|
|
|
#ifndef _ASM_IA64_PGTABLE_H
|
|
|
|
#define _ASM_IA64_PGTABLE_H
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This file contains the functions and defines necessary to modify and use
|
|
|
|
* the IA-64 page table tree.
|
|
|
|
*
|
|
|
|
* This hopefully works with any (fixed) IA-64 page-size, as defined
|
|
|
|
* in <asm/page.h>.
|
|
|
|
*
|
|
|
|
* Copyright (C) 1998-2005 Hewlett-Packard Co
|
|
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include <asm/mman.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <asm/types.h>
|
|
|
|
|
|
|
|
#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* First, define the various bits in a PTE. Note that the PTE format
|
|
|
|
* matches the VHPT short format, the firt doubleword of the VHPD long
|
|
|
|
* format, and the first doubleword of the TLB insertion format.
|
|
|
|
*/
|
|
|
|
#define _PAGE_P_BIT 0
|
|
|
|
#define _PAGE_A_BIT 5
|
|
|
|
#define _PAGE_D_BIT 6
|
|
|
|
|
|
|
|
#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */
|
|
|
|
#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
|
|
|
|
#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
|
|
|
|
#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
|
|
|
|
#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
|
|
|
|
#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
|
|
|
|
#define _PAGE_MA_MASK (0x7 << 2)
|
|
|
|
#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
|
|
|
|
#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
|
|
|
|
#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
|
|
|
|
#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
|
|
|
|
#define _PAGE_PL_MASK (3 << 7)
|
|
|
|
#define _PAGE_AR_R (0 << 9) /* read only */
|
|
|
|
#define _PAGE_AR_RX (1 << 9) /* read & execute */
|
|
|
|
#define _PAGE_AR_RW (2 << 9) /* read & write */
|
|
|
|
#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
|
|
|
|
#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
|
|
|
|
#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
|
|
|
|
#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
|
|
|
|
#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
|
|
|
|
#define _PAGE_AR_MASK (7 << 9)
|
|
|
|
#define _PAGE_AR_SHIFT 9
|
|
|
|
#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */
|
|
|
|
#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */
|
|
|
|
#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
|
|
|
|
#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
|
|
|
|
#define _PAGE_PROTNONE (__IA64_UL(1) << 63)
|
|
|
|
|
|
|
|
/* Valid only for a PTE with the present bit cleared: */
|
|
|
|
#define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */
|
|
|
|
|
|
|
|
#define _PFN_MASK _PAGE_PPN_MASK
|
|
|
|
/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
|
|
|
|
#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
|
|
|
|
|
|
|
|
#define _PAGE_SIZE_4K 12
|
|
|
|
#define _PAGE_SIZE_8K 13
|
|
|
|
#define _PAGE_SIZE_16K 14
|
|
|
|
#define _PAGE_SIZE_64K 16
|
|
|
|
#define _PAGE_SIZE_256K 18
|
|
|
|
#define _PAGE_SIZE_1M 20
|
|
|
|
#define _PAGE_SIZE_4M 22
|
|
|
|
#define _PAGE_SIZE_16M 24
|
|
|
|
#define _PAGE_SIZE_64M 26
|
|
|
|
#define _PAGE_SIZE_256M 28
|
|
|
|
#define _PAGE_SIZE_1G 30
|
|
|
|
#define _PAGE_SIZE_4G 32
|
|
|
|
|
|
|
|
#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
|
|
|
|
#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
|
|
|
|
#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
|
|
|
|
|
|
|
|
/*
|
|
|
|
* How many pointers will a page table level hold expressed in shift
|
|
|
|
*/
|
|
|
|
#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Definitions for fourth level:
|
|
|
|
*/
|
|
|
|
#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Definitions for third level:
|
|
|
|
*
|
|
|
|
* PMD_SHIFT determines the size of the area a third-level page table
|
|
|
|
* can map.
|
|
|
|
*/
|
|
|
|
#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
|
|
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
|
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
|
|
|
#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT))
|
|
|
|
|
|
|
|
#ifdef CONFIG_PGTABLE_4
|
|
|
|
/*
|
|
|
|
* Definitions for second level:
|
|
|
|
*
|
|
|
|
* PUD_SHIFT determines the size of the area a second-level page table
|
|
|
|
* can map.
|
|
|
|
*/
|
|
|
|
#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
|
|
|
|
#define PUD_SIZE (1UL << PUD_SHIFT)
|
|
|
|
#define PUD_MASK (~(PUD_SIZE-1))
|
|
|
|
#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Definitions for first level:
|
|
|
|
*
|
|
|
|
* PGDIR_SHIFT determines what a first-level page table entry can map.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_PGTABLE_4
|
|
|
|
#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
|
|
|
|
#else
|
|
|
|
#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
|
|
|
|
#endif
|
|
|
|
#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
|
|
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
|
#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT
|
|
|
|
#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT)
|
|
|
|
#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */
|
|
|
|
#define FIRST_USER_ADDRESS 0
|
|
|
|
|
|
|
|
/*
|
|
|
|
* All the normal masks have the "page accessed" bits on, as any time
|
|
|
|
* they are used, the page is accessed. They are cleared only by the
|
|
|
|
* page-out routines.
|
|
|
|
*/
|
|
|
|
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
|
|
|
|
#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
|
|
|
|
#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
|
|
|
|
#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
|
|
|
|
#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
|
|
|
|
#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
|
|
|
|
#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
|
|
|
|
#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
|
|
|
|
|
|
|
|
# ifndef __ASSEMBLY__
|
|
|
|
|
|
|
|
#include <linux/sched.h> /* for mm_struct */
|
|
|
|
#include <asm/bitops.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Next come the mappings that determine how mmap() protection bits
|
|
|
|
* (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
|
|
|
|
* _P version gets used for a private shared memory segment, the _S
|
|
|
|
* version gets used for a shared memory segment with MAP_SHARED on.
|
|
|
|
* In a private shared memory segment, we do a copy-on-write if a task
|
|
|
|
* attempts to write to the page.
|
|
|
|
*/
|
|
|
|
/* xwr */
|
|
|
|
#define __P000 PAGE_NONE
|
|
|
|
#define __P001 PAGE_READONLY
|
|
|
|
#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */
|
|
|
|
#define __P011 PAGE_READONLY /* ditto */
|
|
|
|
#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
|
|
|
|
#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
|
|
|
|
#define __P110 PAGE_COPY_EXEC
|
|
|
|
#define __P111 PAGE_COPY_EXEC
|
|
|
|
|
|
|
|
#define __S000 PAGE_NONE
|
|
|
|
#define __S001 PAGE_READONLY
|
|
|
|
#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */
|
|
|
|
#define __S011 PAGE_SHARED
|
|
|
|
#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
|
|
|
|
#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
|
|
|
|
#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
|
|
|
|
#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
|
|
|
|
|
|
|
|
#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
#ifdef CONFIG_PGTABLE_4
|
|
|
|
#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
|
|
|
|
#endif
|
|
|
|
#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
|
|
|
|
#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some definitions to translate between mem_map, PTEs, and page addresses:
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* Quick test to see if ADDR is a (potentially) valid physical address. */
|
|
|
|
static inline long
|
|
|
|
ia64_phys_addr_valid (unsigned long addr)
|
|
|
|
{
|
|
|
|
return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
|
|
|
|
* memory. For the return value to be meaningful, ADDR must be >=
|
|
|
|
* PAGE_OFFSET. This operation can be relatively expensive (e.g.,
|
|
|
|
* require a hash-, or multi-level tree-lookup or something of that
|
|
|
|
* sort) but it guarantees to return TRUE only if accessing the page
|
|
|
|
* at that address does not cause an error. Note that there may be
|
|
|
|
* addresses for which kern_addr_valid() returns FALSE even though an
|
|
|
|
* access would not cause an error (e.g., this is typically true for
|
|
|
|
* memory mapped I/O regions.
|
|
|
|
*
|
|
|
|
* XXX Need to implement this for IA-64.
|
|
|
|
*/
|
|
|
|
#define kern_addr_valid(addr) (1)
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now come the defines and routines to manage and access the three-level
|
|
|
|
* page table.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On some architectures, special things need to be done when setting
|
|
|
|
* the PTE in a page table. Nothing special needs to be on IA-64.
|
|
|
|
*/
|
|
|
|
#define set_pte(ptep, pteval) (*(ptep) = (pteval))
|
|
|
|
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
|
|
|
|
|
|
|
|
#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
|
|
# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
|
|
|
|
# define VMALLOC_END vmalloc_end
|
|
|
|
extern unsigned long vmalloc_end;
|
|
|
|
#else
|
|
|
|
# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* fs/proc/kcore.c */
|
|
|
|
#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
|
|
|
|
#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
|
|
|
|
|
|
|
|
#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
|
|
|
|
#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Conversion functions: convert page frame number (pfn) and a protection value to a page
|
|
|
|
* table entry (pte).
|
|
|
|
*/
|
|
|
|
#define pfn_pte(pfn, pgprot) \
|
|
|
|
({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
|
|
|
|
|
|
|
|
/* Extract pfn from pte. */
|
|
|
|
#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
|
|
|
|
|
|
|
|
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
|
|
|
|
|
|
|
|
/* This takes a physical page address that is used by the remapping functions */
|
|
|
|
#define mk_pte_phys(physpage, pgprot) \
|
|
|
|
({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
|
|
|
|
|
|
|
|
#define pte_modify(_pte, newprot) \
|
|
|
|
(__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
|
|
|
|
|
|
|
|
#define pte_none(pte) (!pte_val(pte))
|
|
|
|
#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
|
|
|
|
#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL)
|
|
|
|
/* pte_page() returns the "struct page *" corresponding to the PTE: */
|
|
|
|
#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
|
|
|
|
|
|
|
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
|
|
|
#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd)))
|
|
|
|
#define pmd_present(pmd) (pmd_val(pmd) != 0UL)
|
|
|
|
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
|
|
|
|
#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
|
|
|
|
#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
|
|
|
|
|
|
|
|
#define pud_none(pud) (!pud_val(pud))
|
|
|
|
#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud)))
|
|
|
|
#define pud_present(pud) (pud_val(pud) != 0UL)
|
|
|
|
#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
|
|
|
|
#define pud_page(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK))
|
|
|
|
|
|
|
|
#ifdef CONFIG_PGTABLE_4
|
|
|
|
#define pgd_none(pgd) (!pgd_val(pgd))
|
|
|
|
#define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd)))
|
|
|
|
#define pgd_present(pgd) (pgd_val(pgd) != 0UL)
|
|
|
|
#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
|
|
|
|
#define pgd_page(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The following have defined behavior only work if pte_present() is true.
|
|
|
|
*/
|
|
|
|
#define pte_user(pte) ((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3)
|
|
|
|
#define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6)
|
|
|
|
#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
|
|
|
|
#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0)
|
|
|
|
#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0)
|
|
|
|
#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0)
|
|
|
|
#define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0)
|
|
|
|
/*
|
|
|
|
* Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
|
|
|
|
* access rights:
|
|
|
|
*/
|
|
|
|
#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
|
|
|
|
#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
|
|
|
|
#define pte_mkexec(pte) (__pte(pte_val(pte) | _PAGE_AR_RX))
|
|
|
|
#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
|
|
|
|
#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
|
|
|
|
#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
|
|
|
|
#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
|
|
|
|
#define pte_mkhuge(pte) (__pte(pte_val(pte)))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macro to a page protection value as "uncacheable". Note that "protection" is really a
|
|
|
|
* misnomer here as the protection value contains the memory attribute bits, dirty bits,
|
|
|
|
* and various other bits as well.
|
|
|
|
*/
|
|
|
|
#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macro to make mark a page protection value as "write-combining".
|
|
|
|
* Note that "protection" is really a misnomer here as the protection
|
|
|
|
* value contains the memory attribute bits, dirty bits, and various
|
|
|
|
* other bits as well. Accesses through a write-combining translation
|
|
|
|
* works bypasses the caches, but does allow for consecutive writes to
|
|
|
|
* be combined into single (but larger) write transactions.
|
|
|
|
*/
|
|
|
|
#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
|
|
|
|
|
|
|
|
static inline unsigned long
|
|
|
|
pgd_index (unsigned long address)
|
|
|
|
{
|
|
|
|
unsigned long region = address >> 61;
|
|
|
|
unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
|
|
|
|
|
|
|
|
return (region << (PAGE_SHIFT - 6)) | l1index;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The offset in the 1-level directory is given by the 3 region bits
|
|
|
|
(61..63) and the level-1 bits. */
|
|
|
|
static inline pgd_t*
|
|
|
|
pgd_offset (struct mm_struct *mm, unsigned long address)
|
|
|
|
{
|
|
|
|
return mm->pgd + pgd_index(address);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* In the kernel's mapped region we completely ignore the region number
|
|
|
|
(since we know it's in region number 5). */
|
|
|
|
#define pgd_offset_k(addr) \
|
|
|
|
(init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
|
|
|
|
|
|
|
|
/* Look up a pgd entry in the gate area. On IA-64, the gate-area
|
|
|
|
resides in the kernel-mapped segment, hence we use pgd_offset_k()
|
|
|
|
here. */
|
|
|
|
#define pgd_offset_gate(mm, addr) pgd_offset_k(addr)
|
|
|
|
|
|
|
|
#ifdef CONFIG_PGTABLE_4
|
|
|
|
/* Find an entry in the second-level page table.. */
|
|
|
|
#define pud_offset(dir,addr) \
|
|
|
|
((pud_t *) pgd_page(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Find an entry in the third-level page table.. */
|
|
|
|
#define pmd_offset(dir,addr) \
|
|
|
|
((pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find an entry in the third-level page table. This looks more complicated than it
|
|
|
|
* should be because some platforms place page tables in high memory.
|
|
|
|
*/
|
|
|
|
#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
|
|
|
#define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
|
|
|
|
#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
|
|
|
|
#define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr)
|
|
|
|
#define pte_unmap(pte) do { } while (0)
|
|
|
|
#define pte_unmap_nested(pte) do { } while (0)
|
|
|
|
|
|
|
|
/* atomic versions of the some PTE manipulations: */
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
if (!pte_young(*ptep))
|
|
|
|
return 0;
|
|
|
|
return test_and_clear_bit(_PAGE_A_BIT, ptep);
|
|
|
|
#else
|
|
|
|
pte_t pte = *ptep;
|
|
|
|
if (!pte_young(pte))
|
|
|
|
return 0;
|
|
|
|
set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
|
|
|
|
return 1;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
if (!pte_dirty(*ptep))
|
|
|
|
return 0;
|
|
|
|
return test_and_clear_bit(_PAGE_D_BIT, ptep);
|
|
|
|
#else
|
|
|
|
pte_t pte = *ptep;
|
|
|
|
if (!pte_dirty(pte))
|
|
|
|
return 0;
|
|
|
|
set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte));
|
|
|
|
return 1;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline pte_t
|
|
|
|
ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
return __pte(xchg((long *) ptep, 0));
|
|
|
|
#else
|
|
|
|
pte_t pte = *ptep;
|
|
|
|
pte_clear(mm, addr, ptep);
|
|
|
|
return pte;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
unsigned long new, old;
|
|
|
|
|
|
|
|
do {
|
|
|
|
old = pte_val(*ptep);
|
|
|
|
new = pte_val(pte_wrprotect(__pte (old)));
|
|
|
|
} while (cmpxchg((unsigned long *) ptep, old, new) != old);
|
|
|
|
#else
|
|
|
|
pte_t old_pte = *ptep;
|
|
|
|
set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
pte_same (pte_t a, pte_t b)
|
|
|
|
{
|
|
|
|
return pte_val(a) == pte_val(b);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define update_mmu_cache(vma, address, pte) do { } while (0)
|
|
|
|
|
|
|
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
|
|
|
extern void paging_init (void);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
|
|
|
|
* bits in the swap-type field of the swap pte. It would be nice to
|
|
|
|
* enforce that, but we can't easily include <linux/swap.h> here.
|
|
|
|
* (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
|
|
|
|
*
|
|
|
|
* Format of swap pte:
|
|
|
|
* bit 0 : present bit (must be zero)
|
|
|
|
* bit 1 : _PAGE_FILE (must be zero)
|
|
|
|
* bits 2- 8: swap-type
|
|
|
|
* bits 9-62: swap offset
|
|
|
|
* bit 63 : _PAGE_PROTNONE bit
|
|
|
|
*
|
|
|
|
* Format of file pte:
|
|
|
|
* bit 0 : present bit (must be zero)
|
|
|
|
* bit 1 : _PAGE_FILE (must be one)
|
|
|
|
* bits 2-62: file_offset/PAGE_SIZE
|
|
|
|
* bit 63 : _PAGE_PROTNONE bit
|
|
|
|
*/
|
|
|
|
#define __swp_type(entry) (((entry).val >> 2) & 0x7f)
|
|
|
|
#define __swp_offset(entry) (((entry).val << 1) >> 10)
|
|
|
|
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) })
|
|
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
|
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
|
|
|
|
|
|
|
|
#define PTE_FILE_MAX_BITS 61
|
|
|
|
#define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3)
|
|
|
|
#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE })
|
|
|
|
|
|
|
|
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
|
|
|
|
remap_pfn_range(vma, vaddr, pfn, size, prot)
|
|
|
|
|
|
|
|
#define MK_IOSPACE_PFN(space, pfn) (pfn)
|
|
|
|
#define GET_IOSPACE(pfn) 0
|
|
|
|
#define GET_PFN(pfn) (pfn)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ZERO_PAGE is a global shared page that is always zero: used
|
|
|
|
* for zero-mapped memory areas etc..
|
|
|
|
*/
|
|
|
|
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
|
|
|
|
extern struct page *zero_page_memmap_ptr;
|
|
|
|
#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
|
|
|
|
|
|
|
|
/* We provide our own get_unmapped_area to cope with VA holes for userland */
|
|
|
|
#define HAVE_ARCH_UNMAPPED_AREA
|
|
|
|
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
|
|
#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
|
|
|
|
#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
|
|
|
|
#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* IA-64 doesn't have any external MMU info: the page tables contain all the necessary
|
|
|
|
* information. However, we use this routine to take care of any (delayed) i-cache
|
|
|
|
* flushing that may be necessary.
|
|
|
|
*/
|
|
|
|
extern void lazy_mmu_prot_update (pte_t pte);
|
|
|
|
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
|
|
/*
|
|
|
|
* Update PTEP with ENTRY, which is guaranteed to be a less
|
|
|
|
* restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and
|
|
|
|
* WRITABLE bits turned on, when the value at PTEP did not. The
|
|
|
|
* WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
|
|
|
|
*
|
|
|
|
* SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
|
|
|
|
* having to worry about races. On SMP machines, there are only two
|
|
|
|
* cases where this is true:
|
|
|
|
*
|
|
|
|
* (1) *PTEP has the PRESENT bit turned OFF
|
|
|
|
* (2) ENTRY has the DIRTY bit turned ON
|
|
|
|
*
|
|
|
|
* On ia64, we could implement this routine with a cmpxchg()-loop
|
|
|
|
* which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
|
|
|
|
* However, like on x86, we can get a more streamlined version by
|
|
|
|
* observing that it is OK to drop ACCESSED bit updates when
|
|
|
|
* SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is
|
|
|
|
* result in an extra Access-bit fault, which would then turn on the
|
|
|
|
* ACCESSED bit in the low-level fault handler (iaccess_bit or
|
|
|
|
* daccess_bit in ivt.S).
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
|
|
|
|
do { \
|
|
|
|
if (__safely_writable) { \
|
|
|
|
set_pte(__ptep, __entry); \
|
|
|
|
flush_tlb_page(__vma, __addr); \
|
|
|
|
} \
|
|
|
|
} while (0)
|
|
|
|
#else
|
|
|
|
# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
|
|
|
|
ptep_establish(__vma, __addr, __ptep, __entry)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
# ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
|
|
/* arch mem_map init routine is needed due to holes in a virtual mem_map */
|
|
|
|
# define __HAVE_ARCH_MEMMAP_INIT
|
|
|
|
extern void memmap_init (unsigned long size, int nid, unsigned long zone,
|
|
|
|
unsigned long start_pfn);
|
|
|
|
# endif /* CONFIG_VIRTUAL_MEM_MAP */
|
|
|
|
# endif /* !__ASSEMBLY__ */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Identity-mapped regions use a large page size. We'll call such large pages
|
|
|
|
* "granules". If you can think of a better name that's unambiguous, let me
|
|
|
|
* know...
|
|
|
|
*/
|
|
|
|
#if defined(CONFIG_IA64_GRANULE_64MB)
|
|
|
|
# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M
|
|
|
|
#elif defined(CONFIG_IA64_GRANULE_16MB)
|
|
|
|
# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M
|
|
|
|
#endif
|
|
|
|
#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT)
|
|
|
|
/*
|
|
|
|
* log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
|
|
|
|
*/
|
|
|
|
#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M
|
|
|
|
#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No page table caches to initialise
|
|
|
|
*/
|
|
|
|
#define pgtable_cache_init() do { } while (0)
|
|
|
|
|
|
|
|
/* These tell get_user_pages() that the first gate page is accessible from user-level. */
|
|
|
|
#define FIXADDR_USER_START GATE_ADDR
|
|
|
|
#ifdef HAVE_BUGGY_SEGREL
|
|
|
|
# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE)
|
|
|
|
#else
|
|
|
|
# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
|
|
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
|
|
#define __HAVE_ARCH_PTE_SAME
|
|
|
|
#define __HAVE_ARCH_PGD_OFFSET_GATE
|
|
|
|
#define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE
|
|
|
|
|
|
|
|
#ifndef CONFIG_PGTABLE_4
|
|
|
|
#include <asm-generic/pgtable-nopud.h>
|
|
|
|
#endif
|
|
|
|
#include <asm-generic/pgtable.h>
|
|
|
|
|
|
|
|
#endif /* _ASM_IA64_PGTABLE_H */
|