|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* */
|
|
|
|
/* i2c.h - definitions for the i2c-bus interface */
|
|
|
|
/* */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* Copyright (C) 1995-2000 Simon G. Vogl
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> and
|
|
|
|
Frodo Looijaard <frodol@dds.nl> */
|
|
|
|
|
|
|
|
#ifndef _LINUX_I2C_H
|
|
|
|
#define _LINUX_I2C_H
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/i2c-id.h>
|
|
|
|
#include <linux/mod_devicetable.h>
|
|
|
|
#include <linux/device.h> /* for struct device */
|
|
|
|
#include <linux/sched.h> /* for completion */
|
|
|
|
#include <linux/mutex.h>
|
|
|
|
|
|
|
|
extern struct bus_type i2c_bus_type;
|
|
|
|
|
|
|
|
/* --- General options ------------------------------------------------ */
|
|
|
|
|
|
|
|
struct i2c_msg;
|
|
|
|
struct i2c_algorithm;
|
|
|
|
struct i2c_adapter;
|
|
|
|
struct i2c_client;
|
|
|
|
struct i2c_driver;
|
|
|
|
union i2c_smbus_data;
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
17 years ago
|
|
|
struct i2c_board_info;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The master routines are the ones normally used to transmit data to devices
|
|
|
|
* on a bus (or read from them). Apart from two basic transfer functions to
|
|
|
|
* transmit one message at a time, a more complex version can be used to
|
|
|
|
* transmit an arbitrary number of messages without interruption.
|
|
|
|
*/
|
|
|
|
extern int i2c_master_send(struct i2c_client *,const char* ,int);
|
|
|
|
extern int i2c_master_recv(struct i2c_client *,char* ,int);
|
|
|
|
|
|
|
|
/* Transfer num messages.
|
|
|
|
*/
|
|
|
|
extern int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num);
|
|
|
|
|
|
|
|
|
|
|
|
/* This is the very generalized SMBus access routine. You probably do not
|
|
|
|
want to use this, though; one of the functions below may be much easier,
|
|
|
|
and probably just as fast.
|
|
|
|
Note that we use i2c_adapter here, because you do not need a specific
|
|
|
|
smbus adapter to call this function. */
|
|
|
|
extern s32 i2c_smbus_xfer (struct i2c_adapter * adapter, u16 addr,
|
|
|
|
unsigned short flags,
|
|
|
|
char read_write, u8 command, int size,
|
|
|
|
union i2c_smbus_data * data);
|
|
|
|
|
|
|
|
/* Now follow the 'nice' access routines. These also document the calling
|
|
|
|
conventions of i2c_smbus_xfer. */
|
|
|
|
|
|
|
|
extern s32 i2c_smbus_read_byte(struct i2c_client * client);
|
|
|
|
extern s32 i2c_smbus_write_byte(struct i2c_client * client, u8 value);
|
|
|
|
extern s32 i2c_smbus_read_byte_data(struct i2c_client * client, u8 command);
|
|
|
|
extern s32 i2c_smbus_write_byte_data(struct i2c_client * client,
|
|
|
|
u8 command, u8 value);
|
|
|
|
extern s32 i2c_smbus_read_word_data(struct i2c_client * client, u8 command);
|
|
|
|
extern s32 i2c_smbus_write_word_data(struct i2c_client * client,
|
|
|
|
u8 command, u16 value);
|
|
|
|
/* Returns the number of read bytes */
|
|
|
|
extern s32 i2c_smbus_read_block_data(struct i2c_client *client,
|
|
|
|
u8 command, u8 *values);
|
|
|
|
extern s32 i2c_smbus_write_block_data(struct i2c_client * client,
|
|
|
|
u8 command, u8 length,
|
|
|
|
const u8 *values);
|
|
|
|
/* Returns the number of read bytes */
|
|
|
|
extern s32 i2c_smbus_read_i2c_block_data(struct i2c_client * client,
|
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
u8 command, u8 length, u8 *values);
|
|
|
|
extern s32 i2c_smbus_write_i2c_block_data(struct i2c_client * client,
|
|
|
|
u8 command, u8 length,
|
|
|
|
const u8 *values);
|
|
|
|
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
17 years ago
|
|
|
/**
|
|
|
|
* struct i2c_driver - represent an I2C device driver
|
|
|
|
* @id: Unique driver ID (optional)
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
17 years ago
|
|
|
* @class: What kind of i2c device we instantiate (for detect)
|
|
|
|
* @attach_adapter: Callback for bus addition (for legacy drivers)
|
|
|
|
* @detach_adapter: Callback for bus removal (for legacy drivers)
|
|
|
|
* @detach_client: Callback for device removal (for legacy drivers)
|
|
|
|
* @probe: Callback for device binding (new-style drivers)
|
|
|
|
* @remove: Callback for device unbinding (new-style drivers)
|
|
|
|
* @shutdown: Callback for device shutdown
|
|
|
|
* @suspend: Callback for device suspend
|
|
|
|
* @resume: Callback for device resume
|
|
|
|
* @command: Callback for bus-wide signaling (optional)
|
|
|
|
* @driver: Device driver model driver
|
|
|
|
* @id_table: List of I2C devices supported by this driver
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
17 years ago
|
|
|
* @detect: Callback for device detection
|
|
|
|
* @address_data: The I2C addresses to probe, ignore or force (for detect)
|
|
|
|
* @clients: List of detected clients we created (for i2c-core use only)
|
|
|
|
*
|
|
|
|
* The driver.owner field should be set to the module owner of this driver.
|
|
|
|
* The driver.name field should be set to the name of this driver.
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
17 years ago
|
|
|
*
|
|
|
|
* For automatic device detection, both @detect and @address_data must
|
|
|
|
* be defined. @class should also be set, otherwise only devices forced
|
|
|
|
* with module parameters will be created. The detect function must
|
|
|
|
* fill at least the name field of the i2c_board_info structure it is
|
|
|
|
* handed upon successful detection, and possibly also the flags field.
|
|
|
|
*
|
|
|
|
* If @detect is missing, the driver will still work fine for enumerated
|
|
|
|
* devices. Detected devices simply won't be supported. This is expected
|
|
|
|
* for the many I2C/SMBus devices which can't be detected reliably, and
|
|
|
|
* the ones which can always be enumerated in practice.
|
|
|
|
*
|
|
|
|
* The i2c_client structure which is handed to the @detect callback is
|
|
|
|
* not a real i2c_client. It is initialized just enough so that you can
|
|
|
|
* call i2c_smbus_read_byte_data and friends on it. Don't do anything
|
|
|
|
* else with it. In particular, calling dev_dbg and friends on it is
|
|
|
|
* not allowed.
|
|
|
|
*/
|
|
|
|
struct i2c_driver {
|
|
|
|
int id;
|
|
|
|
unsigned int class;
|
|
|
|
|
|
|
|
/* Notifies the driver that a new bus has appeared. This routine
|
|
|
|
* can be used by the driver to test if the bus meets its conditions
|
|
|
|
* & seek for the presence of the chip(s) it supports. If found, it
|
|
|
|
* registers the client(s) that are on the bus to the i2c admin. via
|
|
|
|
* i2c_attach_client. (LEGACY I2C DRIVERS ONLY)
|
|
|
|
*/
|
|
|
|
int (*attach_adapter)(struct i2c_adapter *);
|
|
|
|
int (*detach_adapter)(struct i2c_adapter *);
|
|
|
|
|
|
|
|
/* tells the driver that a client is about to be deleted & gives it
|
|
|
|
* the chance to remove its private data. Also, if the client struct
|
|
|
|
* has been dynamically allocated by the driver in the function above,
|
|
|
|
* it must be freed here. (LEGACY I2C DRIVERS ONLY)
|
|
|
|
*/
|
|
|
|
int (*detach_client)(struct i2c_client *);
|
|
|
|
|
|
|
|
/* Standard driver model interfaces, for "new style" i2c drivers.
|
|
|
|
* With the driver model, device enumeration is NEVER done by drivers;
|
|
|
|
* it's done by infrastructure. (NEW STYLE DRIVERS ONLY)
|
|
|
|
*/
|
|
|
|
int (*probe)(struct i2c_client *, const struct i2c_device_id *);
|
|
|
|
int (*remove)(struct i2c_client *);
|
|
|
|
|
|
|
|
/* driver model interfaces that don't relate to enumeration */
|
|
|
|
void (*shutdown)(struct i2c_client *);
|
|
|
|
int (*suspend)(struct i2c_client *, pm_message_t mesg);
|
|
|
|
int (*resume)(struct i2c_client *);
|
|
|
|
|
|
|
|
/* a ioctl like command that can be used to perform specific functions
|
|
|
|
* with the device.
|
|
|
|
*/
|
|
|
|
int (*command)(struct i2c_client *client,unsigned int cmd, void *arg);
|
|
|
|
|
|
|
|
struct device_driver driver;
|
|
|
|
const struct i2c_device_id *id_table;
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
17 years ago
|
|
|
|
|
|
|
/* Device detection callback for automatic device creation */
|
|
|
|
int (*detect)(struct i2c_client *, int kind, struct i2c_board_info *);
|
|
|
|
const struct i2c_client_address_data *address_data;
|
|
|
|
struct list_head clients;
|
|
|
|
};
|
|
|
|
#define to_i2c_driver(d) container_of(d, struct i2c_driver, driver)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct i2c_client - represent an I2C slave device
|
|
|
|
* @flags: I2C_CLIENT_TEN indicates the device uses a ten bit chip address;
|
|
|
|
* I2C_CLIENT_PEC indicates it uses SMBus Packet Error Checking
|
|
|
|
* @addr: Address used on the I2C bus connected to the parent adapter.
|
|
|
|
* @name: Indicates the type of the device, usually a chip name that's
|
|
|
|
* generic enough to hide second-sourcing and compatible revisions.
|
|
|
|
* @adapter: manages the bus segment hosting this I2C device
|
|
|
|
* @driver: device's driver, hence pointer to access routines
|
|
|
|
* @dev: Driver model device node for the slave.
|
|
|
|
* @irq: indicates the IRQ generated by this device (if any)
|
|
|
|
* @list: list of active/busy clients (DEPRECATED)
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
17 years ago
|
|
|
* @detected: member of an i2c_driver.clients list
|
|
|
|
* @released: used to synchronize client releases & detaches and references
|
|
|
|
*
|
|
|
|
* An i2c_client identifies a single device (i.e. chip) connected to an
|
|
|
|
* i2c bus. The behaviour exposed to Linux is defined by the driver
|
|
|
|
* managing the device.
|
|
|
|
*/
|
|
|
|
struct i2c_client {
|
|
|
|
unsigned short flags; /* div., see below */
|
|
|
|
unsigned short addr; /* chip address - NOTE: 7bit */
|
|
|
|
/* addresses are stored in the */
|
|
|
|
/* _LOWER_ 7 bits */
|
|
|
|
char name[I2C_NAME_SIZE];
|
|
|
|
struct i2c_adapter *adapter; /* the adapter we sit on */
|
|
|
|
struct i2c_driver *driver; /* and our access routines */
|
|
|
|
struct device dev; /* the device structure */
|
|
|
|
int irq; /* irq issued by device */
|
|
|
|
struct list_head list; /* DEPRECATED */
|
i2c: Add detection capability to new-style drivers
Add a mechanism to let new-style i2c drivers optionally autodetect
devices they would support on selected buses and ask i2c-core to
instantiate them. This is a replacement for legacy i2c drivers, much
cleaner.
Where drivers had to implement both a legacy i2c_driver and a
new-style i2c_driver so far, this mechanism makes it possible to get
rid of the legacy i2c_driver and implement both enumerated and
detected device support with just one (new-style) i2c_driver.
Here is a quick conversion guide for these drivers, step by step:
* Delete the legacy driver definition, registration and removal.
Delete the attach_adapter and detach_client methods of the legacy
driver.
* Change the prototype of the legacy detect function from
static int foo_detect(struct i2c_adapter *adapter, int address, int kind);
to
static int foo_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
* Set the new-style driver detect callback to this new function, and
set its address_data to &addr_data (addr_data is generally provided
by I2C_CLIENT_INSMOD.)
* Add the appropriate class to the new-style driver. This is
typically the class the legacy attach_adapter method was checking
for. Class checking is now mandatory (done by i2c-core.) See
<linux/i2c.h> for the list of available classes.
* Remove the i2c_client allocation and freeing from the detect
function. A pre-allocated client is now handed to you by i2c-core,
and is freed automatically.
* Make the detect function fill the type field of the i2c_board_info
structure it was passed as a parameter, and return 0, on success. If
the detection fails, return -ENODEV.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
17 years ago
|
|
|
struct list_head detected;
|
|
|
|
struct completion released;
|
|
|
|
};
|
|
|
|
#define to_i2c_client(d) container_of(d, struct i2c_client, dev)
|
|
|
|
|
|
|
|
extern struct i2c_client *i2c_verify_client(struct device *dev);
|
|
|
|
|
|
|
|
static inline struct i2c_client *kobj_to_i2c_client(struct kobject *kobj)
|
|
|
|
{
|
|
|
|
struct device * const dev = container_of(kobj, struct device, kobj);
|
|
|
|
return to_i2c_client(dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *i2c_get_clientdata (struct i2c_client *dev)
|
|
|
|
{
|
|
|
|
return dev_get_drvdata (&dev->dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void i2c_set_clientdata (struct i2c_client *dev, void *data)
|
|
|
|
{
|
|
|
|
dev_set_drvdata (&dev->dev, data);
|
|
|
|
}
|
|
|
|
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
/**
|
|
|
|
* struct i2c_board_info - template for device creation
|
|
|
|
* @type: chip type, to initialize i2c_client.name
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
* @flags: to initialize i2c_client.flags
|
|
|
|
* @addr: stored in i2c_client.addr
|
|
|
|
* @platform_data: stored in i2c_client.dev.platform_data
|
|
|
|
* @irq: stored in i2c_client.irq
|
|
|
|
*
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
* I2C doesn't actually support hardware probing, although controllers and
|
|
|
|
* devices may be able to use I2C_SMBUS_QUICK to tell whether or not there's
|
|
|
|
* a device at a given address. Drivers commonly need more information than
|
|
|
|
* that, such as chip type, configuration, associated IRQ, and so on.
|
|
|
|
*
|
|
|
|
* i2c_board_info is used to build tables of information listing I2C devices
|
|
|
|
* that are present. This information is used to grow the driver model tree
|
|
|
|
* for "new style" I2C drivers. For mainboards this is done statically using
|
|
|
|
* i2c_register_board_info(); bus numbers identify adapters that aren't
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
* yet available. For add-on boards, i2c_new_device() does this dynamically
|
|
|
|
* with the adapter already known.
|
|
|
|
*/
|
|
|
|
struct i2c_board_info {
|
|
|
|
char type[I2C_NAME_SIZE];
|
|
|
|
unsigned short flags;
|
|
|
|
unsigned short addr;
|
|
|
|
void *platform_data;
|
|
|
|
int irq;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* I2C_BOARD_INFO - macro used to list an i2c device and its address
|
|
|
|
* @dev_type: identifies the device type
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
* @dev_addr: the device's address on the bus.
|
|
|
|
*
|
|
|
|
* This macro initializes essential fields of a struct i2c_board_info,
|
|
|
|
* declaring what has been provided on a particular board. Optional
|
|
|
|
* fields (such as associated irq, or device-specific platform_data)
|
|
|
|
* are provided using conventional syntax.
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
*/
|
|
|
|
#define I2C_BOARD_INFO(dev_type,dev_addr) \
|
|
|
|
.type = (dev_type), .addr = (dev_addr)
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
|
|
|
|
|
|
|
|
/* Add-on boards should register/unregister their devices; e.g. a board
|
|
|
|
* with integrated I2C, a config eeprom, sensors, and a codec that's
|
|
|
|
* used in conjunction with the primary hardware.
|
|
|
|
*/
|
|
|
|
extern struct i2c_client *
|
|
|
|
i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info);
|
|
|
|
|
|
|
|
/* If you don't know the exact address of an I2C device, use this variant
|
|
|
|
* instead, which can probe for device presence in a list of possible
|
|
|
|
* addresses.
|
|
|
|
*/
|
|
|
|
extern struct i2c_client *
|
|
|
|
i2c_new_probed_device(struct i2c_adapter *adap,
|
|
|
|
struct i2c_board_info *info,
|
|
|
|
unsigned short const *addr_list);
|
|
|
|
|
|
|
|
/* For devices that use several addresses, use i2c_new_dummy() to make
|
|
|
|
* client handles for the extra addresses.
|
|
|
|
*/
|
|
|
|
extern struct i2c_client *
|
|
|
|
i2c_new_dummy(struct i2c_adapter *adap, u16 address);
|
|
|
|
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
extern void i2c_unregister_device(struct i2c_client *);
|
|
|
|
|
|
|
|
/* Mainboard arch_initcall() code should register all its I2C devices.
|
|
|
|
* This is done at arch_initcall time, before declaring any i2c adapters.
|
|
|
|
* Modules for add-on boards must use other calls.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_I2C_BOARDINFO
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
extern int
|
|
|
|
i2c_register_board_info(int busnum, struct i2c_board_info const *info, unsigned n);
|
|
|
|
#else
|
|
|
|
static inline int
|
|
|
|
i2c_register_board_info(int busnum, struct i2c_board_info const *info, unsigned n)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
i2c: Add i2c_board_info and i2c_new_device()
This provides partial support for new-style I2C driver binding. It builds
on "struct i2c_board_info" declarations that identify I2C devices on a given
board. This is needed on systems with I2C devices that can't be fully probed
and/or autoconfigured, such as many embedded Linux configurations where the
way a given I2C device is wired may affect how it must be used.
There are two models for declaring such devices:
* LATE -- using a public function i2c_new_device(). This lets modules
declare I2C devices found *AFTER* a given I2C adapter becomes available.
For example, a PCI card could create adapters giving access to utility
chips on that card, and this would be used to associate those chips with
those adapters.
* EARLY -- from arch_initcall() level code, using a non-exported function
i2c_register_board_info(). This copies the declarations *BEFORE* such
an i2c_adapter becomes available, arranging that i2c_new_device() will
be called later when i2c-core registers the relevant i2c_adapter.
For example, arch/.../.../board-*.c files would declare the I2C devices
along with their platform data, and I2C devices would behave much like
PNPACPI devices. (That is, both enumerate from board-specific tables.)
To match the exported i2c_new_device(), the previously-private function
i2c_unregister_device() is now exported.
Pending later patches using these new APIs, this is effectively a NOP.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
|
|
|
|
/*
|
|
|
|
* The following structs are for those who like to implement new bus drivers:
|
|
|
|
* i2c_algorithm is the interface to a class of hardware solutions which can
|
|
|
|
* be addressed using the same bus algorithms - i.e. bit-banging or the PCF8584
|
|
|
|
* to name two of the most common.
|
|
|
|
*/
|
|
|
|
struct i2c_algorithm {
|
|
|
|
/* If an adapter algorithm can't do I2C-level access, set master_xfer
|
|
|
|
to NULL. If an adapter algorithm can do SMBus access, set
|
|
|
|
smbus_xfer. If set to NULL, the SMBus protocol is simulated
|
|
|
|
using common I2C messages */
|
|
|
|
/* master_xfer should return the number of messages successfully
|
|
|
|
processed, or a negative value on error */
|
|
|
|
int (*master_xfer)(struct i2c_adapter *adap,struct i2c_msg *msgs,
|
|
|
|
int num);
|
|
|
|
int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
|
|
|
|
unsigned short flags, char read_write,
|
|
|
|
u8 command, int size, union i2c_smbus_data * data);
|
|
|
|
|
|
|
|
/* To determine what the adapter supports */
|
|
|
|
u32 (*functionality) (struct i2c_adapter *);
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* i2c_adapter is the structure used to identify a physical i2c bus along
|
|
|
|
* with the access algorithms necessary to access it.
|
|
|
|
*/
|
|
|
|
struct i2c_adapter {
|
|
|
|
struct module *owner;
|
|
|
|
unsigned int id;
|
|
|
|
unsigned int class;
|
|
|
|
const struct i2c_algorithm *algo; /* the algorithm to access the bus */
|
|
|
|
void *algo_data;
|
|
|
|
|
|
|
|
/* --- administration stuff. */
|
|
|
|
int (*client_register)(struct i2c_client *);
|
|
|
|
int (*client_unregister)(struct i2c_client *);
|
|
|
|
|
|
|
|
/* data fields that are valid for all devices */
|
|
|
|
u8 level; /* nesting level for lockdep */
|
|
|
|
struct mutex bus_lock;
|
|
|
|
struct mutex clist_lock;
|
|
|
|
|
|
|
|
int timeout;
|
|
|
|
int retries;
|
|
|
|
struct device dev; /* the adapter device */
|
|
|
|
|
|
|
|
int nr;
|
|
|
|
struct list_head clients; /* DEPRECATED */
|
|
|
|
char name[48];
|
|
|
|
struct completion dev_released;
|
|
|
|
};
|
|
|
|
#define to_i2c_adapter(d) container_of(d, struct i2c_adapter, dev)
|
|
|
|
|
|
|
|
static inline void *i2c_get_adapdata (struct i2c_adapter *dev)
|
|
|
|
{
|
|
|
|
return dev_get_drvdata (&dev->dev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void i2c_set_adapdata (struct i2c_adapter *dev, void *data)
|
|
|
|
{
|
|
|
|
dev_set_drvdata (&dev->dev, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*flags for the client struct: */
|
|
|
|
#define I2C_CLIENT_PEC 0x04 /* Use Packet Error Checking */
|
|
|
|
#define I2C_CLIENT_TEN 0x10 /* we have a ten bit chip address */
|
|
|
|
/* Must equal I2C_M_TEN below */
|
|
|
|
#define I2C_CLIENT_WAKE 0x80 /* for board_info; true iff can wake */
|
|
|
|
|
|
|
|
/* i2c adapter classes (bitmask) */
|
|
|
|
#define I2C_CLASS_HWMON (1<<0) /* lm_sensors, ... */
|
|
|
|
#define I2C_CLASS_TV_ANALOG (1<<1) /* bttv + friends */
|
|
|
|
#define I2C_CLASS_TV_DIGITAL (1<<2) /* dvb cards */
|
|
|
|
#define I2C_CLASS_DDC (1<<3) /* DDC bus on graphics adapters */
|
|
|
|
#define I2C_CLASS_CAM_ANALOG (1<<4) /* camera with analog CCD */
|
|
|
|
#define I2C_CLASS_CAM_DIGITAL (1<<5) /* most webcams */
|
|
|
|
#define I2C_CLASS_SOUND (1<<6) /* sound devices */
|
|
|
|
#define I2C_CLASS_SPD (1<<7) /* SPD EEPROMs and similar */
|
|
|
|
#define I2C_CLASS_ALL (UINT_MAX) /* all of the above */
|
|
|
|
|
|
|
|
/* i2c_client_address_data is the struct for holding default client
|
|
|
|
* addresses for a driver and for the parameters supplied on the
|
|
|
|
* command line
|
|
|
|
*/
|
|
|
|
struct i2c_client_address_data {
|
|
|
|
const unsigned short *normal_i2c;
|
|
|
|
const unsigned short *probe;
|
|
|
|
const unsigned short *ignore;
|
|
|
|
const unsigned short * const *forces;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Internal numbers to terminate lists */
|
|
|
|
#define I2C_CLIENT_END 0xfffeU
|
|
|
|
|
|
|
|
/* The numbers to use to set I2C bus address */
|
|
|
|
#define ANY_I2C_BUS 0xffff
|
|
|
|
|
|
|
|
|
|
|
|
/* ----- functions exported by i2c.o */
|
|
|
|
|
|
|
|
/* administration...
|
|
|
|
*/
|
|
|
|
extern int i2c_add_adapter(struct i2c_adapter *);
|
|
|
|
extern int i2c_del_adapter(struct i2c_adapter *);
|
|
|
|
extern int i2c_add_numbered_adapter(struct i2c_adapter *);
|
|
|
|
|
|
|
|
extern int i2c_register_driver(struct module *, struct i2c_driver *);
|
|
|
|
extern void i2c_del_driver(struct i2c_driver *);
|
|
|
|
|
|
|
|
static inline int i2c_add_driver(struct i2c_driver *driver)
|
|
|
|
{
|
|
|
|
return i2c_register_driver(THIS_MODULE, driver);
|
|
|
|
}
|
|
|
|
|
|
|
|
extern int i2c_attach_client(struct i2c_client *);
|
|
|
|
extern int i2c_detach_client(struct i2c_client *);
|
|
|
|
|
|
|
|
extern struct i2c_client *i2c_use_client(struct i2c_client *client);
|
|
|
|
extern void i2c_release_client(struct i2c_client *client);
|
|
|
|
|
|
|
|
/* call the i2c_client->command() of all attached clients with
|
|
|
|
* the given arguments */
|
|
|
|
extern void i2c_clients_command(struct i2c_adapter *adap,
|
|
|
|
unsigned int cmd, void *arg);
|
|
|
|
|
|
|
|
/* Detect function. It iterates over all possible addresses itself.
|
|
|
|
* It will only call found_proc if some client is connected at the
|
|
|
|
* specific address (unless a 'force' matched);
|
|
|
|
*/
|
|
|
|
extern int i2c_probe(struct i2c_adapter *adapter,
|
|
|
|
const struct i2c_client_address_data *address_data,
|
|
|
|
int (*found_proc) (struct i2c_adapter *, int, int));
|
|
|
|
|
|
|
|
extern struct i2c_adapter* i2c_get_adapter(int id);
|
|
|
|
extern void i2c_put_adapter(struct i2c_adapter *adap);
|
|
|
|
|
|
|
|
|
|
|
|
/* Return the functionality mask */
|
|
|
|
static inline u32 i2c_get_functionality(struct i2c_adapter *adap)
|
|
|
|
{
|
|
|
|
return adap->algo->functionality(adap);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return 1 if adapter supports everything we need, 0 if not. */
|
|
|
|
static inline int i2c_check_functionality(struct i2c_adapter *adap, u32 func)
|
|
|
|
{
|
|
|
|
return (func & i2c_get_functionality(adap)) == func;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return id number for a specific adapter */
|
|
|
|
static inline int i2c_adapter_id(struct i2c_adapter *adap)
|
|
|
|
{
|
|
|
|
return adap->nr;
|
|
|
|
}
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct i2c_msg - an I2C transaction segment beginning with START
|
|
|
|
* @addr: Slave address, either seven or ten bits. When this is a ten
|
|
|
|
* bit address, I2C_M_TEN must be set in @flags and the adapter
|
|
|
|
* must support I2C_FUNC_10BIT_ADDR.
|
|
|
|
* @flags: I2C_M_RD is handled by all adapters. No other flags may be
|
|
|
|
* provided unless the adapter exported the relevant I2C_FUNC_*
|
|
|
|
* flags through i2c_check_functionality().
|
|
|
|
* @len: Number of data bytes in @buf being read from or written to the
|
|
|
|
* I2C slave address. For read transactions where I2C_M_RECV_LEN
|
|
|
|
* is set, the caller guarantees that this buffer can hold up to
|
|
|
|
* 32 bytes in addition to the initial length byte sent by the
|
|
|
|
* slave (plus, if used, the SMBus PEC); and this value will be
|
|
|
|
* incremented by the number of block data bytes received.
|
|
|
|
* @buf: The buffer into which data is read, or from which it's written.
|
|
|
|
*
|
|
|
|
* An i2c_msg is the low level representation of one segment of an I2C
|
|
|
|
* transaction. It is visible to drivers in the @i2c_transfer() procedure,
|
|
|
|
* to userspace from i2c-dev, and to I2C adapter drivers through the
|
|
|
|
* @i2c_adapter.@master_xfer() method.
|
|
|
|
*
|
|
|
|
* Except when I2C "protocol mangling" is used, all I2C adapters implement
|
|
|
|
* the standard rules for I2C transactions. Each transaction begins with a
|
|
|
|
* START. That is followed by the slave address, and a bit encoding read
|
|
|
|
* versus write. Then follow all the data bytes, possibly including a byte
|
|
|
|
* with SMBus PEC. The transfer terminates with a NAK, or when all those
|
|
|
|
* bytes have been transferred and ACKed. If this is the last message in a
|
|
|
|
* group, it is followed by a STOP. Otherwise it is followed by the next
|
|
|
|
* @i2c_msg transaction segment, beginning with a (repeated) START.
|
|
|
|
*
|
|
|
|
* Alternatively, when the adapter supports I2C_FUNC_PROTOCOL_MANGLING then
|
|
|
|
* passing certain @flags may have changed those standard protocol behaviors.
|
|
|
|
* Those flags are only for use with broken/nonconforming slaves, and with
|
|
|
|
* adapters which are known to support the specific mangling options they
|
|
|
|
* need (one or more of IGNORE_NAK, NO_RD_ACK, NOSTART, and REV_DIR_ADDR).
|
|
|
|
*/
|
|
|
|
struct i2c_msg {
|
|
|
|
__u16 addr; /* slave address */
|
|
|
|
__u16 flags;
|
|
|
|
#define I2C_M_TEN 0x0010 /* this is a ten bit chip address */
|
|
|
|
#define I2C_M_RD 0x0001 /* read data, from slave to master */
|
|
|
|
#define I2C_M_NOSTART 0x4000 /* if I2C_FUNC_PROTOCOL_MANGLING */
|
|
|
|
#define I2C_M_REV_DIR_ADDR 0x2000 /* if I2C_FUNC_PROTOCOL_MANGLING */
|
|
|
|
#define I2C_M_IGNORE_NAK 0x1000 /* if I2C_FUNC_PROTOCOL_MANGLING */
|
|
|
|
#define I2C_M_NO_RD_ACK 0x0800 /* if I2C_FUNC_PROTOCOL_MANGLING */
|
|
|
|
#define I2C_M_RECV_LEN 0x0400 /* length will be first received byte */
|
|
|
|
__u16 len; /* msg length */
|
|
|
|
__u8 *buf; /* pointer to msg data */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* To determine what functionality is present */
|
|
|
|
|
|
|
|
#define I2C_FUNC_I2C 0x00000001
|
|
|
|
#define I2C_FUNC_10BIT_ADDR 0x00000002
|
|
|
|
#define I2C_FUNC_PROTOCOL_MANGLING 0x00000004 /* I2C_M_{REV_DIR_ADDR,NOSTART,..} */
|
|
|
|
#define I2C_FUNC_SMBUS_PEC 0x00000008
|
|
|
|
#define I2C_FUNC_SMBUS_BLOCK_PROC_CALL 0x00008000 /* SMBus 2.0 */
|
|
|
|
#define I2C_FUNC_SMBUS_QUICK 0x00010000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_BYTE 0x00020000
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_BYTE 0x00040000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_BYTE_DATA 0x00080000
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_BYTE_DATA 0x00100000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_WORD_DATA 0x00200000
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_WORD_DATA 0x00400000
|
|
|
|
#define I2C_FUNC_SMBUS_PROC_CALL 0x00800000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_BLOCK_DATA 0x01000000
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_BLOCK_DATA 0x02000000
|
|
|
|
#define I2C_FUNC_SMBUS_READ_I2C_BLOCK 0x04000000 /* I2C-like block xfer */
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_I2C_BLOCK 0x08000000 /* w/ 1-byte reg. addr. */
|
|
|
|
#define I2C_FUNC_SMBUS_READ_I2C_BLOCK_2 0x10000000 /* I2C-like block xfer */
|
|
|
|
#define I2C_FUNC_SMBUS_WRITE_I2C_BLOCK_2 0x20000000 /* w/ 2-byte reg. addr. */
|
|
|
|
|
|
|
|
#define I2C_FUNC_SMBUS_BYTE (I2C_FUNC_SMBUS_READ_BYTE | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_BYTE)
|
|
|
|
#define I2C_FUNC_SMBUS_BYTE_DATA (I2C_FUNC_SMBUS_READ_BYTE_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_BYTE_DATA)
|
|
|
|
#define I2C_FUNC_SMBUS_WORD_DATA (I2C_FUNC_SMBUS_READ_WORD_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_WORD_DATA)
|
|
|
|
#define I2C_FUNC_SMBUS_BLOCK_DATA (I2C_FUNC_SMBUS_READ_BLOCK_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA)
|
|
|
|
#define I2C_FUNC_SMBUS_I2C_BLOCK (I2C_FUNC_SMBUS_READ_I2C_BLOCK | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)
|
|
|
|
#define I2C_FUNC_SMBUS_I2C_BLOCK_2 (I2C_FUNC_SMBUS_READ_I2C_BLOCK_2 | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK_2)
|
|
|
|
|
|
|
|
#define I2C_FUNC_SMBUS_EMUL (I2C_FUNC_SMBUS_QUICK | \
|
|
|
|
I2C_FUNC_SMBUS_BYTE | \
|
|
|
|
I2C_FUNC_SMBUS_BYTE_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_WORD_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_PROC_CALL | \
|
|
|
|
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA | \
|
|
|
|
I2C_FUNC_SMBUS_I2C_BLOCK | \
|
|
|
|
I2C_FUNC_SMBUS_PEC)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Data for SMBus Messages
|
|
|
|
*/
|
|
|
|
#define I2C_SMBUS_BLOCK_MAX 32 /* As specified in SMBus standard */
|
|
|
|
union i2c_smbus_data {
|
|
|
|
__u8 byte;
|
|
|
|
__u16 word;
|
|
|
|
__u8 block[I2C_SMBUS_BLOCK_MAX + 2]; /* block[0] is used for length */
|
[PATCH] i2c: SMBus PEC support rewrite, 2 of 3
This is my rewrite of the SMBus PEC support. The original
implementation was known to have bugs (credits go to Hideki Iwamoto
for reporting many of them recently), and was incomplete due to a
conceptual limitation.
The rewrite affects only software PEC. Hardware PEC needs very little
code and is mostly untouched.
Technically, both implementations differ in that the original one
was emulating PEC in software by modifying the contents of an
i2c_smbus_data union (changing the transaction to a different type),
while the new one works one level lower, on i2c_msg structures (working
on message contents). Due to the definition of the i2c_smbus_data union,
not all SMBus transactions could be handled (at least not without
changing the definition of this union, which would break user-space
compatibility), and those which could had to be implemented
individually. At the opposite, adding PEC to an i2c_msg structure
can be done on any SMBus transaction with common code.
Advantages of the new implementation:
* It's about twice as small (from ~136 lines before to ~70 now, only
counting i2c-core, including blank and comment lines). The memory
used by i2c-core is down by ~640 bytes (~3.5%).
* Easier to validate, less tricky code. The code being common to all
transactions by design, the risk that a bug can stay uncovered is
lower.
* All SMBus transactions have PEC support in I2C emulation mode
(providing the non-PEC transaction is also implemented). Transactions
which have no emulation code right now will get PEC support for free
when they finally get implemented.
* Allows for code simplifications in header files and bus drivers
(patch follows).
Drawbacks (I guess there had to be at least one):
* PEC emulation for non-PEC capable non-I2C SMBus masters was dropped.
It was based on SMBus tricks and doesn't quite fit in the new design.
I don't think it's really a problem, as the benefit was certainly
not worth the additional complexity, but it's only fair that I at
least mention it.
Lastly, let's note that the new implementation does slightly affect
compatibility (both in kernel and user-space), but doesn't actually
break it. Some defines will be dropped, but the code can always be
changed in a way that will work with both the old and the new
implementations. It shouldn't be a problem as there doesn't seem to be
many users of SMBus PEC to date anyway.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
20 years ago
|
|
|
/* and one more for user-space compatibility */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* i2c_smbus_xfer read or write markers */
|
|
|
|
#define I2C_SMBUS_READ 1
|
|
|
|
#define I2C_SMBUS_WRITE 0
|
|
|
|
|
|
|
|
/* SMBus transaction types (size parameter in the above functions)
|
|
|
|
Note: these no longer correspond to the (arbitrary) PIIX4 internal codes! */
|
|
|
|
#define I2C_SMBUS_QUICK 0
|
|
|
|
#define I2C_SMBUS_BYTE 1
|
|
|
|
#define I2C_SMBUS_BYTE_DATA 2
|
|
|
|
#define I2C_SMBUS_WORD_DATA 3
|
|
|
|
#define I2C_SMBUS_PROC_CALL 4
|
|
|
|
#define I2C_SMBUS_BLOCK_DATA 5
|
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
#define I2C_SMBUS_I2C_BLOCK_BROKEN 6
|
|
|
|
#define I2C_SMBUS_BLOCK_PROC_CALL 7 /* SMBus 2.0 */
|
i2c: Fix the i2c_smbus_read_i2c_block_data() prototype
Let the drivers specify how many bytes they want to read with
i2c_smbus_read_i2c_block_data(). So far, the block count was
hard-coded to I2C_SMBUS_BLOCK_MAX (32), which did not make much sense.
Many driver authors complained about this before, and I believe it's
about time to fix it. Right now, authors have to do technically stupid
things, such as individual byte reads or full-fledged I2C messaging,
to work around the problem. We do not want to encourage that.
I even found that some bus drivers (e.g. i2c-amd8111) already
implemented I2C block read the "right" way, that is, they didn't
follow the old, broken standard. The fact that it was never noticed
before just shows how little i2c_smbus_read_i2c_block_data() was used,
which isn't that surprising given how broken its prototype was so far.
There are some obvious compatiblity considerations:
* This changes the i2c_smbus_read_i2c_block_data() prototype. Users
outside the kernel tree will notice at compilation time, and will
have to update their code.
* User-space has access to i2c_smbus_xfer() directly using i2c-dev, so
the changed expectations would affect tools such as i2cdump. In order
to preserve binary compatibility, we give I2C_SMBUS_I2C_BLOCK_DATA
a new numeric value, and define I2C_SMBUS_I2C_BLOCK_BROKEN with the
old numeric value. When i2c-dev receives a transaction with the
old value, it can convert it to the new format on the fly.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
18 years ago
|
|
|
#define I2C_SMBUS_I2C_BLOCK_DATA 8
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
|
|
|
|
/* These defines are used for probing i2c client addresses */
|
|
|
|
/* The length of the option lists */
|
|
|
|
#define I2C_CLIENT_MAX_OPTS 48
|
|
|
|
|
|
|
|
/* Default fill of many variables */
|
|
|
|
#define I2C_CLIENT_DEFAULTS {I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END, \
|
|
|
|
I2C_CLIENT_END, I2C_CLIENT_END, I2C_CLIENT_END}
|
|
|
|
|
|
|
|
/* I2C_CLIENT_MODULE_PARM creates a module parameter, and puts it in the
|
|
|
|
module header */
|
|
|
|
|
|
|
|
#define I2C_CLIENT_MODULE_PARM(var,desc) \
|
|
|
|
static unsigned short var[I2C_CLIENT_MAX_OPTS] = I2C_CLIENT_DEFAULTS; \
|
|
|
|
static unsigned int var##_num; \
|
|
|
|
module_param_array(var, short, &var##_num, 0); \
|
|
|
|
MODULE_PARM_DESC(var,desc)
|
|
|
|
|
|
|
|
#define I2C_CLIENT_MODULE_PARM_FORCE(name) \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force_##name, \
|
|
|
|
"List of adapter,address pairs which are " \
|
|
|
|
"unquestionably assumed to contain a `" \
|
|
|
|
# name "' chip")
|
|
|
|
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_COMMON \
|
|
|
|
I2C_CLIENT_MODULE_PARM(probe, "List of adapter,address pairs to scan " \
|
|
|
|
"additionally"); \
|
|
|
|
I2C_CLIENT_MODULE_PARM(ignore, "List of adapter,address pairs not to " \
|
|
|
|
"scan"); \
|
|
|
|
static const struct i2c_client_address_data addr_data = { \
|
|
|
|
.normal_i2c = normal_i2c, \
|
|
|
|
.probe = probe, \
|
|
|
|
.ignore = ignore, \
|
|
|
|
.forces = forces, \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define I2C_CLIENT_FORCE_TEXT \
|
|
|
|
"List of adapter,address pairs to boldly assume to be present"
|
|
|
|
|
|
|
|
/* These are the ones you want to use in your own drivers. Pick the one
|
|
|
|
which matches the number of devices the driver differenciates between. */
|
|
|
|
#define I2C_CLIENT_INSMOD \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
static const unsigned short * const forces[] = { force, NULL }; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_1(chip1) \
|
|
|
|
enum chips { any_chip, chip1 }; \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
|
|
|
|
static const unsigned short * const forces[] = { force, \
|
|
|
|
force_##chip1, NULL }; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_2(chip1, chip2) \
|
|
|
|
enum chips { any_chip, chip1, chip2 }; \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
|
|
|
|
static const unsigned short * const forces[] = { force, \
|
|
|
|
force_##chip1, force_##chip2, NULL }; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_3(chip1, chip2, chip3) \
|
|
|
|
enum chips { any_chip, chip1, chip2, chip3 }; \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
|
|
|
|
static const unsigned short * const forces[] = { force, \
|
|
|
|
force_##chip1, force_##chip2, force_##chip3, NULL }; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_4(chip1, chip2, chip3, chip4) \
|
|
|
|
enum chips { any_chip, chip1, chip2, chip3, chip4 }; \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
|
|
|
|
static const unsigned short * const forces[] = { force, \
|
|
|
|
force_##chip1, force_##chip2, force_##chip3, \
|
|
|
|
force_##chip4, NULL}; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_5(chip1, chip2, chip3, chip4, chip5) \
|
|
|
|
enum chips { any_chip, chip1, chip2, chip3, chip4, chip5 }; \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip5); \
|
|
|
|
static const unsigned short * const forces[] = { force, \
|
|
|
|
force_##chip1, force_##chip2, force_##chip3, \
|
|
|
|
force_##chip4, force_##chip5, NULL }; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_6(chip1, chip2, chip3, chip4, chip5, chip6) \
|
|
|
|
enum chips { any_chip, chip1, chip2, chip3, chip4, chip5, chip6 }; \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip5); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip6); \
|
|
|
|
static const unsigned short * const forces[] = { force, \
|
|
|
|
force_##chip1, force_##chip2, force_##chip3, \
|
|
|
|
force_##chip4, force_##chip5, force_##chip6, NULL }; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_7(chip1, chip2, chip3, chip4, chip5, chip6, chip7) \
|
|
|
|
enum chips { any_chip, chip1, chip2, chip3, chip4, chip5, chip6, \
|
|
|
|
chip7 }; \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip5); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip6); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip7); \
|
|
|
|
static const unsigned short * const forces[] = { force, \
|
|
|
|
force_##chip1, force_##chip2, force_##chip3, \
|
|
|
|
force_##chip4, force_##chip5, force_##chip6, \
|
|
|
|
force_##chip7, NULL }; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
|
|
|
|
#define I2C_CLIENT_INSMOD_8(chip1, chip2, chip3, chip4, chip5, chip6, chip7, chip8) \
|
|
|
|
enum chips { any_chip, chip1, chip2, chip3, chip4, chip5, chip6, \
|
|
|
|
chip7, chip8 }; \
|
|
|
|
I2C_CLIENT_MODULE_PARM(force, I2C_CLIENT_FORCE_TEXT); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip1); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip2); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip3); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip4); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip5); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip6); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip7); \
|
|
|
|
I2C_CLIENT_MODULE_PARM_FORCE(chip8); \
|
|
|
|
static const unsigned short * const forces[] = { force, \
|
|
|
|
force_##chip1, force_##chip2, force_##chip3, \
|
|
|
|
force_##chip4, force_##chip5, force_##chip6, \
|
|
|
|
force_##chip7, force_##chip8, NULL }; \
|
|
|
|
I2C_CLIENT_INSMOD_COMMON
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _LINUX_I2C_H */
|