|
|
|
/*
|
|
|
|
* Memory arbiter functions. Allocates bandwidth through the
|
|
|
|
* arbiter and sets up arbiter breakpoints.
|
|
|
|
*
|
|
|
|
* The algorithm first assigns slots to the clients that has specified
|
|
|
|
* bandwidth (e.g. ethernet) and then the remaining slots are divided
|
|
|
|
* on all the active clients.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2004-2007 Axis Communications AB.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <hwregs/reg_map.h>
|
|
|
|
#include <hwregs/reg_rdwr.h>
|
|
|
|
#include <hwregs/marb_defs.h>
|
|
|
|
#include <arbiter.h>
|
|
|
|
#include <hwregs/intr_vect.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/signal.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
|
|
|
|
struct crisv32_watch_entry {
|
|
|
|
unsigned long instance;
|
|
|
|
watch_callback *cb;
|
|
|
|
unsigned long start;
|
|
|
|
unsigned long end;
|
|
|
|
int used;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define NUMBER_OF_BP 4
|
|
|
|
#define NBR_OF_CLIENTS 14
|
|
|
|
#define NBR_OF_SLOTS 64
|
|
|
|
#define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
|
|
|
|
#define INTMEM_BANDWIDTH 400000000
|
|
|
|
#define NBR_OF_REGIONS 2
|
|
|
|
|
|
|
|
static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
|
|
|
|
{regi_marb_bp0},
|
|
|
|
{regi_marb_bp1},
|
|
|
|
{regi_marb_bp2},
|
|
|
|
{regi_marb_bp3}
|
|
|
|
};
|
|
|
|
|
|
|
|
static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
|
|
|
|
static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
|
|
|
|
static int max_bandwidth[NBR_OF_REGIONS] =
|
|
|
|
{ SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
|
|
|
|
|
|
|
|
DEFINE_SPINLOCK(arbiter_lock);
|
|
|
|
|
|
|
|
static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* "I'm the arbiter, I know the score.
|
|
|
|
* From square one I'll be watching all 64."
|
|
|
|
* (memory arbiter slots, that is)
|
|
|
|
*
|
|
|
|
* Or in other words:
|
|
|
|
* Program the memory arbiter slots for "region" according to what's
|
|
|
|
* in requested_slots[] and active_clients[], while minimizing
|
|
|
|
* latency. A caller may pass a non-zero positive amount for
|
|
|
|
* "unused_slots", which must then be the unallocated, remaining
|
|
|
|
* number of slots, free to hand out to any client.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void crisv32_arbiter_config(int region, int unused_slots)
|
|
|
|
{
|
|
|
|
int slot;
|
|
|
|
int client;
|
|
|
|
int interval = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This vector corresponds to the hardware arbiter slots (see
|
|
|
|
* the hardware documentation for semantics). We initialize
|
|
|
|
* each slot with a suitable sentinel value outside the valid
|
|
|
|
* range {0 .. NBR_OF_CLIENTS - 1} and replace them with
|
|
|
|
* client indexes. Then it's fed to the hardware.
|
|
|
|
*/
|
|
|
|
s8 val[NBR_OF_SLOTS];
|
|
|
|
|
|
|
|
for (slot = 0; slot < NBR_OF_SLOTS; slot++)
|
|
|
|
val[slot] = -1;
|
|
|
|
|
|
|
|
for (client = 0; client < NBR_OF_CLIENTS; client++) {
|
|
|
|
int pos;
|
|
|
|
/* Allocate the requested non-zero number of slots, but
|
|
|
|
* also give clients with zero-requests one slot each
|
|
|
|
* while stocks last. We do the latter here, in client
|
|
|
|
* order. This makes sure zero-request clients are the
|
|
|
|
* first to get to any spare slots, else those slots
|
|
|
|
* could, when bandwidth is allocated close to the limit,
|
|
|
|
* all be allocated to low-index non-zero-request clients
|
|
|
|
* in the default-fill loop below. Another positive but
|
|
|
|
* secondary effect is a somewhat better spread of the
|
|
|
|
* zero-bandwidth clients in the vector, avoiding some of
|
|
|
|
* the latency that could otherwise be caused by the
|
|
|
|
* partitioning of non-zero-bandwidth clients at low
|
|
|
|
* indexes and zero-bandwidth clients at high
|
|
|
|
* indexes. (Note that this spreading can only affect the
|
|
|
|
* unallocated bandwidth.) All the above only matters for
|
|
|
|
* memory-intensive situations, of course.
|
|
|
|
*/
|
|
|
|
if (!requested_slots[region][client]) {
|
|
|
|
/*
|
|
|
|
* Skip inactive clients. Also skip zero-slot
|
|
|
|
* allocations in this pass when there are no known
|
|
|
|
* free slots.
|
|
|
|
*/
|
|
|
|
if (!active_clients[region][client]
|
|
|
|
|| unused_slots <= 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
unused_slots--;
|
|
|
|
|
|
|
|
/* Only allocate one slot for this client. */
|
|
|
|
interval = NBR_OF_SLOTS;
|
|
|
|
} else
|
|
|
|
interval =
|
|
|
|
NBR_OF_SLOTS / requested_slots[region][client];
|
|
|
|
|
|
|
|
pos = 0;
|
|
|
|
while (pos < NBR_OF_SLOTS) {
|
|
|
|
if (val[pos] >= 0)
|
|
|
|
pos++;
|
|
|
|
else {
|
|
|
|
val[pos] = client;
|
|
|
|
pos += interval;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
client = 0;
|
|
|
|
for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
|
|
|
|
/*
|
|
|
|
* Allocate remaining slots in round-robin
|
|
|
|
* client-number order for active clients. For this
|
|
|
|
* pass, we ignore requested bandwidth and previous
|
|
|
|
* allocations.
|
|
|
|
*/
|
|
|
|
if (val[slot] < 0) {
|
|
|
|
int first = client;
|
|
|
|
while (!active_clients[region][client]) {
|
|
|
|
client = (client + 1) % NBR_OF_CLIENTS;
|
|
|
|
if (client == first)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
val[slot] = client;
|
|
|
|
client = (client + 1) % NBR_OF_CLIENTS;
|
|
|
|
}
|
|
|
|
if (region == EXT_REGION)
|
|
|
|
REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
|
|
|
|
val[slot]);
|
|
|
|
else if (region == INT_REGION)
|
|
|
|
REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
|
|
|
|
val[slot]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
extern char _stext, _etext;
|
|
|
|
|
|
|
|
static void crisv32_arbiter_init(void)
|
|
|
|
{
|
|
|
|
static int initialized;
|
|
|
|
|
|
|
|
if (initialized)
|
|
|
|
return;
|
|
|
|
|
|
|
|
initialized = 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* CPU caches are always set to active, but with zero
|
|
|
|
* bandwidth allocated. It should be ok to allocate zero
|
|
|
|
* bandwidth for the caches, because DMA for other channels
|
|
|
|
* will supposedly finish, once their programmed amount is
|
|
|
|
* done, and then the caches will get access according to the
|
|
|
|
* "fixed scheme" for unclaimed slots. Though, if for some
|
|
|
|
* use-case somewhere, there's a maximum CPU latency for
|
|
|
|
* e.g. some interrupt, we have to start allocating specific
|
|
|
|
* bandwidth for the CPU caches too.
|
|
|
|
*/
|
|
|
|
active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
|
|
|
|
crisv32_arbiter_config(EXT_REGION, 0);
|
|
|
|
crisv32_arbiter_config(INT_REGION, 0);
|
|
|
|
|
|
|
|
if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, IRQF_DISABLED,
|
|
|
|
"arbiter", NULL))
|
|
|
|
printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
|
|
|
|
|
|
|
|
#ifndef CONFIG_ETRAX_KGDB
|
|
|
|
/* Global watch for writes to kernel text segment. */
|
|
|
|
crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
|
|
|
|
arbiter_all_clients, arbiter_all_write, NULL);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Main entry for bandwidth allocation. */
|
|
|
|
|
|
|
|
int crisv32_arbiter_allocate_bandwidth(int client, int region,
|
|
|
|
unsigned long bandwidth)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int total_assigned = 0;
|
|
|
|
int total_clients = 0;
|
|
|
|
int req;
|
|
|
|
|
|
|
|
crisv32_arbiter_init();
|
|
|
|
|
|
|
|
for (i = 0; i < NBR_OF_CLIENTS; i++) {
|
|
|
|
total_assigned += requested_slots[region][i];
|
|
|
|
total_clients += active_clients[region][i];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Avoid division by 0 for 0-bandwidth requests. */
|
|
|
|
req = bandwidth == 0
|
|
|
|
? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We make sure that there are enough slots only for non-zero
|
|
|
|
* requests. Requesting 0 bandwidth *may* allocate slots,
|
|
|
|
* though if all bandwidth is allocated, such a client won't
|
|
|
|
* get any and will have to rely on getting memory access
|
|
|
|
* according to the fixed scheme that's the default when one
|
|
|
|
* of the slot-allocated clients doesn't claim their slot.
|
|
|
|
*/
|
|
|
|
if (total_assigned + req > NBR_OF_SLOTS)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
active_clients[region][client] = 1;
|
|
|
|
requested_slots[region][client] = req;
|
|
|
|
crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Main entry for bandwidth deallocation.
|
|
|
|
*
|
|
|
|
* Strictly speaking, for a somewhat constant set of clients where
|
|
|
|
* each client gets a constant bandwidth and is just enabled or
|
|
|
|
* disabled (somewhat dynamically), no action is necessary here to
|
|
|
|
* avoid starvation for non-zero-allocation clients, as the allocated
|
|
|
|
* slots will just be unused. However, handing out those unused slots
|
|
|
|
* to active clients avoids needless latency if the "fixed scheme"
|
|
|
|
* would give unclaimed slots to an eager low-index client.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void crisv32_arbiter_deallocate_bandwidth(int client, int region)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int total_assigned = 0;
|
|
|
|
|
|
|
|
requested_slots[region][client] = 0;
|
|
|
|
active_clients[region][client] = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < NBR_OF_CLIENTS; i++)
|
|
|
|
total_assigned += requested_slots[region][i];
|
|
|
|
|
|
|
|
crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
|
|
|
|
}
|
|
|
|
|
|
|
|
int crisv32_arbiter_watch(unsigned long start, unsigned long size,
|
|
|
|
unsigned long clients, unsigned long accesses,
|
|
|
|
watch_callback *cb)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
crisv32_arbiter_init();
|
|
|
|
|
|
|
|
if (start > 0x80000000) {
|
|
|
|
printk(KERN_ERR "Arbiter: %lX doesn't look like a "
|
|
|
|
"physical address", start);
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&arbiter_lock);
|
|
|
|
|
|
|
|
for (i = 0; i < NUMBER_OF_BP; i++) {
|
|
|
|
if (!watches[i].used) {
|
|
|
|
reg_marb_rw_intr_mask intr_mask =
|
|
|
|
REG_RD(marb, regi_marb, rw_intr_mask);
|
|
|
|
|
|
|
|
watches[i].used = 1;
|
|
|
|
watches[i].start = start;
|
|
|
|
watches[i].end = start + size;
|
|
|
|
watches[i].cb = cb;
|
|
|
|
|
|
|
|
REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
|
|
|
|
watches[i].start);
|
|
|
|
REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
|
|
|
|
watches[i].end);
|
|
|
|
REG_WR_INT(marb_bp, watches[i].instance, rw_op,
|
|
|
|
accesses);
|
|
|
|
REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
|
|
|
|
clients);
|
|
|
|
|
|
|
|
if (i == 0)
|
|
|
|
intr_mask.bp0 = regk_marb_yes;
|
|
|
|
else if (i == 1)
|
|
|
|
intr_mask.bp1 = regk_marb_yes;
|
|
|
|
else if (i == 2)
|
|
|
|
intr_mask.bp2 = regk_marb_yes;
|
|
|
|
else if (i == 3)
|
|
|
|
intr_mask.bp3 = regk_marb_yes;
|
|
|
|
|
|
|
|
REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
|
|
|
|
spin_unlock(&arbiter_lock);
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock(&arbiter_lock);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
int crisv32_arbiter_unwatch(int id)
|
|
|
|
{
|
|
|
|
reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
|
|
|
|
|
|
|
|
crisv32_arbiter_init();
|
|
|
|
|
|
|
|
spin_lock(&arbiter_lock);
|
|
|
|
|
|
|
|
if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
|
|
|
|
spin_unlock(&arbiter_lock);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
|
|
|
|
|
|
|
|
if (id == 0)
|
|
|
|
intr_mask.bp0 = regk_marb_no;
|
|
|
|
else if (id == 1)
|
|
|
|
intr_mask.bp1 = regk_marb_no;
|
|
|
|
else if (id == 2)
|
|
|
|
intr_mask.bp2 = regk_marb_no;
|
|
|
|
else if (id == 3)
|
|
|
|
intr_mask.bp3 = regk_marb_no;
|
|
|
|
|
|
|
|
REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
|
|
|
|
|
|
|
|
spin_unlock(&arbiter_lock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern void show_registers(struct pt_regs *regs);
|
|
|
|
|
|
|
|
static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
|
|
|
|
{
|
|
|
|
reg_marb_r_masked_intr masked_intr =
|
|
|
|
REG_RD(marb, regi_marb, r_masked_intr);
|
|
|
|
reg_marb_bp_r_brk_clients r_clients;
|
|
|
|
reg_marb_bp_r_brk_addr r_addr;
|
|
|
|
reg_marb_bp_r_brk_op r_op;
|
|
|
|
reg_marb_bp_r_brk_first_client r_first;
|
|
|
|
reg_marb_bp_r_brk_size r_size;
|
|
|
|
reg_marb_bp_rw_ack ack = { 0 };
|
|
|
|
reg_marb_rw_ack_intr ack_intr = {
|
|
|
|
.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
|
|
|
|
};
|
|
|
|
struct crisv32_watch_entry *watch;
|
|
|
|
|
|
|
|
if (masked_intr.bp0) {
|
|
|
|
watch = &watches[0];
|
|
|
|
ack_intr.bp0 = regk_marb_yes;
|
|
|
|
} else if (masked_intr.bp1) {
|
|
|
|
watch = &watches[1];
|
|
|
|
ack_intr.bp1 = regk_marb_yes;
|
|
|
|
} else if (masked_intr.bp2) {
|
|
|
|
watch = &watches[2];
|
|
|
|
ack_intr.bp2 = regk_marb_yes;
|
|
|
|
} else if (masked_intr.bp3) {
|
|
|
|
watch = &watches[3];
|
|
|
|
ack_intr.bp3 = regk_marb_yes;
|
|
|
|
} else {
|
|
|
|
return IRQ_NONE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Retrieve all useful information and print it. */
|
|
|
|
r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
|
|
|
|
r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
|
|
|
|
r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
|
|
|
|
r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
|
|
|
|
r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
|
|
|
|
|
|
|
|
printk(KERN_INFO "Arbiter IRQ\n");
|
|
|
|
printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
|
|
|
|
REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
|
|
|
|
REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
|
|
|
|
REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
|
|
|
|
REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
|
|
|
|
REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
|
|
|
|
|
|
|
|
REG_WR(marb_bp, watch->instance, rw_ack, ack);
|
|
|
|
REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
|
|
|
|
|
|
|
|
printk(KERN_INFO "IRQ occured at %lX\n", get_irq_regs()->erp);
|
|
|
|
|
|
|
|
if (watch->cb)
|
|
|
|
watch->cb();
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|