You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/ieee1394/csr1212.c

1634 lines
42 KiB

/*
* csr1212.c -- IEEE 1212 Control and Status Register support for Linux
*
* Copyright (C) 2003 Francois Retief <fgretief@sun.ac.za>
* Steve Kinneberg <kinnebergsteve@acmsystems.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* TODO List:
* - Verify interface consistency: i.e., public functions that take a size
* parameter expect size to be in bytes.
* - Convenience functions for reading a block of data from a given offset.
*/
#ifndef __KERNEL__
#include <string.h>
#endif
#include "csr1212.h"
/* Permitted key type for each key id */
#define __I (1 << CSR1212_KV_TYPE_IMMEDIATE)
#define __C (1 << CSR1212_KV_TYPE_CSR_OFFSET)
#define __D (1 << CSR1212_KV_TYPE_DIRECTORY)
#define __L (1 << CSR1212_KV_TYPE_LEAF)
static const u_int8_t csr1212_key_id_type_map[0x30] = {
__C, /* used by Apple iSight */
__D | __L, /* Descriptor */
__I | __D | __L, /* Bus_Dependent_Info */
__I | __D | __L, /* Vendor */
__I, /* Hardware_Version */
0, 0, /* Reserved */
__D | __L | __I, /* Module */
__I, 0, 0, 0, /* used by Apple iSight, Reserved */
__I, /* Node_Capabilities */
__L, /* EUI_64 */
0, 0, 0, /* Reserved */
__D, /* Unit */
__I, /* Specifier_ID */
__I, /* Version */
__I | __C | __D | __L, /* Dependent_Info */
__L, /* Unit_Location */
0, /* Reserved */
__I, /* Model */
__D, /* Instance */
__L, /* Keyword */
__D, /* Feature */
__L, /* Extended_ROM */
__I, /* Extended_Key_Specifier_ID */
__I, /* Extended_Key */
__I | __C | __D | __L, /* Extended_Data */
__L, /* Modifiable_Descriptor */
__I, /* Directory_ID */
__I, /* Revision */
};
#undef __I
#undef __C
#undef __D
#undef __L
#define quads_to_bytes(_q) ((_q) * sizeof(u_int32_t))
#define bytes_to_quads(_b) (((_b) + sizeof(u_int32_t) - 1) / sizeof(u_int32_t))
static inline void free_keyval(struct csr1212_keyval *kv)
{
if ((kv->key.type == CSR1212_KV_TYPE_LEAF) &&
(kv->key.id != CSR1212_KV_ID_EXTENDED_ROM))
CSR1212_FREE(kv->value.leaf.data);
CSR1212_FREE(kv);
}
static u_int16_t csr1212_crc16(const u_int32_t *buffer, size_t length)
{
int shift;
u_int32_t data;
u_int16_t sum, crc = 0;
for (; length; length--) {
data = CSR1212_BE32_TO_CPU(*buffer);
buffer++;
for (shift = 28; shift >= 0; shift -= 4 ) {
sum = ((crc >> 12) ^ (data >> shift)) & 0xf;
crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ (sum);
}
crc &= 0xffff;
}
return CSR1212_CPU_TO_BE16(crc);
}
#if 0
/* Microsoft computes the CRC with the bytes in reverse order. Therefore we
* have a special version of the CRC algorithm to account for their buggy
* software. */
static u_int16_t csr1212_msft_crc16(const u_int32_t *buffer, size_t length)
{
int shift;
u_int32_t data;
u_int16_t sum, crc = 0;
for (; length; length--) {
data = CSR1212_LE32_TO_CPU(*buffer);
buffer++;
for (shift = 28; shift >= 0; shift -= 4 ) {
sum = ((crc >> 12) ^ (data >> shift)) & 0xf;
crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ (sum);
}
crc &= 0xffff;
}
return CSR1212_CPU_TO_BE16(crc);
}
#endif
static inline struct csr1212_dentry *csr1212_find_keyval(struct csr1212_keyval *dir,
struct csr1212_keyval *kv)
{
struct csr1212_dentry *pos;
for (pos = dir->value.directory.dentries_head;
pos != NULL; pos = pos->next) {
if (pos->kv == kv)
return pos;
}
return NULL;
}
static inline struct csr1212_keyval *csr1212_find_keyval_offset(struct csr1212_keyval *kv_list,
u_int32_t offset)
{
struct csr1212_keyval *kv;
for (kv = kv_list->next; kv && (kv != kv_list); kv = kv->next) {
if (kv->offset == offset)
return kv;
}
return NULL;
}
/* Creation Routines */
struct csr1212_csr *csr1212_create_csr(struct csr1212_bus_ops *ops,
size_t bus_info_size, void *private)
{
struct csr1212_csr *csr;
csr = CSR1212_MALLOC(sizeof(*csr));
if (!csr)
return NULL;
csr->cache_head =
csr1212_rom_cache_malloc(CSR1212_CONFIG_ROM_SPACE_OFFSET,
CSR1212_CONFIG_ROM_SPACE_SIZE);
if (!csr->cache_head) {
CSR1212_FREE(csr);
return NULL;
}
/* The keyval key id is not used for the root node, but a valid key id
* that can be used for a directory needs to be passed to
* csr1212_new_directory(). */
csr->root_kv = csr1212_new_directory(CSR1212_KV_ID_VENDOR);
if (!csr->root_kv) {
CSR1212_FREE(csr->cache_head);
CSR1212_FREE(csr);
return NULL;
}
csr->bus_info_data = csr->cache_head->data;
csr->bus_info_len = bus_info_size;
csr->crc_len = bus_info_size;
csr->ops = ops;
csr->private = private;
csr->cache_tail = csr->cache_head;
return csr;
}
void csr1212_init_local_csr(struct csr1212_csr *csr,
const u_int32_t *bus_info_data, int max_rom)
{
static const int mr_map[] = { 4, 64, 1024, 0 };
#ifdef __KERNEL__
BUG_ON(max_rom & ~0x3);
csr->max_rom = mr_map[max_rom];
#else
if (max_rom & ~0x3) /* caller supplied invalid argument */
csr->max_rom = 0;
else
csr->max_rom = mr_map[max_rom];
#endif
memcpy(csr->bus_info_data, bus_info_data, csr->bus_info_len);
}
static struct csr1212_keyval *csr1212_new_keyval(u_int8_t type, u_int8_t key)
{
struct csr1212_keyval *kv;
if (key < 0x30 && ((csr1212_key_id_type_map[key] & (1 << type)) == 0))
return NULL;
kv = CSR1212_MALLOC(sizeof(*kv));
if (!kv)
return NULL;
kv->key.type = type;
kv->key.id = key;
kv->associate = NULL;
kv->refcnt = 1;
kv->next = NULL;
kv->prev = NULL;
kv->offset = 0;
kv->valid = 0;
return kv;
}
struct csr1212_keyval *csr1212_new_immediate(u_int8_t key, u_int32_t value)
{
struct csr1212_keyval *kv = csr1212_new_keyval(CSR1212_KV_TYPE_IMMEDIATE, key);
if (!kv)
return NULL;
kv->value.immediate = value;
kv->valid = 1;
return kv;
}
struct csr1212_keyval *csr1212_new_leaf(u_int8_t key, const void *data, size_t data_len)
{
struct csr1212_keyval *kv = csr1212_new_keyval(CSR1212_KV_TYPE_LEAF, key);
if (!kv)
return NULL;
if (data_len > 0) {
kv->value.leaf.data = CSR1212_MALLOC(data_len);
if (!kv->value.leaf.data) {
CSR1212_FREE(kv);
return NULL;
}
if (data)
memcpy(kv->value.leaf.data, data, data_len);
} else {
kv->value.leaf.data = NULL;
}
kv->value.leaf.len = bytes_to_quads(data_len);
kv->offset = 0;
kv->valid = 1;
return kv;
}
struct csr1212_keyval *csr1212_new_csr_offset(u_int8_t key, u_int32_t csr_offset)
{
struct csr1212_keyval *kv = csr1212_new_keyval(CSR1212_KV_TYPE_CSR_OFFSET, key);
if (!kv)
return NULL;
kv->value.csr_offset = csr_offset;
kv->offset = 0;
kv->valid = 1;
return kv;
}
struct csr1212_keyval *csr1212_new_directory(u_int8_t key)
{
struct csr1212_keyval *kv = csr1212_new_keyval(CSR1212_KV_TYPE_DIRECTORY, key);
if (!kv)
return NULL;
kv->value.directory.len = 0;
kv->offset = 0;
kv->value.directory.dentries_head = NULL;
kv->value.directory.dentries_tail = NULL;
kv->valid = 1;
return kv;
}
int csr1212_associate_keyval(struct csr1212_keyval *kv,
struct csr1212_keyval *associate)
{
if (!kv || !associate)
return CSR1212_EINVAL;
if (kv->key.id == CSR1212_KV_ID_DESCRIPTOR ||
(associate->key.id != CSR1212_KV_ID_DESCRIPTOR &&
associate->key.id != CSR1212_KV_ID_DEPENDENT_INFO &&
associate->key.id != CSR1212_KV_ID_EXTENDED_KEY &&
associate->key.id != CSR1212_KV_ID_EXTENDED_DATA &&
associate->key.id < 0x30))
return CSR1212_EINVAL;
if (kv->key.id == CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID &&
associate->key.id != CSR1212_KV_ID_EXTENDED_KEY)
return CSR1212_EINVAL;
if (kv->key.id == CSR1212_KV_ID_EXTENDED_KEY &&
associate->key.id != CSR1212_KV_ID_EXTENDED_DATA)
return CSR1212_EINVAL;
if (associate->key.id == CSR1212_KV_ID_EXTENDED_KEY &&
kv->key.id != CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID)
return CSR1212_EINVAL;
if (associate->key.id == CSR1212_KV_ID_EXTENDED_DATA &&
kv->key.id != CSR1212_KV_ID_EXTENDED_KEY)
return CSR1212_EINVAL;
if (kv->associate)
csr1212_release_keyval(kv->associate);
associate->refcnt++;
kv->associate = associate;
return CSR1212_SUCCESS;
}
int csr1212_attach_keyval_to_directory(struct csr1212_keyval *dir,
struct csr1212_keyval *kv)
{
struct csr1212_dentry *dentry;
if (!kv || !dir || dir->key.type != CSR1212_KV_TYPE_DIRECTORY)
return CSR1212_EINVAL;
dentry = CSR1212_MALLOC(sizeof(*dentry));
if (!dentry)
return CSR1212_ENOMEM;
dentry->kv = kv;
kv->refcnt++;
dentry->next = NULL;
dentry->prev = dir->value.directory.dentries_tail;
if (!dir->value.directory.dentries_head)
dir->value.directory.dentries_head = dentry;
if (dir->value.directory.dentries_tail)
dir->value.directory.dentries_tail->next = dentry;
dir->value.directory.dentries_tail = dentry;
return CSR1212_SUCCESS;
}
struct csr1212_keyval *csr1212_new_extended_immediate(u_int32_t spec, u_int32_t key,
u_int32_t value)
{
struct csr1212_keyval *kvs, *kvk, *kvv;
kvs = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID, spec);
kvk = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_KEY, key);
kvv = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_DATA, value);
if (!kvs || !kvk || !kvv) {
if (kvs)
free_keyval(kvs);
if (kvk)
free_keyval(kvk);
if (kvv)
free_keyval(kvv);
return NULL;
}
/* Don't keep a local reference to the extended key or value. */
kvk->refcnt = 0;
kvv->refcnt = 0;
csr1212_associate_keyval(kvk, kvv);
csr1212_associate_keyval(kvs, kvk);
return kvs;
}
struct csr1212_keyval *csr1212_new_extended_leaf(u_int32_t spec, u_int32_t key,
const void *data, size_t data_len)
{
struct csr1212_keyval *kvs, *kvk, *kvv;
kvs = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID, spec);
kvk = csr1212_new_immediate(CSR1212_KV_ID_EXTENDED_KEY, key);
kvv = csr1212_new_leaf(CSR1212_KV_ID_EXTENDED_DATA, data, data_len);
if (!kvs || !kvk || !kvv) {
if (kvs)
free_keyval(kvs);
if (kvk)
free_keyval(kvk);
if (kvv)
free_keyval(kvv);
return NULL;
}
/* Don't keep a local reference to the extended key or value. */
kvk->refcnt = 0;
kvv->refcnt = 0;
csr1212_associate_keyval(kvk, kvv);
csr1212_associate_keyval(kvs, kvk);
return kvs;
}
struct csr1212_keyval *csr1212_new_descriptor_leaf(u_int8_t dtype, u_int32_t specifier_id,
const void *data, size_t data_len)
{
struct csr1212_keyval *kv;
kv = csr1212_new_leaf(CSR1212_KV_ID_DESCRIPTOR, NULL,
data_len + CSR1212_DESCRIPTOR_LEAF_OVERHEAD);
if (!kv)
return NULL;
CSR1212_DESCRIPTOR_LEAF_SET_TYPE(kv, dtype);
CSR1212_DESCRIPTOR_LEAF_SET_SPECIFIER_ID(kv, specifier_id);
if (data) {
memcpy(CSR1212_DESCRIPTOR_LEAF_DATA(kv), data, data_len);
}
return kv;
}
struct csr1212_keyval *csr1212_new_textual_descriptor_leaf(u_int8_t cwidth,
u_int16_t cset,
u_int16_t language,
const void *data,
size_t data_len)
{
struct csr1212_keyval *kv;
char *lstr;
kv = csr1212_new_descriptor_leaf(0, 0, NULL, data_len +
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_OVERHEAD);
if (!kv)
return NULL;
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_SET_WIDTH(kv, cwidth);
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_SET_CHAR_SET(kv, cset);
CSR1212_TEXTUAL_DESCRIPTOR_LEAF_SET_LANGUAGE(kv, language);
lstr = (char*)CSR1212_TEXTUAL_DESCRIPTOR_LEAF_DATA(kv);
/* make sure last quadlet is zeroed out */
*((u_int32_t*)&(lstr[(data_len - 1) & ~0x3])) = 0;
/* don't copy the NUL terminator */
memcpy(lstr, data, data_len);
return kv;
}
static int csr1212_check_minimal_ascii(const char *s)
{
static const char minimal_ascii_table[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07,
0x00, 0x00, 0x0a, 0x00, 0x0C, 0x0D, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x20, 0x21, 0x22, 0x00, 0x00, 0x25, 0x26, 0x27,
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
0x58, 0x59, 0x5a, 0x00, 0x00, 0x00, 0x00, 0x5f,
0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
0x78, 0x79, 0x7a, 0x00, 0x00, 0x00, 0x00, 0x00,
};
for (; *s; s++) {
if (minimal_ascii_table[*s & 0x7F] != *s)
return -1; /* failed */
}
/* String conforms to minimal-ascii, as specified by IEEE 1212,
* par. 7.4 */
return 0;
}
struct csr1212_keyval *csr1212_new_string_descriptor_leaf(const char *s)
{
/* Check if string conform to minimal_ascii format */
if (csr1212_check_minimal_ascii(s))
return NULL;
/* IEEE 1212, par. 7.5.4.1 Textual descriptors (minimal ASCII) */
return csr1212_new_textual_descriptor_leaf(0, 0, 0, s, strlen(s));
}
struct csr1212_keyval *csr1212_new_icon_descriptor_leaf(u_int32_t version,
u_int8_t palette_depth,
u_int8_t color_space,
u_int16_t language,
u_int16_t hscan,
u_int16_t vscan,
u_int32_t *palette,
u_int32_t *pixels)
{
static const int pd[4] = { 0, 4, 16, 256 };
static const int cs[16] = { 4, 2 };
struct csr1212_keyval *kv;
int palette_size;
int pixel_size = (hscan * vscan + 3) & ~0x3;
if (!pixels || (!palette && palette_depth) ||
(palette_depth & ~0x3) || (color_space & ~0xf))
return NULL;
palette_size = pd[palette_depth] * cs[color_space];
kv = csr1212_new_descriptor_leaf(1, 0, NULL,
palette_size + pixel_size +
CSR1212_ICON_DESCRIPTOR_LEAF_OVERHEAD);
if (!kv)
return NULL;
CSR1212_ICON_DESCRIPTOR_LEAF_SET_VERSION(kv, version);
CSR1212_ICON_DESCRIPTOR_LEAF_SET_PALETTE_DEPTH(kv, palette_depth);
CSR1212_ICON_DESCRIPTOR_LEAF_SET_COLOR_SPACE(kv, color_space);
CSR1212_ICON_DESCRIPTOR_LEAF_SET_LANGUAGE(kv, language);
CSR1212_ICON_DESCRIPTOR_LEAF_SET_HSCAN(kv, hscan);
CSR1212_ICON_DESCRIPTOR_LEAF_SET_VSCAN(kv, vscan);
if (palette_size)
memcpy(CSR1212_ICON_DESCRIPTOR_LEAF_PALETTE(kv), palette,
palette_size);
memcpy(CSR1212_ICON_DESCRIPTOR_LEAF_PIXELS(kv), pixels, pixel_size);
return kv;
}
struct csr1212_keyval *csr1212_new_modifiable_descriptor_leaf(u_int16_t max_size,
u_int64_t address)
{
struct csr1212_keyval *kv;
/* IEEE 1212, par. 7.5.4.3 Modifiable descriptors */
kv = csr1212_new_leaf(CSR1212_KV_ID_MODIFIABLE_DESCRIPTOR, NULL, sizeof(u_int64_t));
if(!kv)
return NULL;
CSR1212_MODIFIABLE_DESCRIPTOR_SET_MAX_SIZE(kv, max_size);
CSR1212_MODIFIABLE_DESCRIPTOR_SET_ADDRESS_HI(kv, address);
CSR1212_MODIFIABLE_DESCRIPTOR_SET_ADDRESS_LO(kv, address);
return kv;
}
static int csr1212_check_keyword(const char *s)
{
for (; *s; s++) {
if (('A' <= *s) && (*s <= 'Z'))
continue;
if (('0' <= *s) && (*s <= '9'))
continue;
if (*s == '-')
continue;
return -1; /* failed */
}
/* String conforms to keyword, as specified by IEEE 1212,
* par. 7.6.5 */
return CSR1212_SUCCESS;
}
struct csr1212_keyval *csr1212_new_keyword_leaf(int strc, const char *strv[])
{
struct csr1212_keyval *kv;
char *buffer;
int i, data_len = 0;
/* Check all keywords to see if they conform to restrictions:
* Only the following characters is allowed ['A'..'Z','0'..'9','-']
* Each word is zero-terminated.
* Also calculate the total length of the keywords.
*/
for (i = 0; i < strc; i++) {
if (!strv[i] || csr1212_check_keyword(strv[i])) {
return NULL;
}
data_len += strlen(strv[i]) + 1; /* Add zero-termination char. */
}
/* IEEE 1212, par. 7.6.5 Keyword leaves */
kv = csr1212_new_leaf(CSR1212_KV_ID_KEYWORD, NULL, data_len);
if (!kv)
return NULL;
buffer = (char *)kv->value.leaf.data;
/* make sure last quadlet is zeroed out */
*((u_int32_t*)&(buffer[(data_len - 1) & ~0x3])) = 0;
/* Copy keyword(s) into leaf data buffer */
for (i = 0; i < strc; i++) {
int len = strlen(strv[i]) + 1;
memcpy(buffer, strv[i], len);
buffer += len;
}
return kv;
}
/* Destruction Routines */
void csr1212_detach_keyval_from_directory(struct csr1212_keyval *dir,
struct csr1212_keyval *kv)
{
struct csr1212_dentry *dentry;
if (!kv || !dir || dir->key.type != CSR1212_KV_TYPE_DIRECTORY)
return;
dentry = csr1212_find_keyval(dir, kv);
if (!dentry)
return;
if (dentry->prev)
dentry->prev->next = dentry->next;
if (dentry->next)
dentry->next->prev = dentry->prev;
if (dir->value.directory.dentries_head == dentry)
dir->value.directory.dentries_head = dentry->next;
if (dir->value.directory.dentries_tail == dentry)
dir->value.directory.dentries_tail = dentry->prev;
CSR1212_FREE(dentry);
csr1212_release_keyval(kv);
}
void csr1212_disassociate_keyval(struct csr1212_keyval *kv)
{
if (kv->associate) {
csr1212_release_keyval(kv->associate);
}
kv->associate = NULL;
}
/* This function is used to free the memory taken by a keyval. If the given
* keyval is a directory type, then any keyvals contained in that directory
* will be destroyed as well if their respective refcnts are 0. By means of
* list manipulation, this routine will descend a directory structure in a
* non-recursive manner. */
void _csr1212_destroy_keyval(struct csr1212_keyval *kv)
{
struct csr1212_keyval *k, *a;
struct csr1212_dentry dentry;
struct csr1212_dentry *head, *tail;
dentry.kv = kv;
dentry.next = NULL;
dentry.prev = NULL;
head = &dentry;
tail = head;
while (head) {
k = head->kv;
while (k) {
k->refcnt--;
if (k->refcnt > 0)
break;
a = k->associate;
if (k->key.type == CSR1212_KV_TYPE_DIRECTORY) {
/* If the current entry is a directory, then move all
* the entries to the destruction list. */
if (k->value.directory.dentries_head) {
tail->next = k->value.directory.dentries_head;
k->value.directory.dentries_head->prev = tail;
tail = k->value.directory.dentries_tail;
}
}
free_keyval(k);
k = a;
}
head = head->next;
if (head) {
if (head->prev && head->prev != &dentry) {
CSR1212_FREE(head->prev);
}
head->prev = NULL;
} else if (tail != &dentry)
CSR1212_FREE(tail);
}
}
void csr1212_destroy_csr(struct csr1212_csr *csr)
{
struct csr1212_csr_rom_cache *c, *oc;
struct csr1212_cache_region *cr, *ocr;
csr1212_release_keyval(csr->root_kv);
c = csr->cache_head;
while (c) {
oc = c;
cr = c->filled_head;
while (cr) {
ocr = cr;
cr = cr->next;
CSR1212_FREE(ocr);
}
c = c->next;
CSR1212_FREE(oc);
}
CSR1212_FREE(csr);
}
/* CSR Image Creation */
static int csr1212_append_new_cache(struct csr1212_csr *csr, size_t romsize)
{
struct csr1212_csr_rom_cache *cache;
u_int64_t csr_addr;
if (!csr || !csr->ops || !csr->ops->allocate_addr_range ||
!csr->ops->release_addr || csr->max_rom < 1)
return CSR1212_EINVAL;
/* ROM size must be a multiple of csr->max_rom */
romsize = (romsize + (csr->max_rom - 1)) & ~(csr->max_rom - 1);
csr_addr = csr->ops->allocate_addr_range(romsize, csr->max_rom, csr->private);
if (csr_addr == CSR1212_INVALID_ADDR_SPACE) {
return CSR1212_ENOMEM;
}
if (csr_addr < CSR1212_REGISTER_SPACE_BASE) {
/* Invalid address returned from allocate_addr_range(). */
csr->ops->release_addr(csr_addr, csr->private);
return CSR1212_ENOMEM;
}
cache = csr1212_rom_cache_malloc(csr_addr - CSR1212_REGISTER_SPACE_BASE, romsize);
if (!cache) {
csr->ops->release_addr(csr_addr, csr->private);
return CSR1212_ENOMEM;
}
cache->ext_rom = csr1212_new_keyval(CSR1212_KV_TYPE_LEAF, CSR1212_KV_ID_EXTENDED_ROM);
if (!cache->ext_rom) {
csr->ops->release_addr(csr_addr, csr->private);
CSR1212_FREE(cache);
return CSR1212_ENOMEM;
}
if (csr1212_attach_keyval_to_directory(csr->root_kv, cache->ext_rom) != CSR1212_SUCCESS) {
csr1212_release_keyval(cache->ext_rom);
csr->ops->release_addr(csr_addr, csr->private);
CSR1212_FREE(cache);
return CSR1212_ENOMEM;
}
cache->ext_rom->offset = csr_addr - CSR1212_REGISTER_SPACE_BASE;
cache->ext_rom->value.leaf.len = -1;
cache->ext_rom->value.leaf.data = cache->data;
/* Add cache to tail of cache list */
cache->prev = csr->cache_tail;
csr->cache_tail->next = cache;
csr->cache_tail = cache;
return CSR1212_SUCCESS;
}
static inline void csr1212_remove_cache(struct csr1212_csr *csr,
struct csr1212_csr_rom_cache *cache)
{
if (csr->cache_head == cache)
csr->cache_head = cache->next;
if (csr->cache_tail == cache)
csr->cache_tail = cache->prev;
if (cache->prev)
cache->prev->next = cache->next;
if (cache->next)
cache->next->prev = cache->prev;
if (cache->ext_rom) {
csr1212_detach_keyval_from_directory(csr->root_kv, cache->ext_rom);
csr1212_release_keyval(cache->ext_rom);
}
CSR1212_FREE(cache);
}
static int csr1212_generate_layout_subdir(struct csr1212_keyval *dir,
struct csr1212_keyval **layout_tail)
{
struct csr1212_dentry *dentry;
struct csr1212_keyval *dkv;
struct csr1212_keyval *last_extkey_spec = NULL;
struct csr1212_keyval *last_extkey = NULL;
int num_entries = 0;
for (dentry = dir->value.directory.dentries_head; dentry;
dentry = dentry->next) {
for (dkv = dentry->kv; dkv; dkv = dkv->associate) {
/* Special Case: Extended Key Specifier_ID */
if (dkv->key.id == CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID) {
if (last_extkey_spec == NULL) {
last_extkey_spec = dkv;
} else if (dkv->value.immediate != last_extkey_spec->value.immediate) {
last_extkey_spec = dkv;
} else {
continue;
}
/* Special Case: Extended Key */
} else if (dkv->key.id == CSR1212_KV_ID_EXTENDED_KEY) {
if (last_extkey == NULL) {
last_extkey = dkv;
} else if (dkv->value.immediate != last_extkey->value.immediate) {
last_extkey = dkv;
} else {
continue;
}
}
num_entries += 1;
switch(dkv->key.type) {
default:
case CSR1212_KV_TYPE_IMMEDIATE:
case CSR1212_KV_TYPE_CSR_OFFSET:
break;
case CSR1212_KV_TYPE_LEAF:
case CSR1212_KV_TYPE_DIRECTORY:
/* Remove from list */
if (dkv->prev && (dkv->prev->next == dkv))
dkv->prev->next = dkv->next;
if (dkv->next && (dkv->next->prev == dkv))
dkv->next->prev = dkv->prev;
//if (dkv == *layout_tail)
// *layout_tail = dkv->prev;
/* Special case: Extended ROM leafs */
if (dkv->key.id == CSR1212_KV_ID_EXTENDED_ROM) {
dkv->value.leaf.len = -1;
/* Don't add Extended ROM leafs in the layout list,
* they are handled differently. */
break;
}
/* Add to tail of list */
dkv->next = NULL;
dkv->prev = *layout_tail;
(*layout_tail)->next = dkv;
*layout_tail = dkv;
break;
}
}
}
return num_entries;
}
size_t csr1212_generate_layout_order(struct csr1212_keyval *kv)
{
struct csr1212_keyval *ltail = kv;
size_t agg_size = 0;
while(kv) {
switch(kv->key.type) {
case CSR1212_KV_TYPE_LEAF:
/* Add 1 quadlet for crc/len field */
agg_size += kv->value.leaf.len + 1;
break;
case CSR1212_KV_TYPE_DIRECTORY:
kv->value.directory.len = csr1212_generate_layout_subdir(kv, &ltail);
/* Add 1 quadlet for crc/len field */
agg_size += kv->value.directory.len + 1;
break;
}
kv = kv->next;
}
return quads_to_bytes(agg_size);
}
struct csr1212_keyval *csr1212_generate_positions(struct csr1212_csr_rom_cache *cache,
struct csr1212_keyval *start_kv,
int start_pos)
{
struct csr1212_keyval *kv = start_kv;
struct csr1212_keyval *okv = start_kv;
int pos = start_pos;
int kv_len = 0, okv_len = 0;
cache->layout_head = kv;
while(kv && pos < cache->size) {
/* Special case: Extended ROM leafs */
if (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM) {
kv->offset = cache->offset + pos;
}
switch(kv->key.type) {
case CSR1212_KV_TYPE_LEAF:
kv_len = kv->value.leaf.len;
break;
case CSR1212_KV_TYPE_DIRECTORY:
kv_len = kv->value.directory.len;
break;
default:
/* Should never get here */
break;
}
pos += quads_to_bytes(kv_len + 1);
if (pos <= cache->size) {
okv = kv;
okv_len = kv_len;
kv = kv->next;
}
}
cache->layout_tail = okv;
cache->len = (okv->offset - cache->offset) + quads_to_bytes(okv_len + 1);
return kv;
}
static void csr1212_generate_tree_subdir(struct csr1212_keyval *dir,
u_int32_t *data_buffer)
{
struct csr1212_dentry *dentry;
struct csr1212_keyval *last_extkey_spec = NULL;
struct csr1212_keyval *last_extkey = NULL;
int index = 0;
for (dentry = dir->value.directory.dentries_head; dentry; dentry = dentry->next) {
struct csr1212_keyval *a;
for (a = dentry->kv; a; a = a->associate) {
u_int32_t value = 0;
/* Special Case: Extended Key Specifier_ID */
if (a->key.id == CSR1212_KV_ID_EXTENDED_KEY_SPECIFIER_ID) {
if (last_extkey_spec == NULL) {
last_extkey_spec = a;
} else if (a->value.immediate != last_extkey_spec->value.immediate) {
last_extkey_spec = a;
} else {
continue;
}
/* Special Case: Extended Key */
} else if (a->key.id == CSR1212_KV_ID_EXTENDED_KEY) {
if (last_extkey == NULL) {
last_extkey = a;
} else if (a->value.immediate != last_extkey->value.immediate) {
last_extkey = a;
} else {
continue;
}
}
switch(a->key.type) {
case CSR1212_KV_TYPE_IMMEDIATE:
value = a->value.immediate;
break;
case CSR1212_KV_TYPE_CSR_OFFSET:
value = a->value.csr_offset;
break;
case CSR1212_KV_TYPE_LEAF:
value = a->offset;
value -= dir->offset + quads_to_bytes(1+index);
value = bytes_to_quads(value);
break;
case CSR1212_KV_TYPE_DIRECTORY:
value = a->offset;
value -= dir->offset + quads_to_bytes(1+index);
value = bytes_to_quads(value);
break;
default:
/* Should never get here */
break; /* GDB breakpoint */
}
value |= (a->key.id & CSR1212_KV_KEY_ID_MASK) << CSR1212_KV_KEY_SHIFT;
value |= (a->key.type & CSR1212_KV_KEY_TYPE_MASK) <<
(CSR1212_KV_KEY_SHIFT + CSR1212_KV_KEY_TYPE_SHIFT);
data_buffer[index] = CSR1212_CPU_TO_BE32(value);
index++;
}
}
}
void csr1212_fill_cache(struct csr1212_csr_rom_cache *cache)
{
struct csr1212_keyval *kv, *nkv;
struct csr1212_keyval_img *kvi;
for (kv = cache->layout_head; kv != cache->layout_tail->next; kv = nkv) {
kvi = (struct csr1212_keyval_img *)
(cache->data + bytes_to_quads(kv->offset - cache->offset));
switch(kv->key.type) {
default:
case CSR1212_KV_TYPE_IMMEDIATE:
case CSR1212_KV_TYPE_CSR_OFFSET:
/* Should never get here */
break; /* GDB breakpoint */
case CSR1212_KV_TYPE_LEAF:
/* Don't copy over Extended ROM areas, they are
* already filled out! */
if (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM)
memcpy(kvi->data, kv->value.leaf.data,
quads_to_bytes(kv->value.leaf.len));
kvi->length = CSR1212_CPU_TO_BE16(kv->value.leaf.len);
kvi->crc = csr1212_crc16(kvi->data, kv->value.leaf.len);
break;
case CSR1212_KV_TYPE_DIRECTORY:
csr1212_generate_tree_subdir(kv, kvi->data);
kvi->length = CSR1212_CPU_TO_BE16(kv->value.directory.len);
kvi->crc = csr1212_crc16(kvi->data, kv->value.directory.len);
break;
}
nkv = kv->next;
if (kv->prev)
kv->prev->next = NULL;
if (kv->next)
kv->next->prev = NULL;
kv->prev = NULL;
kv->next = NULL;
}
}
int csr1212_generate_csr_image(struct csr1212_csr *csr)
{
struct csr1212_bus_info_block_img *bi;
struct csr1212_csr_rom_cache *cache;
struct csr1212_keyval *kv;
size_t agg_size;
int ret;
int init_offset;
if (!csr)
return CSR1212_EINVAL;
cache = csr->cache_head;
bi = (struct csr1212_bus_info_block_img*)cache->data;
bi->length = bytes_to_quads(csr->bus_info_len) - 1;
bi->crc_length = bi->length;
bi->crc = csr1212_crc16(bi->data, bi->crc_length);
csr->root_kv->next = NULL;
csr->root_kv->prev = NULL;
agg_size = csr1212_generate_layout_order(csr->root_kv);
init_offset = csr->bus_info_len;
for (kv = csr->root_kv, cache = csr->cache_head; kv; cache = cache->next) {
if (!cache) {
/* Estimate approximate number of additional cache
* regions needed (it assumes that the cache holding
* the first 1K Config ROM space always exists). */
int est_c = agg_size / (CSR1212_EXTENDED_ROM_SIZE -
(2 * sizeof(u_int32_t))) + 1;
/* Add additional cache regions, extras will be
* removed later */
for (; est_c; est_c--) {
ret = csr1212_append_new_cache(csr, CSR1212_EXTENDED_ROM_SIZE);
if (ret != CSR1212_SUCCESS)
return ret;
}
/* Need to re-layout for additional cache regions */
agg_size = csr1212_generate_layout_order(csr->root_kv);
kv = csr->root_kv;
cache = csr->cache_head;
init_offset = csr->bus_info_len;
}
kv = csr1212_generate_positions(cache, kv, init_offset);
agg_size -= cache->len;
init_offset = sizeof(u_int32_t);
}
/* Remove unused, excess cache regions */
while (cache) {
struct csr1212_csr_rom_cache *oc = cache;
cache = cache->next;
csr1212_remove_cache(csr, oc);
}
/* Go through the list backward so that when done, the correct CRC
* will be calculated for the Extended ROM areas. */
for(cache = csr->cache_tail; cache; cache = cache->prev) {
/* Only Extended ROM caches should have this set. */
if (cache->ext_rom) {
int leaf_size;
/* Make sure the Extended ROM leaf is a multiple of
* max_rom in size. */
if (csr->max_rom < 1)
return CSR1212_EINVAL;
leaf_size = (cache->len + (csr->max_rom - 1)) &
~(csr->max_rom - 1);
/* Zero out the unused ROM region */
memset(cache->data + bytes_to_quads(cache->len), 0x00,
leaf_size - cache->len);
/* Subtract leaf header */
leaf_size -= sizeof(u_int32_t);
/* Update the Extended ROM leaf length */
cache->ext_rom->value.leaf.len =
bytes_to_quads(leaf_size);
} else {
/* Zero out the unused ROM region */
memset(cache->data + bytes_to_quads(cache->len), 0x00,
cache->size - cache->len);
}
/* Copy the data into the cache buffer */
csr1212_fill_cache(cache);
if (cache != csr->cache_head) {
/* Set the length and CRC of the extended ROM. */
struct csr1212_keyval_img *kvi =
(struct csr1212_keyval_img*)cache->data;
kvi->length = CSR1212_CPU_TO_BE16(bytes_to_quads(cache->len) - 1);
kvi->crc = csr1212_crc16(kvi->data,
bytes_to_quads(cache->len) - 1);
}
}
return CSR1212_SUCCESS;
}
int csr1212_read(struct csr1212_csr *csr, u_int32_t offset, void *buffer, u_int32_t len)
{
struct csr1212_csr_rom_cache *cache;
for (cache = csr->cache_head; cache; cache = cache->next) {
if (offset >= cache->offset &&
(offset + len) <= (cache->offset + cache->size)) {
memcpy(buffer,
&cache->data[bytes_to_quads(offset - cache->offset)],
len);
return CSR1212_SUCCESS;
}
}
return CSR1212_ENOENT;
}
/* Parse a chunk of data as a Config ROM */
static int csr1212_parse_bus_info_block(struct csr1212_csr *csr)
{
struct csr1212_bus_info_block_img *bi;
struct csr1212_cache_region *cr;
int i;
int ret;
/* IEEE 1212 says that the entire bus info block should be readable in
* a single transaction regardless of the max_rom value.
* Unfortunately, many IEEE 1394 devices do not abide by that, so the
* bus info block will be read 1 quadlet at a time. The rest of the
* ConfigROM will be read according to the max_rom field. */
for (i = 0; i < csr->bus_info_len; i += sizeof(csr1212_quad_t)) {
ret = csr->ops->bus_read(csr, CSR1212_CONFIG_ROM_SPACE_BASE + i,
sizeof(csr1212_quad_t),
&csr->cache_head->data[bytes_to_quads(i)],
csr->private);
if (ret != CSR1212_SUCCESS)
return ret;
/* check ROM header's info_length */
if (i == 0 &&
CSR1212_BE32_TO_CPU(csr->cache_head->data[0]) >> 24 !=
bytes_to_quads(csr->bus_info_len) - 1)
return CSR1212_EINVAL;
}
bi = (struct csr1212_bus_info_block_img*)csr->cache_head->data;
csr->crc_len = quads_to_bytes(bi->crc_length);
/* IEEE 1212 recommends that crc_len be equal to bus_info_len, but that is not
* always the case, so read the rest of the crc area 1 quadlet at a time. */
for (i = csr->bus_info_len; i <= csr->crc_len; i += sizeof(csr1212_quad_t)) {
ret = csr->ops->bus_read(csr, CSR1212_CONFIG_ROM_SPACE_BASE + i,
sizeof(csr1212_quad_t),
&csr->cache_head->data[bytes_to_quads(i)],
csr->private);
if (ret != CSR1212_SUCCESS)
return ret;
}
#if 0
/* Apparently there are too many differnt wrong implementations of the
* CRC algorithm that verifying them is moot. */
if ((csr1212_crc16(bi->data, bi->crc_length) != bi->crc) &&
(csr1212_msft_crc16(bi->data, bi->crc_length) != bi->crc))
return CSR1212_EINVAL;
#endif
cr = CSR1212_MALLOC(sizeof(*cr));
if (!cr)
return CSR1212_ENOMEM;
cr->next = NULL;
cr->prev = NULL;
cr->offset_start = 0;
cr->offset_end = csr->crc_len + 4;
csr->cache_head->filled_head = cr;
csr->cache_head->filled_tail = cr;
return CSR1212_SUCCESS;
}
static int csr1212_parse_dir_entry(struct csr1212_keyval *dir,
csr1212_quad_t ki,
u_int32_t kv_pos)
{
int ret = CSR1212_SUCCESS;
struct csr1212_keyval *k = NULL;
u_int32_t offset;
switch(CSR1212_KV_KEY_TYPE(ki)) {
case CSR1212_KV_TYPE_IMMEDIATE:
k = csr1212_new_immediate(CSR1212_KV_KEY_ID(ki),
CSR1212_KV_VAL(ki));
if (!k) {
ret = CSR1212_ENOMEM;
goto fail;
}
k->refcnt = 0; /* Don't keep local reference when parsing. */
break;
case CSR1212_KV_TYPE_CSR_OFFSET:
k = csr1212_new_csr_offset(CSR1212_KV_KEY_ID(ki),
CSR1212_KV_VAL(ki));
if (!k) {
ret = CSR1212_ENOMEM;
goto fail;
}
k->refcnt = 0; /* Don't keep local reference when parsing. */
break;
default:
/* Compute the offset from 0xffff f000 0000. */
offset = quads_to_bytes(CSR1212_KV_VAL(ki)) + kv_pos;
if (offset == kv_pos) {
/* Uh-oh. Can't have a relative offset of 0 for Leaves
* or Directories. The Config ROM image is most likely
* messed up, so we'll just abort here. */
ret = CSR1212_EIO;
goto fail;
}
k = csr1212_find_keyval_offset(dir, offset);
if (k)
break; /* Found it. */
if (CSR1212_KV_KEY_TYPE(ki) == CSR1212_KV_TYPE_DIRECTORY) {
k = csr1212_new_directory(CSR1212_KV_KEY_ID(ki));
} else {
k = csr1212_new_leaf(CSR1212_KV_KEY_ID(ki), NULL, 0);
}
if (!k) {
ret = CSR1212_ENOMEM;
goto fail;
}
k->refcnt = 0; /* Don't keep local reference when parsing. */
k->valid = 0; /* Contents not read yet so it's not valid. */
k->offset = offset;
k->prev = dir;
k->next = dir->next;
dir->next->prev = k;
dir->next = k;
}
ret = csr1212_attach_keyval_to_directory(dir, k);
fail:
if (ret != CSR1212_SUCCESS) {
if (k)
free_keyval(k);
}
return ret;
}
int csr1212_parse_keyval(struct csr1212_keyval *kv,
struct csr1212_csr_rom_cache *cache)
{
struct csr1212_keyval_img *kvi;
int i;
int ret = CSR1212_SUCCESS;
int kvi_len;
kvi = (struct csr1212_keyval_img*)&cache->data[bytes_to_quads(kv->offset -
cache->offset)];
kvi_len = CSR1212_BE16_TO_CPU(kvi->length);
#if 0
/* Apparently there are too many differnt wrong implementations of the
* CRC algorithm that verifying them is moot. */
if ((csr1212_crc16(kvi->data, kvi_len) != kvi->crc) &&
(csr1212_msft_crc16(kvi->data, kvi_len) != kvi->crc)) {
ret = CSR1212_EINVAL;
goto fail;
}
#endif
switch(kv->key.type) {
case CSR1212_KV_TYPE_DIRECTORY:
for (i = 0; i < kvi_len; i++) {
csr1212_quad_t ki = kvi->data[i];
/* Some devices put null entries in their unit
* directories. If we come across such an entry,
* then skip it. */
if (ki == 0x0)
continue;
ret = csr1212_parse_dir_entry(kv, ki,
(kv->offset +
quads_to_bytes(i + 1)));
}
kv->value.directory.len = kvi_len;
break;
case CSR1212_KV_TYPE_LEAF:
if (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM) {
kv->value.leaf.data = CSR1212_MALLOC(quads_to_bytes(kvi_len));
if (!kv->value.leaf.data) {
ret = CSR1212_ENOMEM;
goto fail;
}
kv->value.leaf.len = kvi_len;
memcpy(kv->value.leaf.data, kvi->data, quads_to_bytes(kvi_len));
}
break;
}
kv->valid = 1;
fail:
return ret;
}
int _csr1212_read_keyval(struct csr1212_csr *csr, struct csr1212_keyval *kv)
{
struct csr1212_cache_region *cr, *ncr, *newcr = NULL;
struct csr1212_keyval_img *kvi = NULL;
struct csr1212_csr_rom_cache *cache;
int cache_index;
u_int64_t addr;
u_int32_t *cache_ptr;
u_int16_t kv_len = 0;
if (!csr || !kv || csr->max_rom < 1)
return CSR1212_EINVAL;
/* First find which cache the data should be in (or go in if not read
* yet). */
for (cache = csr->cache_head; cache; cache = cache->next) {
if (kv->offset >= cache->offset &&
kv->offset < (cache->offset + cache->size))
break;
}
if (!cache) {
csr1212_quad_t q;
u_int32_t cache_size;
/* Only create a new cache for Extended ROM leaves. */
if (kv->key.id != CSR1212_KV_ID_EXTENDED_ROM)
return CSR1212_EINVAL;
if (csr->ops->bus_read(csr,
CSR1212_REGISTER_SPACE_BASE + kv->offset,
sizeof(csr1212_quad_t), &q, csr->private)) {
return CSR1212_EIO;
}
kv->value.leaf.len = CSR1212_BE32_TO_CPU(q) >> 16;
cache_size = (quads_to_bytes(kv->value.leaf.len + 1) +
(csr->max_rom - 1)) & ~(csr->max_rom - 1);
cache = csr1212_rom_cache_malloc(kv->offset, cache_size);
if (!cache)
return CSR1212_ENOMEM;
kv->value.leaf.data = &cache->data[1];
csr->cache_tail->next = cache;
cache->prev = csr->cache_tail;
cache->next = NULL;
csr->cache_tail = cache;
cache->filled_head =
CSR1212_MALLOC(sizeof(*cache->filled_head));
if (!cache->filled_head) {
return CSR1212_ENOMEM;
}
cache->filled_head->offset_start = 0;
cache->filled_head->offset_end = sizeof(csr1212_quad_t);
cache->filled_tail = cache->filled_head;
cache->filled_head->next = NULL;
cache->filled_head->prev = NULL;
cache->data[0] = q;
/* Don't read the entire extended ROM now. Pieces of it will
* be read when entries inside it are read. */
return csr1212_parse_keyval(kv, cache);
}
cache_index = kv->offset - cache->offset;
/* Now seach read portions of the cache to see if it is there. */
for (cr = cache->filled_head; cr; cr = cr->next) {
if (cache_index < cr->offset_start) {
newcr = CSR1212_MALLOC(sizeof(*newcr));
if (!newcr)
return CSR1212_ENOMEM;
newcr->offset_start = cache_index & ~(csr->max_rom - 1);
newcr->offset_end = newcr->offset_start;
newcr->next = cr;
newcr->prev = cr->prev;
cr->prev = newcr;
cr = newcr;
break;
} else if ((cache_index >= cr->offset_start) &&
(cache_index < cr->offset_end)) {
kvi = (struct csr1212_keyval_img*)
(&cache->data[bytes_to_quads(cache_index)]);
kv_len = quads_to_bytes(CSR1212_BE16_TO_CPU(kvi->length) +
1);
break;
} else if (cache_index == cr->offset_end)
break;
}
if (!cr) {
cr = cache->filled_tail;
newcr = CSR1212_MALLOC(sizeof(*newcr));
if (!newcr)
return CSR1212_ENOMEM;
newcr->offset_start = cache_index & ~(csr->max_rom - 1);
newcr->offset_end = newcr->offset_start;
newcr->prev = cr;
newcr->next = cr->next;
cr->next = newcr;
cr = newcr;
cache->filled_tail = newcr;
}
while(!kvi || cr->offset_end < cache_index + kv_len) {
cache_ptr = &cache->data[bytes_to_quads(cr->offset_end &
~(csr->max_rom - 1))];
addr = (CSR1212_CSR_ARCH_REG_SPACE_BASE + cache->offset +
cr->offset_end) & ~(csr->max_rom - 1);
if (csr->ops->bus_read(csr, addr, csr->max_rom, cache_ptr,
csr->private)) {
if (csr->max_rom == 4)
/* We've got problems! */
return CSR1212_EIO;
/* Apperently the max_rom value was a lie, set it to
* do quadlet reads and try again. */
csr->max_rom = 4;
continue;
}
cr->offset_end += csr->max_rom - (cr->offset_end &
(csr->max_rom - 1));
if (!kvi && (cr->offset_end > cache_index)) {
kvi = (struct csr1212_keyval_img*)
(&cache->data[bytes_to_quads(cache_index)]);
kv_len = quads_to_bytes(CSR1212_BE16_TO_CPU(kvi->length) +
1);
}
if ((kv_len + (kv->offset - cache->offset)) > cache->size) {
/* The Leaf or Directory claims its length extends
* beyond the ConfigROM image region and thus beyond the
* end of our cache region. Therefore, we abort now
* rather than seg faulting later. */
return CSR1212_EIO;
}
ncr = cr->next;
if (ncr && (cr->offset_end >= ncr->offset_start)) {
/* consolidate region entries */
ncr->offset_start = cr->offset_start;
if (cr->prev)
cr->prev->next = cr->next;
ncr->prev = cr->prev;
if (cache->filled_head == cr)
cache->filled_head = ncr;
CSR1212_FREE(cr);
cr = ncr;
}
}
return csr1212_parse_keyval(kv, cache);
}
int csr1212_parse_csr(struct csr1212_csr *csr)
{
static const int mr_map[] = { 4, 64, 1024, 0 };
struct csr1212_dentry *dentry;
int ret;
if (!csr || !csr->ops || !csr->ops->bus_read)
return CSR1212_EINVAL;
ret = csr1212_parse_bus_info_block(csr);
if (ret != CSR1212_SUCCESS)
return ret;
if (!csr->ops->get_max_rom)
csr->max_rom = mr_map[0]; /* default value */
else {
int i = csr->ops->get_max_rom(csr->bus_info_data,
csr->private);
if (i & ~0x3)
return CSR1212_EINVAL;
csr->max_rom = mr_map[i];
}
csr->cache_head->layout_head = csr->root_kv;
csr->cache_head->layout_tail = csr->root_kv;
csr->root_kv->offset = (CSR1212_CONFIG_ROM_SPACE_BASE & 0xffff) +
csr->bus_info_len;
csr->root_kv->valid = 0;
csr->root_kv->next = csr->root_kv;
csr->root_kv->prev = csr->root_kv;
ret = _csr1212_read_keyval(csr, csr->root_kv);
if (ret != CSR1212_SUCCESS)
return ret;
/* Scan through the Root directory finding all extended ROM regions
* and make cache regions for them */
for (dentry = csr->root_kv->value.directory.dentries_head;
dentry; dentry = dentry->next) {
if (dentry->kv->key.id == CSR1212_KV_ID_EXTENDED_ROM &&
!dentry->kv->valid) {
ret = _csr1212_read_keyval(csr, dentry->kv);
if (ret != CSR1212_SUCCESS)
return ret;
}
}
return CSR1212_SUCCESS;
}