};
|
|
|
|
|
|
|
|
static int mpiix_pre_reset(struct ata_link *link, unsigned long deadline)
|
|
|
|
{
|
|
|
|
struct ata_port *ap = link->ap;
|
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
static const struct pci_bits mpiix_enable_bits = { 0x6D, 1, 0x80, 0x80 };
|
|
|
|
|
|
|
|
if (!pci_test_config_bits(pdev, &mpiix_enable_bits))
|
|
|
|
return -ENOENT;
|
libata: add deadline support to prereset and reset methods
Add @deadline to prereset and reset methods and make them honor it.
ata_wait_ready() which directly takes @deadline is implemented to be
used as the wait function. This patch is in preparation for EH timing
improvements.
* ata_wait_ready() never does busy sleep. It's only used from EH and
no wait in EH is that urgent. This function also prints 'be
patient' message automatically after 5 secs of waiting if more than
3 secs is remaining till deadline.
* ata_bus_post_reset() now fails with error code if any of its wait
fails. This is important because earlier reset tries will have
shorter timeout than the spec requires. If a device fails to
respond before the short timeout, reset should be retried with
longer timeout rather than silently ignoring the device.
There are three behavior differences.
1. Timeout is applied to both devices at once, not separately. This
is more consistent with what the spec says.
2. When a device passes devchk but fails to become ready before
deadline. Previouly, post_reset would just succeed and let
device classification remove the device. New code fails the
reset thus causing reset retry. After a few times, EH will give
up disabling the port.
3. When slave device passes devchk but fails to become accessible
(TF-wise) after reset. Original code disables dev1 after 30s
timeout and continues as if the device doesn't exist, while the
patched code fails reset. When this happens, new code fails
reset on whole port rather than proceeding with only the primary
device.
If the failing device is suffering transient problems, new code
retries reset which is a better behavior. If the failing device is
actually broken, the net effect is identical to it, but not to the
other device sharing the channel. In the previous code, reset would
have succeeded after 30s thus detecting the working one. In the new
code, reset fails and whole port gets disabled. IMO, it's a
pathological case anyway (broken device sharing bus with working
one) and doesn't really matter.
* ata_bus_softreset() is changed to return error code from
ata_bus_post_reset(). It used to return 0 unconditionally.
* Spin up waiting is to be removed and not converted to honor
deadline.
* To be on the safe side, deadline is set to 40s for the time being.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
|
|
|
|
return ata_sff_prereset(link, deadline);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mpiix_set_piomode - set initial PIO mode data
|
|
|
|
* @ap: ATA interface
|
|
|
|
* @adev: ATA device
|
|
|
|
*
|
|
|
|
* Called to do the PIO mode setup. The MPIIX allows us to program the
|
|
|
|
* IORDY sample point (2-5 clocks), recovery (1-4 clocks) and whether
|
|
|
|
* prefetching or IORDY are used.
|
|
|
|
*
|
|
|
|
* This would get very ugly because we can only program timing for one
|
|
|
|
* device at a time, the other gets PIO0. Fortunately libata calls
|
|
|
|
* our qc_issue command before a command is issued so we can flip the
|
|
|
|
* timings back and forth to reduce the pain.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void mpiix_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
|
|
|
{
|
|
|
|
int control = 0;
|
|
|
|
int pio = adev->pio_mode - XFER_PIO_0;
|
|
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
|
|
u16 idetim;
|
|
|
|
static const /* ISP RTC */
|
|
|
|
u8 timings[][2] = { { 0, 0 },
|
|
|
|
{ 0, 0 },
|
|
|
|
{ 1, 0 },
|
|
|
|
{ 2, 1 },
|
|
|
|
{ 2, 3 }, };
|
|
|
|
|
|
|
|
pci_read_config_word(pdev, IDETIM, &idetim);
|
|
|
|
|
|
|
|
/* Mask the IORDY/TIME/PPE for this device */
|
|
|
|
if (adev->class == ATA_DEV_ATA)
|
|
|
|
control |= PPE; /* Enable prefetch/posting for disk */
|
|
|
|
if (ata_pio_need_iordy(adev))
|
|
|
|
control |= IORDY;
|
|
|
|
if (pio > 1)
|
|
|
|
control |= FTIM; /* This drive is on the fast timing bank */
|
|
|
|
|
|
|
|
/* Mask out timing and clear both TIME bank selects */
|
|
|
|
idetim &= 0xCCEE;
|
|
|
|
idetim &= ~(0x07 << (4 * adev->devno));
|
|
|
|
idetim |= control << (4 * adev->devno);
|
|
|
|
|
|
|
|
idetim |= (timings[pio][0] << 12) | (timings[pio][1] << 8);
|
|
|
|
pci_write_config_word(pdev, IDETIM, idetim);
|
|
|
|
|
|
|
|
/* We use ap->private_data as a pointer to the device currently
|
|
|
|
loaded for timing */
|
|
|
|
ap->private_data = adev;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mpiix_qc_issue - command issue
|
|
|
|
* @qc: command pending
|
|
|
|
*
|
|
|
|
* Called when the libata layer is about to issue a command. We wrap
|
|
|
|
* this interface so that we can load the correct ATA timings if
|
|
|
|
* necessary. Our logic also clears TIME0/TIME1 for the other device so
|
|
|
|
* that, even if we get this wrong, cycles to the other device will
|
|
|
|
* be made PIO0.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static unsigned int mpiix_qc_issue(struct ata_queued_cmd *qc)
|
|
|
|
{
|
|
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
struct ata_device *adev = qc->dev;
|
|
|
|
|
|
|
|
/* If modes have been configured and the channel data is not loaded
|
|
|
|
then load it. We have to check if pio_mode is set as the core code
|
|
|
|
does not set adev->pio_mode to XFER_PIO_0 while probing as would be
|
|
|
|
logical */
|
|
|
|
|
|
|
|
if (adev->pio_mode && adev != ap->private_data)
|
|
|
|
mpiix_set_piomode(ap, adev);
|
|
|
|
|
|
|
|
return ata_sff_qc_issue(qc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct scsi_host_template mpiix_sht = {
|
|
|
|
ATA_PIO_SHT(DRV_NAME),
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct ata_port_operations mpiix_port_ops = {
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
17 years ago
|
|
|
.inherits = &ata_sff_port_ops,
|
|
|
|
.qc_issue = mpiix_qc_issue,
|
libata: implement and use ops inheritance
libata lets low level drivers build ata_port_operations table and
register it with libata core layer. This allows low level drivers
high level of flexibility but also burdens them with lots of
boilerplate entries.
This becomes worse for drivers which support related similar
controllers which differ slightly. They share most of the operations
except for a few. However, the driver still needs to list all
operations for each variant. This results in large number of
duplicate entries, which is not only inefficient but also error-prone
as it becomes very difficult to tell what the actual differences are.
This duplicate boilerplates all over the low level drivers also make
updating the core layer exteremely difficult and error-prone. When
compounded with multi-branched development model, it ends up
accumulating inconsistencies over time. Some of those inconsistencies
cause immediate problems and fixed. Others just remain there dormant
making maintenance increasingly difficult.
To rectify the problem, this patch implements ata_port_operations
inheritance. To allow LLDs to easily re-use their own ops tables
overriding only specific methods, this patch implements poor man's
class inheritance. An ops table has ->inherits field which can be set
to any ops table as long as it doesn't create a loop. When the host
is started, the inheritance chain is followed and any operation which
isn't specified is taken from the nearest ancestor which has it
specified. This operation is called finalization and done only once
per an ops table and the LLD doesn't have to do anything special about
it other than making the ops table non-const such that libata can
update it.
libata provides four base ops tables lower drivers can inherit from -
base, sata, pmp, sff and bmdma. To avoid overriding these ops
accidentaly, these ops are declared const and LLDs should always
inherit these instead of using them directly.
After finalization, all the ops table are identical before and after
the patch except for setting .irq_handler to ata_interrupt in drivers
which didn't use to. The .irq_handler doesn't have any actual effect
and the field will soon be removed by later patch.
* sata_sx4 is still using old style EH and currently doesn't take
advantage of ops inheritance.
Signed-off-by: Tejun Heo <htejun@gmail.com>
17 years ago
|
|
|
.cable_detect = ata_cable_40wire,
|
|
|
|
.set_piomode = mpiix_set_piomode,
|
libata: make reset related methods proper port operations
Currently reset methods are not specified directly in the
ata_port_operations table. If a LLD wants to use custom reset
methods, it should construct and use a error_handler which uses those
reset methods. It's done this way for two reasons.
First, the ops table already contained too many methods and adding
four more of them would noticeably increase the amount of necessary
boilerplate code all over low level drivers.
Second, as ->error_handler uses those reset methods, it can get
confusing. ie. By overriding ->error_handler, those reset ops can be
made useless making layering a bit hazy.
Now that ops table uses inheritance, the first problem doesn't exist
anymore. The second isn't completely solved but is relieved by
providing default values - most drivers can just override what it has
implemented and don't have to concern itself about higher level
callbacks. In fact, there currently is no driver which actually
modifies error handling behavior. Drivers which override
->error_handler just wraps the standard error handler only to prepare
the controller for EH. I don't think making ops layering strict has
any noticeable benefit.
This patch makes ->prereset, ->softreset, ->hardreset, ->postreset and
their PMP counterparts propoer ops. Default ops are provided in the
base ops tables and drivers are converted to override individual reset
methods instead of creating custom error_handler.
* ata_std_error_handler() doesn't use sata_std_hardreset() if SCRs
aren't accessible. sata_promise doesn't need to use separate
error_handlers for PATA and SATA anymore.
* softreset is broken for sata_inic162x and sata_sx4. As libata now
always prefers hardreset, this doesn't really matter but the ops are
forced to NULL using ATA_OP_NULL for documentation purpose.
* pata_hpt374 needs to use different prereset for the first and second
PCI functions. This used to be done by branching from
hpt374_error_handler(). The proper way to do this is to use
separate ops and port_info tables for each function. Converted.
Signed-off-by: Tejun Heo <htejun@gmail.com>
17 years ago
|
|
|
.prereset = mpiix_pre_reset,
|
|
|
|
.sff_data_xfer = ata_sff_data_xfer32,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int mpiix_init_one(struct pci_dev *dev, const struct pci_device_id *id)
|
|
|
|
{
|
|
|
|
/* Single threaded by the PCI probe logic */
|
|
|
|
static int printed_version;
|
libata: convert the remaining PATA drivers to new init model
Convert pdc_adma, pata_cs5520, pata_isapnp, pata_ixp4xx_cf,
pata_legacy, pata_mpc52xx, pata_mpiix, pata_pcmcia, pata_pdc2027x,
pata_platform, pata_qdi, pata_scc and pata_winbond to new init model.
* init_one()'s now follow more consistent init order
* cs5520 now registers one host with two ports, not two hosts. If any
of the two ports are disabled, it's made dummy as other drivers do.
Tested pdc_adma and pata_legacy. Both are as broken as before. The
rest are compile tested only.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
struct ata_host *host;
|
|
|
|
struct ata_port *ap;
|
|
|
|
void __iomem *cmd_addr, *ctl_addr;
|
|
|
|
u16 idetim;
|
|
|
|
int cmd, ctl, irq;
|
|
|
|
|
|
|
|
if (!printed_version++)
|
|
|
|
dev_printk(KERN_DEBUG, &dev->dev, "version " DRV_VERSION "\n");
|
|
|
|
|
libata: convert the remaining PATA drivers to new init model
Convert pdc_adma, pata_cs5520, pata_isapnp, pata_ixp4xx_cf,
pata_legacy, pata_mpc52xx, pata_mpiix, pata_pcmcia, pata_pdc2027x,
pata_platform, pata_qdi, pata_scc and pata_winbond to new init model.
* init_one()'s now follow more consistent init order
* cs5520 now registers one host with two ports, not two hosts. If any
of the two ports are disabled, it's made dummy as other drivers do.
Tested pdc_adma and pata_legacy. Both are as broken as before. The
rest are compile tested only.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
host = ata_host_alloc(&dev->dev, 1);
|
|
|
|
if (!host)
|
|
|
|
return -ENOMEM;
|
|
|
|
ap = host->ports[0];
|
libata: convert the remaining PATA drivers to new init model
Convert pdc_adma, pata_cs5520, pata_isapnp, pata_ixp4xx_cf,
pata_legacy, pata_mpc52xx, pata_mpiix, pata_pcmcia, pata_pdc2027x,
pata_platform, pata_qdi, pata_scc and pata_winbond to new init model.
* init_one()'s now follow more consistent init order
* cs5520 now registers one host with two ports, not two hosts. If any
of the two ports are disabled, it's made dummy as other drivers do.
Tested pdc_adma and pata_legacy. Both are as broken as before. The
rest are compile tested only.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
|
|
|
|
/* MPIIX has many functions which can be turned on or off according
|
|
|
|
to other devices present. Make sure IDE is enabled before we try
|
|
|
|
and use it */
|
|
|
|
|
|
|
|
pci_read_config_word(dev, IDETIM, &idetim);
|
|
|
|
if (!(idetim & ENABLED))
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
/* See if it's primary or secondary channel... */
|
|
|
|
if (!(idetim & SECONDARY)) {
|
|
|
|
cmd = 0x1F0;
|
|
|
|
ctl = 0x3F6;
|
|
|
|
irq = 14;
|
|
|
|
} else {
|
|
|
|
cmd = 0x170;
|
|
|
|
ctl = 0x376;
|
|
|
|
irq = 15;
|
|
|
|
}
|
|
|
|
|
|
|
|
cmd_addr = devm_ioport_map(&dev->dev, cmd, 8);
|
|
|
|
ctl_addr = devm_ioport_map(&dev->dev, ctl, 1);
|
|
|
|
if (!cmd_addr || !ctl_addr)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ata_port_desc(ap, "cmd 0x%x ctl 0x%x", cmd, ctl);
|
|
|
|
|
|
|
|
/* We do our own plumbing to avoid leaking special cases for whacko
|
|
|
|
ancient hardware into the core code. There are two issues to
|
|
|
|
worry about. #1 The chip is a bridge so if in legacy mode and
|
|
|
|
without BARs set fools the setup. #2 If you pci_disable_device
|
|
|
|
the MPIIX your box goes castors up */
|
|
|
|
|
libata: convert the remaining PATA drivers to new init model
Convert pdc_adma, pata_cs5520, pata_isapnp, pata_ixp4xx_cf,
pata_legacy, pata_mpc52xx, pata_mpiix, pata_pcmcia, pata_pdc2027x,
pata_platform, pata_qdi, pata_scc and pata_winbond to new init model.
* init_one()'s now follow more consistent init order
* cs5520 now registers one host with two ports, not two hosts. If any
of the two ports are disabled, it's made dummy as other drivers do.
Tested pdc_adma and pata_legacy. Both are as broken as before. The
rest are compile tested only.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
ap->ops = &mpiix_port_ops;
|
|
|
|
ap->pio_mask = ATA_PIO4;
|
libata: convert the remaining PATA drivers to new init model
Convert pdc_adma, pata_cs5520, pata_isapnp, pata_ixp4xx_cf,
pata_legacy, pata_mpc52xx, pata_mpiix, pata_pcmcia, pata_pdc2027x,
pata_platform, pata_qdi, pata_scc and pata_winbond to new init model.
* init_one()'s now follow more consistent init order
* cs5520 now registers one host with two ports, not two hosts. If any
of the two ports are disabled, it's made dummy as other drivers do.
Tested pdc_adma and pata_legacy. Both are as broken as before. The
rest are compile tested only.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
ap->flags |= ATA_FLAG_SLAVE_POSS;
|
|
|
|
|
libata: convert the remaining PATA drivers to new init model
Convert pdc_adma, pata_cs5520, pata_isapnp, pata_ixp4xx_cf,
pata_legacy, pata_mpc52xx, pata_mpiix, pata_pcmcia, pata_pdc2027x,
pata_platform, pata_qdi, pata_scc and pata_winbond to new init model.
* init_one()'s now follow more consistent init order
* cs5520 now registers one host with two ports, not two hosts. If any
of the two ports are disabled, it's made dummy as other drivers do.
Tested pdc_adma and pata_legacy. Both are as broken as before. The
rest are compile tested only.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
ap->ioaddr.cmd_addr = cmd_addr;
|
|
|
|
ap->ioaddr.ctl_addr = ctl_addr;
|
|
|
|
ap->ioaddr.altstatus_addr = ctl_addr;
|
|
|
|
|
|
|
|
/* Let libata fill in the port details */
|
|
|
|
ata_sff_std_ports(&ap->ioaddr);
|
|
|
|
|
libata: convert the remaining PATA drivers to new init model
Convert pdc_adma, pata_cs5520, pata_isapnp, pata_ixp4xx_cf,
pata_legacy, pata_mpc52xx, pata_mpiix, pata_pcmcia, pata_pdc2027x,
pata_platform, pata_qdi, pata_scc and pata_winbond to new init model.
* init_one()'s now follow more consistent init order
* cs5520 now registers one host with two ports, not two hosts. If any
of the two ports are disabled, it's made dummy as other drivers do.
Tested pdc_adma and pata_legacy. Both are as broken as before. The
rest are compile tested only.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
/* activate host */
|
|
|
|
return ata_host_activate(host, irq, ata_sff_interrupt, IRQF_SHARED,
|
libata: convert the remaining PATA drivers to new init model
Convert pdc_adma, pata_cs5520, pata_isapnp, pata_ixp4xx_cf,
pata_legacy, pata_mpc52xx, pata_mpiix, pata_pcmcia, pata_pdc2027x,
pata_platform, pata_qdi, pata_scc and pata_winbond to new init model.
* init_one()'s now follow more consistent init order
* cs5520 now registers one host with two ports, not two hosts. If any
of the two ports are disabled, it's made dummy as other drivers do.
Tested pdc_adma and pata_legacy. Both are as broken as before. The
rest are compile tested only.
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
18 years ago
|
|
|
&mpiix_sht);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct pci_device_id mpiix[] = {
|
|
|
|
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_82371MX), },
|
|
|
|
|
|
|
|
{ },
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct pci_driver mpiix_pci_driver = {
|
|
|
|
.name = DRV_NAME,
|
|
|
|
.id_table = mpiix,
|
|
|
|
.probe = mpiix_init_one,
|
|
|
|
.remove = ata_pci_remove_one,
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
.suspend = ata_pci_device_suspend,
|
|
|
|
.resume = ata_pci_device_resume,
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init mpiix_init(void)
|
|
|
|
{
|
|
|
|
return pci_register_driver(&mpiix_pci_driver);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit mpiix_exit(void)
|
|
|
|
{
|
|
|
|
pci_unregister_driver(&mpiix_pci_driver);
|
|
|
|
}
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Alan Cox");
|
|
|
|
MODULE_DESCRIPTION("low-level driver for Intel MPIIX");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_DEVICE_TABLE(pci, mpiix);
|
|
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
|
|
|
|
module_init(mpiix_init);
|
|
|
|
module_exit(mpiix_exit);
|