You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/arch/arm/kernel/setup.c

1037 lines
24 KiB

/*
* linux/arch/arm/kernel/setup.c
*
* Copyright (C) 1995-2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/initrd.h>
#include <linux/console.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/screen_info.h>
#include <linux/init.h>
#include <linux/root_dev.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
Remove fs.h from mm.h Remove fs.h from mm.h. For this, 1) Uninline vma_wants_writenotify(). It's pretty huge anyway. 2) Add back fs.h or less bloated headers (err.h) to files that need it. As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files rebuilt down to 3444 (-12.3%). Cross-compile tested without regressions on my two usual configs and (sigh): alpha arm-mx1ads mips-bigsur powerpc-ebony alpha-allnoconfig arm-neponset mips-capcella powerpc-g5 alpha-defconfig arm-netwinder mips-cobalt powerpc-holly alpha-up arm-netx mips-db1000 powerpc-iseries arm arm-ns9xxx mips-db1100 powerpc-linkstation arm-assabet arm-omap_h2_1610 mips-db1200 powerpc-lite5200 arm-at91rm9200dk arm-onearm mips-db1500 powerpc-maple arm-at91rm9200ek arm-picotux200 mips-db1550 powerpc-mpc7448_hpc2 arm-at91sam9260ek arm-pleb mips-ddb5477 powerpc-mpc8272_ads arm-at91sam9261ek arm-pnx4008 mips-decstation powerpc-mpc8313_rdb arm-at91sam9263ek arm-pxa255-idp mips-e55 powerpc-mpc832x_mds arm-at91sam9rlek arm-realview mips-emma2rh powerpc-mpc832x_rdb arm-ateb9200 arm-realview-smp mips-excite powerpc-mpc834x_itx arm-badge4 arm-rpc mips-fulong powerpc-mpc834x_itxgp arm-carmeva arm-s3c2410 mips-ip22 powerpc-mpc834x_mds arm-cerfcube arm-shannon mips-ip27 powerpc-mpc836x_mds arm-clps7500 arm-shark mips-ip32 powerpc-mpc8540_ads arm-collie arm-simpad mips-jazz powerpc-mpc8544_ds arm-corgi arm-spitz mips-jmr3927 powerpc-mpc8560_ads arm-csb337 arm-trizeps4 mips-malta powerpc-mpc8568mds arm-csb637 arm-versatile mips-mipssim powerpc-mpc85xx_cds arm-ebsa110 i386 mips-mpc30x powerpc-mpc8641_hpcn arm-edb7211 i386-allnoconfig mips-msp71xx powerpc-mpc866_ads arm-em_x270 i386-defconfig mips-ocelot powerpc-mpc885_ads arm-ep93xx i386-up mips-pb1100 powerpc-pasemi arm-footbridge ia64 mips-pb1500 powerpc-pmac32 arm-fortunet ia64-allnoconfig mips-pb1550 powerpc-ppc64 arm-h3600 ia64-bigsur mips-pnx8550-jbs powerpc-prpmc2800 arm-h7201 ia64-defconfig mips-pnx8550-stb810 powerpc-ps3 arm-h7202 ia64-gensparse mips-qemu powerpc-pseries arm-hackkit ia64-sim mips-rbhma4200 powerpc-up arm-integrator ia64-sn2 mips-rbhma4500 s390 arm-iop13xx ia64-tiger mips-rm200 s390-allnoconfig arm-iop32x ia64-up mips-sb1250-swarm s390-defconfig arm-iop33x ia64-zx1 mips-sead s390-up arm-ixp2000 m68k mips-tb0219 sparc arm-ixp23xx m68k-amiga mips-tb0226 sparc-allnoconfig arm-ixp4xx m68k-apollo mips-tb0287 sparc-defconfig arm-jornada720 m68k-atari mips-workpad sparc-up arm-kafa m68k-bvme6000 mips-wrppmc sparc64 arm-kb9202 m68k-hp300 mips-yosemite sparc64-allnoconfig arm-ks8695 m68k-mac parisc sparc64-defconfig arm-lart m68k-mvme147 parisc-allnoconfig sparc64-up arm-lpd270 m68k-mvme16x parisc-defconfig um-x86_64 arm-lpd7a400 m68k-q40 parisc-up x86_64 arm-lpd7a404 m68k-sun3 powerpc x86_64-allnoconfig arm-lubbock m68k-sun3x powerpc-cell x86_64-defconfig arm-lusl7200 mips powerpc-celleb x86_64-up arm-mainstone mips-atlas powerpc-chrp32 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
#include <linux/fs.h>
[ARM] 4599/1: Preserve ATAG list for use with kexec (2.6.23) This patch resolves a kexec boot failure that can occur because no ATAGs are passed in to the kexec'd kernel. Currently the newly-kexec'd kernel may fail if it requires specific ATAGs, or it may fail because the fixed memory location at which it expects to find the ATAGs may contain random data instead of ATAGs. The patch ensures that any ATAGs passed to the current kernel at boot time are copied to a static buffer, and are copied back when kexec copies the new kernel into place. Thus the new kernel sees the same ATAGs from kexec and the boot loader. The boot parameters are copied without regard to type, content, or length -- this patch's scope is limited soley to saving and restoring a fixed-size block of memory containing the kernel's boot parameters. Additional functionality to examine, alter, or replace the ATAGs (using kexec, for example) can be implemented by manipulating the static buffer containing the preserved ATAGs. Note: the size of the buffer (1.5KB) is selected to comfortably hold one of each ATAG type, including a maximum-length command line and the maximum number of ATAG_MEM structures currently supported by the kernel. Should an ATAG list exceed that limit, the list will be silently truncated to that limit (to do other- wise at that point in the boot process would make a simple problem exceedingly complicated). [Note: this is the same patch as 4579, modified to accomodate the ATAG changes introduced in 2.6.23] Signed-off-by: Mike Westerhof <mwester at dls.net> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
18 years ago
#include <linux/kexec.h>
#include <asm/cpu.h>
#include <asm/elf.h>
#include <asm/procinfo.h>
#include <asm/setup.h>
#include <asm/mach-types.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#include "compat.h"
#ifndef MEM_SIZE
#define MEM_SIZE (16*1024*1024)
#endif
#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
char fpe_type[8];
static int __init fpe_setup(char *line)
{
memcpy(fpe_type, line, 8);
return 1;
}
__setup("fpe=", fpe_setup);
#endif
extern void paging_init(struct meminfo *, struct machine_desc *desc);
extern void reboot_setup(char *str);
extern int root_mountflags;
extern void _stext, _text, _etext, __data_start, _edata, _end;
unsigned int processor_id;
unsigned int __machine_arch_type;
EXPORT_SYMBOL(__machine_arch_type);
unsigned int __atags_pointer __initdata;
unsigned int system_rev;
EXPORT_SYMBOL(system_rev);
unsigned int system_serial_low;
EXPORT_SYMBOL(system_serial_low);
unsigned int system_serial_high;
EXPORT_SYMBOL(system_serial_high);
unsigned int elf_hwcap;
EXPORT_SYMBOL(elf_hwcap);
#ifdef MULTI_CPU
struct processor processor;
#endif
#ifdef MULTI_TLB
struct cpu_tlb_fns cpu_tlb;
#endif
#ifdef MULTI_USER
struct cpu_user_fns cpu_user;
#endif
#ifdef MULTI_CACHE
struct cpu_cache_fns cpu_cache;
#endif
#ifdef CONFIG_OUTER_CACHE
struct outer_cache_fns outer_cache;
#endif
struct stack {
u32 irq[3];
u32 abt[3];
u32 und[3];
} ____cacheline_aligned;
static struct stack stacks[NR_CPUS];
char elf_platform[ELF_PLATFORM_SIZE];
EXPORT_SYMBOL(elf_platform);
unsigned long phys_initrd_start __initdata = 0;
unsigned long phys_initrd_size __initdata = 0;
static struct meminfo meminfo __initdata = { 0, };
static const char *cpu_name;
static const char *machine_name;
static char __initdata command_line[COMMAND_LINE_SIZE];
static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
#define ENDIANNESS ((char)endian_test.l)
DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{
.name = "Video RAM",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel text",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
}
};
#define video_ram mem_res[0]
#define kernel_code mem_res[1]
#define kernel_data mem_res[2]
static struct resource io_res[] = {
{
.name = "reserved",
.start = 0x3bc,
.end = 0x3be,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
},
{
.name = "reserved",
.start = 0x378,
.end = 0x37f,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
},
{
.name = "reserved",
.start = 0x278,
.end = 0x27f,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
}
};
#define lp0 io_res[0]
#define lp1 io_res[1]
#define lp2 io_res[2]
static const char *cache_types[16] = {
"write-through",
"write-back",
"write-back",
"undefined 3",
"undefined 4",
"undefined 5",
"write-back",
"write-back",
"undefined 8",
"undefined 9",
"undefined 10",
"undefined 11",
"undefined 12",
"undefined 13",
"write-back",
"undefined 15",
};
static const char *cache_clean[16] = {
"not required",
"read-block",
"cp15 c7 ops",
"undefined 3",
"undefined 4",
"undefined 5",
"cp15 c7 ops",
"cp15 c7 ops",
"undefined 8",
"undefined 9",
"undefined 10",
"undefined 11",
"undefined 12",
"undefined 13",
"cp15 c7 ops",
"undefined 15",
};
static const char *cache_lockdown[16] = {
"not supported",
"not supported",
"not supported",
"undefined 3",
"undefined 4",
"undefined 5",
"format A",
"format B",
"undefined 8",
"undefined 9",
"undefined 10",
"undefined 11",
"undefined 12",
"undefined 13",
"format C",
"undefined 15",
};
static const char *proc_arch[] = {
"undefined/unknown",
"3",
"4",
"4T",
"5",
"5T",
"5TE",
"5TEJ",
"6TEJ",
"7",
"?(11)",
"?(12)",
"?(13)",
"?(14)",
"?(15)",
"?(16)",
"?(17)",
};
#define CACHE_TYPE(x) (((x) >> 25) & 15)
#define CACHE_S(x) ((x) & (1 << 24))
#define CACHE_DSIZE(x) (((x) >> 12) & 4095) /* only if S=1 */
#define CACHE_ISIZE(x) ((x) & 4095)
#define CACHE_SIZE(y) (((y) >> 6) & 7)
#define CACHE_ASSOC(y) (((y) >> 3) & 7)
#define CACHE_M(y) ((y) & (1 << 2))
#define CACHE_LINE(y) ((y) & 3)
static inline void dump_cache(const char *prefix, int cpu, unsigned int cache)
{
unsigned int mult = 2 + (CACHE_M(cache) ? 1 : 0);
printk("CPU%u: %s: %d bytes, associativity %d, %d byte lines, %d sets\n",
cpu, prefix,
mult << (8 + CACHE_SIZE(cache)),
(mult << CACHE_ASSOC(cache)) >> 1,
8 << CACHE_LINE(cache),
1 << (6 + CACHE_SIZE(cache) - CACHE_ASSOC(cache) -
CACHE_LINE(cache)));
}
static void __init dump_cpu_info(int cpu)
{
unsigned int info = read_cpuid(CPUID_CACHETYPE);
if (info != processor_id) {
printk("CPU%u: D %s %s cache\n", cpu, cache_is_vivt() ? "VIVT" : "VIPT",
cache_types[CACHE_TYPE(info)]);
if (CACHE_S(info)) {
dump_cache("I cache", cpu, CACHE_ISIZE(info));
dump_cache("D cache", cpu, CACHE_DSIZE(info));
} else {
dump_cache("cache", cpu, CACHE_ISIZE(info));
}
}
if (arch_is_coherent())
printk("Cache coherency enabled\n");
}
int cpu_architecture(void)
{
int cpu_arch;
if ((processor_id & 0x0008f000) == 0) {
cpu_arch = CPU_ARCH_UNKNOWN;
} else if ((processor_id & 0x0008f000) == 0x00007000) {
cpu_arch = (processor_id & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
} else if ((processor_id & 0x00080000) == 0x00000000) {
cpu_arch = (processor_id >> 16) & 7;
if (cpu_arch)
cpu_arch += CPU_ARCH_ARMv3;
} else if ((processor_id & 0x000f0000) == 0x000f0000) {
unsigned int mmfr0;
/* Revised CPUID format. Read the Memory Model Feature
* Register 0 and check for VMSAv7 or PMSAv7 */
asm("mrc p15, 0, %0, c0, c1, 4"
: "=r" (mmfr0));
if ((mmfr0 & 0x0000000f) == 0x00000003 ||
(mmfr0 & 0x000000f0) == 0x00000030)
cpu_arch = CPU_ARCH_ARMv7;
else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
(mmfr0 & 0x000000f0) == 0x00000020)
cpu_arch = CPU_ARCH_ARMv6;
else
cpu_arch = CPU_ARCH_UNKNOWN;
} else
cpu_arch = CPU_ARCH_UNKNOWN;
return cpu_arch;
}
/*
* These functions re-use the assembly code in head.S, which
* already provide the required functionality.
*/
extern struct proc_info_list *lookup_processor_type(unsigned int);
extern struct machine_desc *lookup_machine_type(unsigned int);
static void __init setup_processor(void)
{
struct proc_info_list *list;
/*
* locate processor in the list of supported processor
* types. The linker builds this table for us from the
* entries in arch/arm/mm/proc-*.S
*/
list = lookup_processor_type(processor_id);
if (!list) {
printk("CPU configuration botched (ID %08x), unable "
"to continue.\n", processor_id);
while (1);
}
cpu_name = list->cpu_name;
#ifdef MULTI_CPU
processor = *list->proc;
#endif
#ifdef MULTI_TLB
cpu_tlb = *list->tlb;
#endif
#ifdef MULTI_USER
cpu_user = *list->user;
#endif
#ifdef MULTI_CACHE
cpu_cache = *list->cache;
#endif
printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
cpu_name, processor_id, (int)processor_id & 15,
proc_arch[cpu_architecture()], cr_alignment);
sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
elf_hwcap = list->elf_hwcap;
#ifndef CONFIG_ARM_THUMB
elf_hwcap &= ~HWCAP_THUMB;
#endif
cpu_proc_init();
}
/*
* cpu_init - initialise one CPU.
*
* cpu_init dumps the cache information, initialises SMP specific
* information, and sets up the per-CPU stacks.
*/
void cpu_init(void)
{
unsigned int cpu = smp_processor_id();
struct stack *stk = &stacks[cpu];
if (cpu >= NR_CPUS) {
printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
BUG();
}
if (system_state == SYSTEM_BOOTING)
dump_cpu_info(cpu);
/*
* setup stacks for re-entrant exception handlers
*/
__asm__ (
"msr cpsr_c, %1\n\t"
"add sp, %0, %2\n\t"
"msr cpsr_c, %3\n\t"
"add sp, %0, %4\n\t"
"msr cpsr_c, %5\n\t"
"add sp, %0, %6\n\t"
"msr cpsr_c, %7"
:
: "r" (stk),
"I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
"I" (offsetof(struct stack, irq[0])),
"I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
"I" (offsetof(struct stack, abt[0])),
"I" (PSR_F_BIT | PSR_I_BIT | UND_MODE),
"I" (offsetof(struct stack, und[0])),
"I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
: "r14");
}
static struct machine_desc * __init setup_machine(unsigned int nr)
{
struct machine_desc *list;
/*
* locate machine in the list of supported machines.
*/
list = lookup_machine_type(nr);
if (!list) {
printk("Machine configuration botched (nr %d), unable "
"to continue.\n", nr);
while (1);
}
printk("Machine: %s\n", list->name);
return list;
}
static void __init early_initrd(char **p)
{
unsigned long start, size;
start = memparse(*p, p);
if (**p == ',') {
size = memparse((*p) + 1, p);
phys_initrd_start = start;
phys_initrd_size = size;
}
}
__early_param("initrd=", early_initrd);
static void __init arm_add_memory(unsigned long start, unsigned long size)
{
struct membank *bank;
/*
* Ensure that start/size are aligned to a page boundary.
* Size is appropriately rounded down, start is rounded up.
*/
size -= start & ~PAGE_MASK;
bank = &meminfo.bank[meminfo.nr_banks++];
bank->start = PAGE_ALIGN(start);
bank->size = size & PAGE_MASK;
bank->node = PHYS_TO_NID(start);
}
/*
* Pick out the memory size. We look for mem=size@start,
* where start and size are "size[KkMm]"
*/
static void __init early_mem(char **p)
{
static int usermem __initdata = 0;
unsigned long size, start;
/*
* If the user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
usermem = 1;
meminfo.nr_banks = 0;
}
start = PHYS_OFFSET;
size = memparse(*p, p);
if (**p == '@')
start = memparse(*p + 1, p);
arm_add_memory(start, size);
}
__early_param("mem=", early_mem);
/*
* Initial parsing of the command line.
*/
static void __init parse_cmdline(char **cmdline_p, char *from)
{
char c = ' ', *to = command_line;
int len = 0;
for (;;) {
if (c == ' ') {
extern struct early_params __early_begin, __early_end;
struct early_params *p;
for (p = &__early_begin; p < &__early_end; p++) {
int len = strlen(p->arg);
if (memcmp(from, p->arg, len) == 0) {
if (to != command_line)
to -= 1;
from += len;
p->fn(&from);
while (*from != ' ' && *from != '\0')
from++;
break;
}
}
}
c = *from++;
if (!c)
break;
if (COMMAND_LINE_SIZE <= ++len)
break;
*to++ = c;
}
*to = '\0';
*cmdline_p = command_line;
}
static void __init
setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
{
#ifdef CONFIG_BLK_DEV_RAM
extern int rd_size, rd_image_start, rd_prompt, rd_doload;
rd_image_start = image_start;
rd_prompt = prompt;
rd_doload = doload;
if (rd_sz)
rd_size = rd_sz;
#endif
}
static void __init
request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
{
struct resource *res;
int i;
kernel_code.start = virt_to_phys(&_text);
kernel_code.end = virt_to_phys(&_etext - 1);
kernel_data.start = virt_to_phys(&__data_start);
kernel_data.end = virt_to_phys(&_end - 1);
for (i = 0; i < mi->nr_banks; i++) {
unsigned long virt_start, virt_end;
if (mi->bank[i].size == 0)
continue;
virt_start = __phys_to_virt(mi->bank[i].start);
virt_end = virt_start + mi->bank[i].size - 1;
res = alloc_bootmem_low(sizeof(*res));
res->name = "System RAM";
res->start = __virt_to_phys(virt_start);
res->end = __virt_to_phys(virt_end);
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
if (kernel_code.start >= res->start &&
kernel_code.end <= res->end)
request_resource(res, &kernel_code);
if (kernel_data.start >= res->start &&
kernel_data.end <= res->end)
request_resource(res, &kernel_data);
}
if (mdesc->video_start) {
video_ram.start = mdesc->video_start;
video_ram.end = mdesc->video_end;
request_resource(&iomem_resource, &video_ram);
}
/*
* Some machines don't have the possibility of ever
* possessing lp0, lp1 or lp2
*/
if (mdesc->reserve_lp0)
request_resource(&ioport_resource, &lp0);
if (mdesc->reserve_lp1)
request_resource(&ioport_resource, &lp1);
if (mdesc->reserve_lp2)
request_resource(&ioport_resource, &lp2);
}
/*
* Tag parsing.
*
* This is the new way of passing data to the kernel at boot time. Rather
* than passing a fixed inflexible structure to the kernel, we pass a list
* of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
* tag for the list to be recognised (to distinguish the tagged list from
* a param_struct). The list is terminated with a zero-length tag (this tag
* is not parsed in any way).
*/
static int __init parse_tag_core(const struct tag *tag)
{
if (tag->hdr.size > 2) {
if ((tag->u.core.flags & 1) == 0)
root_mountflags &= ~MS_RDONLY;
ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
}
return 0;
}
__tagtable(ATAG_CORE, parse_tag_core);
static int __init parse_tag_mem32(const struct tag *tag)
{
if (meminfo.nr_banks >= NR_BANKS) {
printk(KERN_WARNING
"Ignoring memory bank 0x%08x size %dKB\n",
tag->u.mem.start, tag->u.mem.size / 1024);
return -EINVAL;
}
arm_add_memory(tag->u.mem.start, tag->u.mem.size);
return 0;
}
__tagtable(ATAG_MEM, parse_tag_mem32);
#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
struct screen_info screen_info = {
.orig_video_lines = 30,
.orig_video_cols = 80,
.orig_video_mode = 0,
.orig_video_ega_bx = 0,
.orig_video_isVGA = 1,
.orig_video_points = 8
};
static int __init parse_tag_videotext(const struct tag *tag)
{
screen_info.orig_x = tag->u.videotext.x;
screen_info.orig_y = tag->u.videotext.y;
screen_info.orig_video_page = tag->u.videotext.video_page;
screen_info.orig_video_mode = tag->u.videotext.video_mode;
screen_info.orig_video_cols = tag->u.videotext.video_cols;
screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
screen_info.orig_video_lines = tag->u.videotext.video_lines;
screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
screen_info.orig_video_points = tag->u.videotext.video_points;
return 0;
}
__tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
#endif
static int __init parse_tag_ramdisk(const struct tag *tag)
{
setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
(tag->u.ramdisk.flags & 2) == 0,
tag->u.ramdisk.start, tag->u.ramdisk.size);
return 0;
}
__tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
static int __init parse_tag_initrd(const struct tag *tag)
{
printk(KERN_WARNING "ATAG_INITRD is deprecated; "
"please update your bootloader.\n");
phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
phys_initrd_size = tag->u.initrd.size;
return 0;
}
__tagtable(ATAG_INITRD, parse_tag_initrd);
static int __init parse_tag_initrd2(const struct tag *tag)
{
phys_initrd_start = tag->u.initrd.start;
phys_initrd_size = tag->u.initrd.size;
return 0;
}
__tagtable(ATAG_INITRD2, parse_tag_initrd2);
static int __init parse_tag_serialnr(const struct tag *tag)
{
system_serial_low = tag->u.serialnr.low;
system_serial_high = tag->u.serialnr.high;
return 0;
}
__tagtable(ATAG_SERIAL, parse_tag_serialnr);
static int __init parse_tag_revision(const struct tag *tag)
{
system_rev = tag->u.revision.rev;
return 0;
}
__tagtable(ATAG_REVISION, parse_tag_revision);
static int __init parse_tag_cmdline(const struct tag *tag)
{
strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
return 0;
}
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
/*
* Scan the tag table for this tag, and call its parse function.
* The tag table is built by the linker from all the __tagtable
* declarations.
*/
static int __init parse_tag(const struct tag *tag)
{
extern struct tagtable __tagtable_begin, __tagtable_end;
struct tagtable *t;
for (t = &__tagtable_begin; t < &__tagtable_end; t++)
if (tag->hdr.tag == t->tag) {
t->parse(tag);
break;
}
return t < &__tagtable_end;
}
/*
* Parse all tags in the list, checking both the global and architecture
* specific tag tables.
*/
static void __init parse_tags(const struct tag *t)
{
for (; t->hdr.size; t = tag_next(t))
if (!parse_tag(t))
printk(KERN_WARNING
"Ignoring unrecognised tag 0x%08x\n",
t->hdr.tag);
}
/*
* This holds our defaults.
*/
static struct init_tags {
struct tag_header hdr1;
struct tag_core core;
struct tag_header hdr2;
struct tag_mem32 mem;
struct tag_header hdr3;
} init_tags __initdata = {
{ tag_size(tag_core), ATAG_CORE },
{ 1, PAGE_SIZE, 0xff },
{ tag_size(tag_mem32), ATAG_MEM },
{ MEM_SIZE, PHYS_OFFSET },
{ 0, ATAG_NONE }
};
static void (*init_machine)(void) __initdata;
static int __init customize_machine(void)
{
/* customizes platform devices, or adds new ones */
if (init_machine)
init_machine();
return 0;
}
arch_initcall(customize_machine);
[ARM] 4599/1: Preserve ATAG list for use with kexec (2.6.23) This patch resolves a kexec boot failure that can occur because no ATAGs are passed in to the kexec'd kernel. Currently the newly-kexec'd kernel may fail if it requires specific ATAGs, or it may fail because the fixed memory location at which it expects to find the ATAGs may contain random data instead of ATAGs. The patch ensures that any ATAGs passed to the current kernel at boot time are copied to a static buffer, and are copied back when kexec copies the new kernel into place. Thus the new kernel sees the same ATAGs from kexec and the boot loader. The boot parameters are copied without regard to type, content, or length -- this patch's scope is limited soley to saving and restoring a fixed-size block of memory containing the kernel's boot parameters. Additional functionality to examine, alter, or replace the ATAGs (using kexec, for example) can be implemented by manipulating the static buffer containing the preserved ATAGs. Note: the size of the buffer (1.5KB) is selected to comfortably hold one of each ATAG type, including a maximum-length command line and the maximum number of ATAG_MEM structures currently supported by the kernel. Should an ATAG list exceed that limit, the list will be silently truncated to that limit (to do other- wise at that point in the boot process would make a simple problem exceedingly complicated). [Note: this is the same patch as 4579, modified to accomodate the ATAG changes introduced in 2.6.23] Signed-off-by: Mike Westerhof <mwester at dls.net> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
18 years ago
#ifdef CONFIG_KEXEC
/* Physical addr of where the boot params should be for this machine */
extern unsigned long kexec_boot_params_address;
/* Physical addr of the buffer into which the boot params are copied */
extern unsigned long kexec_boot_params_copy;
/* Pointer to the boot params buffer, for manipulation and display */
unsigned long kexec_boot_params;
EXPORT_SYMBOL(kexec_boot_params);
/* The buffer itself - make sure it is sized correctly */
static unsigned long kexec_boot_params_buf[(KEXEC_BOOT_PARAMS_SIZE + 3) / 4];
#endif
void __init setup_arch(char **cmdline_p)
{
struct tag *tags = (struct tag *)&init_tags;
struct machine_desc *mdesc;
char *from = default_command_line;
setup_processor();
mdesc = setup_machine(machine_arch_type);
machine_name = mdesc->name;
if (mdesc->soft_reboot)
reboot_setup("s");
if (__atags_pointer)
tags = phys_to_virt(__atags_pointer);
else if (mdesc->boot_params)
tags = phys_to_virt(mdesc->boot_params);
[ARM] 4599/1: Preserve ATAG list for use with kexec (2.6.23) This patch resolves a kexec boot failure that can occur because no ATAGs are passed in to the kexec'd kernel. Currently the newly-kexec'd kernel may fail if it requires specific ATAGs, or it may fail because the fixed memory location at which it expects to find the ATAGs may contain random data instead of ATAGs. The patch ensures that any ATAGs passed to the current kernel at boot time are copied to a static buffer, and are copied back when kexec copies the new kernel into place. Thus the new kernel sees the same ATAGs from kexec and the boot loader. The boot parameters are copied without regard to type, content, or length -- this patch's scope is limited soley to saving and restoring a fixed-size block of memory containing the kernel's boot parameters. Additional functionality to examine, alter, or replace the ATAGs (using kexec, for example) can be implemented by manipulating the static buffer containing the preserved ATAGs. Note: the size of the buffer (1.5KB) is selected to comfortably hold one of each ATAG type, including a maximum-length command line and the maximum number of ATAG_MEM structures currently supported by the kernel. Should an ATAG list exceed that limit, the list will be silently truncated to that limit (to do other- wise at that point in the boot process would make a simple problem exceedingly complicated). [Note: this is the same patch as 4579, modified to accomodate the ATAG changes introduced in 2.6.23] Signed-off-by: Mike Westerhof <mwester at dls.net> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
18 years ago
#ifdef CONFIG_KEXEC
kexec_boot_params_copy = virt_to_phys(kexec_boot_params_buf);
kexec_boot_params = (unsigned long)kexec_boot_params_buf;
if (__atags_pointer) {
kexec_boot_params_address = __atags_pointer;
memcpy((void *)kexec_boot_params, tags, KEXEC_BOOT_PARAMS_SIZE);
} else if (mdesc->boot_params) {
kexec_boot_params_address = mdesc->boot_params;
memcpy((void *)kexec_boot_params, tags, KEXEC_BOOT_PARAMS_SIZE);
}
#endif
/*
* If we have the old style parameters, convert them to
* a tag list.
*/
if (tags->hdr.tag != ATAG_CORE)
convert_to_tag_list(tags);
if (tags->hdr.tag != ATAG_CORE)
tags = (struct tag *)&init_tags;
if (mdesc->fixup)
mdesc->fixup(mdesc, tags, &from, &meminfo);
if (tags->hdr.tag == ATAG_CORE) {
if (meminfo.nr_banks != 0)
squash_mem_tags(tags);
parse_tags(tags);
}
init_mm.start_code = (unsigned long) &_text;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
memcpy(boot_command_line, from, COMMAND_LINE_SIZE);
boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
parse_cmdline(cmdline_p, from);
paging_init(&meminfo, mdesc);
request_standard_resources(&meminfo, mdesc);
#ifdef CONFIG_SMP
smp_init_cpus();
#endif
cpu_init();
/*
* Set up various architecture-specific pointers
*/
init_arch_irq = mdesc->init_irq;
system_timer = mdesc->timer;
init_machine = mdesc->init_machine;
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
}
static int __init topology_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
cpuinfo->cpu.hotpluggable = 1;
register_cpu(&cpuinfo->cpu, cpu);
}
return 0;
}
subsys_initcall(topology_init);
static const char *hwcap_str[] = {
"swp",
"half",
"thumb",
"26bit",
"fastmult",
"fpa",
"vfp",
"edsp",
"java",
"iwmmxt",
"crunch",
NULL
};
static void
c_show_cache(struct seq_file *m, const char *type, unsigned int cache)
{
unsigned int mult = 2 + (CACHE_M(cache) ? 1 : 0);
seq_printf(m, "%s size\t\t: %d\n"
"%s assoc\t\t: %d\n"
"%s line length\t: %d\n"
"%s sets\t\t: %d\n",
type, mult << (8 + CACHE_SIZE(cache)),
type, (mult << CACHE_ASSOC(cache)) >> 1,
type, 8 << CACHE_LINE(cache),
type, 1 << (6 + CACHE_SIZE(cache) - CACHE_ASSOC(cache) -
CACHE_LINE(cache)));
}
static int c_show(struct seq_file *m, void *v)
{
int i;
seq_printf(m, "Processor\t: %s rev %d (%s)\n",
cpu_name, (int)processor_id & 15, elf_platform);
#if defined(CONFIG_SMP)
for_each_online_cpu(i) {
/*
* glibc reads /proc/cpuinfo to determine the number of
* online processors, looking for lines beginning with
* "processor". Give glibc what it expects.
*/
seq_printf(m, "processor\t: %d\n", i);
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
(per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
}
#else /* CONFIG_SMP */
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
#endif
/* dump out the processor features */
seq_puts(m, "Features\t: ");
for (i = 0; hwcap_str[i]; i++)
if (elf_hwcap & (1 << i))
seq_printf(m, "%s ", hwcap_str[i]);
seq_printf(m, "\nCPU implementer\t: 0x%02x\n", processor_id >> 24);
seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
if ((processor_id & 0x0008f000) == 0x00000000) {
/* pre-ARM7 */
seq_printf(m, "CPU part\t: %07x\n", processor_id >> 4);
} else {
if ((processor_id & 0x0008f000) == 0x00007000) {
/* ARM7 */
seq_printf(m, "CPU variant\t: 0x%02x\n",
(processor_id >> 16) & 127);
} else {
/* post-ARM7 */
seq_printf(m, "CPU variant\t: 0x%x\n",
(processor_id >> 20) & 15);
}
seq_printf(m, "CPU part\t: 0x%03x\n",
(processor_id >> 4) & 0xfff);
}
seq_printf(m, "CPU revision\t: %d\n", processor_id & 15);
{
unsigned int cache_info = read_cpuid(CPUID_CACHETYPE);
if (cache_info != processor_id) {
seq_printf(m, "Cache type\t: %s\n"
"Cache clean\t: %s\n"
"Cache lockdown\t: %s\n"
"Cache format\t: %s\n",
cache_types[CACHE_TYPE(cache_info)],
cache_clean[CACHE_TYPE(cache_info)],
cache_lockdown[CACHE_TYPE(cache_info)],
CACHE_S(cache_info) ? "Harvard" : "Unified");
if (CACHE_S(cache_info)) {
c_show_cache(m, "I", CACHE_ISIZE(cache_info));
c_show_cache(m, "D", CACHE_DSIZE(cache_info));
} else {
c_show_cache(m, "Cache", CACHE_ISIZE(cache_info));
}
}
}
seq_puts(m, "\n");
seq_printf(m, "Hardware\t: %s\n", machine_name);
seq_printf(m, "Revision\t: %04x\n", system_rev);
seq_printf(m, "Serial\t\t: %08x%08x\n",
system_serial_high, system_serial_low);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < 1 ? (void *)1 : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = c_show
};