You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/macintosh/via-pmu68k.c

1063 lines
25 KiB

/*
* Device driver for the PMU on 68K-based Apple PowerBooks
*
* The VIA (versatile interface adapter) interfaces to the PMU,
* a 6805 microprocessor core whose primary function is to control
* battery charging and system power on the PowerBooks.
* The PMU also controls the ADB (Apple Desktop Bus) which connects
* to the keyboard and mouse, as well as the non-volatile RAM
* and the RTC (real time clock) chip.
*
* Adapted for 68K PMU by Joshua M. Thompson
*
* Based largely on the PowerMac PMU code by Paul Mackerras and
* Fabio Riccardi.
*
* Also based on the PMU driver from MkLinux by Apple Computer, Inc.
* and the Open Software Foundation, Inc.
*/
#include <stdarg.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/miscdevice.h>
#include <linux/blkdev.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/adb.h>
#include <linux/pmu.h>
#include <linux/cuda.h>
#include <asm/macintosh.h>
#include <asm/macints.h>
#include <asm/machw.h>
#include <asm/mac_via.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
/* Misc minor number allocated for /dev/pmu */
#define PMU_MINOR 154
/* VIA registers - spaced 0x200 bytes apart */
#define RS 0x200 /* skip between registers */
#define B 0 /* B-side data */
#define A RS /* A-side data */
#define DIRB (2*RS) /* B-side direction (1=output) */
#define DIRA (3*RS) /* A-side direction (1=output) */
#define T1CL (4*RS) /* Timer 1 ctr/latch (low 8 bits) */
#define T1CH (5*RS) /* Timer 1 counter (high 8 bits) */
#define T1LL (6*RS) /* Timer 1 latch (low 8 bits) */
#define T1LH (7*RS) /* Timer 1 latch (high 8 bits) */
#define T2CL (8*RS) /* Timer 2 ctr/latch (low 8 bits) */
#define T2CH (9*RS) /* Timer 2 counter (high 8 bits) */
#define SR (10*RS) /* Shift register */
#define ACR (11*RS) /* Auxiliary control register */
#define PCR (12*RS) /* Peripheral control register */
#define IFR (13*RS) /* Interrupt flag register */
#define IER (14*RS) /* Interrupt enable register */
#define ANH (15*RS) /* A-side data, no handshake */
/* Bits in B data register: both active low */
#define TACK 0x02 /* Transfer acknowledge (input) */
#define TREQ 0x04 /* Transfer request (output) */
/* Bits in ACR */
#define SR_CTRL 0x1c /* Shift register control bits */
#define SR_EXT 0x0c /* Shift on external clock */
#define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
#define SR_INT 0x04 /* Shift register full/empty */
#define CB1_INT 0x10 /* transition on CB1 input */
static enum pmu_state {
idle,
sending,
intack,
reading,
reading_intr,
} pmu_state;
static struct adb_request *current_req;
static struct adb_request *last_req;
static struct adb_request *req_awaiting_reply;
static unsigned char interrupt_data[32];
static unsigned char *reply_ptr;
static int data_index;
static int data_len;
static int adb_int_pending;
static int pmu_adb_flags;
static int adb_dev_map = 0;
static struct adb_request bright_req_1, bright_req_2, bright_req_3;
static int pmu_kind = PMU_UNKNOWN;
static int pmu_fully_inited = 0;
int asleep;
struct notifier_block *sleep_notifier_list;
static int pmu_probe(void);
static int pmu_init(void);
static void pmu_start(void);
static irqreturn_t pmu_interrupt(int irq, void *arg, struct pt_regs *regs);
static int pmu_send_request(struct adb_request *req, int sync);
static int pmu_autopoll(int devs);
void pmu_poll(void);
static int pmu_reset_bus(void);
static int pmu_queue_request(struct adb_request *req);
static void pmu_start(void);
static void send_byte(int x);
static void recv_byte(void);
static void pmu_done(struct adb_request *req);
static void pmu_handle_data(unsigned char *data, int len,
struct pt_regs *regs);
static void set_volume(int level);
static void pmu_enable_backlight(int on);
static void pmu_set_brightness(int level);
struct adb_driver via_pmu_driver = {
"68K PMU",
pmu_probe,
pmu_init,
pmu_send_request,
pmu_autopoll,
pmu_poll,
pmu_reset_bus
};
/*
* This table indicates for each PMU opcode:
* - the number of data bytes to be sent with the command, or -1
* if a length byte should be sent,
* - the number of response bytes which the PMU will return, or
* -1 if it will send a length byte.
*/
static s8 pmu_data_len[256][2] = {
/* 0 1 2 3 4 5 6 7 */
/*00*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*08*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*10*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*18*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0},
/*20*/ {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},
/*28*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1},
/*30*/ { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*38*/ { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0},
/*40*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*48*/ { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1},
/*50*/ { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0},
/*58*/ { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},
/*60*/ { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*68*/ { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1},
/*70*/ { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*78*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1},
/*80*/ { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*88*/ { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*90*/ { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*98*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*a0*/ { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},
/*a8*/ { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*b0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*b8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*c0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*c8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*d0*/ { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*d8*/ { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1},
/*e0*/ {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0},
/*e8*/ { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0},
/*f0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*f8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
};
int pmu_probe(void)
{
if (macintosh_config->adb_type == MAC_ADB_PB1) {
pmu_kind = PMU_68K_V1;
} else if (macintosh_config->adb_type == MAC_ADB_PB2) {
pmu_kind = PMU_68K_V2;
} else {
return -ENODEV;
}
pmu_state = idle;
return 0;
}
static int
pmu_init(void)
{
int timeout;
volatile struct adb_request req;
via2[B] |= TREQ; /* negate TREQ */
via2[DIRB] = (via2[DIRB] | TREQ) & ~TACK; /* TACK in, TREQ out */
pmu_request((struct adb_request *) &req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB);
timeout = 100000;
while (!req.complete) {
if (--timeout < 0) {
printk(KERN_ERR "pmu_init: no response from PMU\n");
return -EAGAIN;
}
udelay(10);
pmu_poll();
}
/* ack all pending interrupts */
timeout = 100000;
interrupt_data[0] = 1;
while (interrupt_data[0] || pmu_state != idle) {
if (--timeout < 0) {
printk(KERN_ERR "pmu_init: timed out acking intrs\n");
return -EAGAIN;
}
if (pmu_state == idle) {
adb_int_pending = 1;
pmu_interrupt(0, NULL, NULL);
}
pmu_poll();
udelay(10);
}
pmu_request((struct adb_request *) &req, NULL, 2, PMU_SET_INTR_MASK,
PMU_INT_ADB_AUTO|PMU_INT_SNDBRT|PMU_INT_ADB);
timeout = 100000;
while (!req.complete) {
if (--timeout < 0) {
printk(KERN_ERR "pmu_init: no response from PMU\n");
return -EAGAIN;
}
udelay(10);
pmu_poll();
}
bright_req_1.complete = 1;
bright_req_2.complete = 1;
bright_req_3.complete = 1;
if (request_irq(IRQ_MAC_ADB_SR, pmu_interrupt, 0, "pmu-shift",
pmu_interrupt)) {
printk(KERN_ERR "pmu_init: can't get irq %d\n",
IRQ_MAC_ADB_SR);
return -EAGAIN;
}
if (request_irq(IRQ_MAC_ADB_CL, pmu_interrupt, 0, "pmu-clock",
pmu_interrupt)) {
printk(KERN_ERR "pmu_init: can't get irq %d\n",
IRQ_MAC_ADB_CL);
free_irq(IRQ_MAC_ADB_SR, pmu_interrupt);
return -EAGAIN;
}
pmu_fully_inited = 1;
/* Enable backlight */
pmu_enable_backlight(1);
printk("adb: PMU 68K driver v0.5 for Unified ADB.\n");
return 0;
}
int
pmu_get_model(void)
{
return pmu_kind;
}
/* Send an ADB command */
static int
pmu_send_request(struct adb_request *req, int sync)
{
int i, ret;
if (!pmu_fully_inited)
{
req->complete = 1;
return -ENXIO;
}
ret = -EINVAL;
switch (req->data[0]) {
case PMU_PACKET:
for (i = 0; i < req->nbytes - 1; ++i)
req->data[i] = req->data[i+1];
--req->nbytes;
if (pmu_data_len[req->data[0]][1] != 0) {
req->reply[0] = ADB_RET_OK;
req->reply_len = 1;
} else
req->reply_len = 0;
ret = pmu_queue_request(req);
break;
case CUDA_PACKET:
switch (req->data[1]) {
case CUDA_GET_TIME:
if (req->nbytes != 2)
break;
req->data[0] = PMU_READ_RTC;
req->nbytes = 1;
req->reply_len = 3;
req->reply[0] = CUDA_PACKET;
req->reply[1] = 0;
req->reply[2] = CUDA_GET_TIME;
ret = pmu_queue_request(req);
break;
case CUDA_SET_TIME:
if (req->nbytes != 6)
break;
req->data[0] = PMU_SET_RTC;
req->nbytes = 5;
for (i = 1; i <= 4; ++i)
req->data[i] = req->data[i+1];
req->reply_len = 3;
req->reply[0] = CUDA_PACKET;
req->reply[1] = 0;
req->reply[2] = CUDA_SET_TIME;
ret = pmu_queue_request(req);
break;
case CUDA_GET_PRAM:
if (req->nbytes != 4)
break;
req->data[0] = PMU_READ_NVRAM;
req->data[1] = req->data[2];
req->data[2] = req->data[3];
req->nbytes = 3;
req->reply_len = 3;
req->reply[0] = CUDA_PACKET;
req->reply[1] = 0;
req->reply[2] = CUDA_GET_PRAM;
ret = pmu_queue_request(req);
break;
case CUDA_SET_PRAM:
if (req->nbytes != 5)
break;
req->data[0] = PMU_WRITE_NVRAM;
req->data[1] = req->data[2];
req->data[2] = req->data[3];
req->data[3] = req->data[4];
req->nbytes = 4;
req->reply_len = 3;
req->reply[0] = CUDA_PACKET;
req->reply[1] = 0;
req->reply[2] = CUDA_SET_PRAM;
ret = pmu_queue_request(req);
break;
}
break;
case ADB_PACKET:
for (i = req->nbytes - 1; i > 1; --i)
req->data[i+2] = req->data[i];
req->data[3] = req->nbytes - 2;
req->data[2] = pmu_adb_flags;
/*req->data[1] = req->data[1];*/
req->data[0] = PMU_ADB_CMD;
req->nbytes += 2;
req->reply_expected = 1;
req->reply_len = 0;
ret = pmu_queue_request(req);
break;
}
if (ret)
{
req->complete = 1;
return ret;
}
if (sync) {
while (!req->complete)
pmu_poll();
}
return 0;
}
/* Enable/disable autopolling */
static int
pmu_autopoll(int devs)
{
struct adb_request req;
if (!pmu_fully_inited) return -ENXIO;
if (devs) {
adb_dev_map = devs;
pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86,
adb_dev_map >> 8, adb_dev_map);
pmu_adb_flags = 2;
} else {
pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF);
pmu_adb_flags = 0;
}
while (!req.complete)
pmu_poll();
return 0;
}
/* Reset the ADB bus */
static int
pmu_reset_bus(void)
{
struct adb_request req;
long timeout;
int save_autopoll = adb_dev_map;
if (!pmu_fully_inited) return -ENXIO;
/* anyone got a better idea?? */
pmu_autopoll(0);
req.nbytes = 5;
req.done = NULL;
req.data[0] = PMU_ADB_CMD;
req.data[1] = 0;
req.data[2] = 3; /* ADB_BUSRESET ??? */
req.data[3] = 0;
req.data[4] = 0;
req.reply_len = 0;
req.reply_expected = 1;
if (pmu_queue_request(&req) != 0)
{
printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n");
return -EIO;
}
while (!req.complete)
pmu_poll();
timeout = 100000;
while (!req.complete) {
if (--timeout < 0) {
printk(KERN_ERR "pmu_adb_reset_bus (reset): no response from PMU\n");
return -EIO;
}
udelay(10);
pmu_poll();
}
if (save_autopoll != 0)
pmu_autopoll(save_autopoll);
return 0;
}
/* Construct and send a pmu request */
int
pmu_request(struct adb_request *req, void (*done)(struct adb_request *),
int nbytes, ...)
{
va_list list;
int i;
if (nbytes < 0 || nbytes > 32) {
printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes);
req->complete = 1;
return -EINVAL;
}
req->nbytes = nbytes;
req->done = done;
va_start(list, nbytes);
for (i = 0; i < nbytes; ++i)
req->data[i] = va_arg(list, int);
va_end(list);
if (pmu_data_len[req->data[0]][1] != 0) {
req->reply[0] = ADB_RET_OK;
req->reply_len = 1;
} else
req->reply_len = 0;
req->reply_expected = 0;
return pmu_queue_request(req);
}
static int
pmu_queue_request(struct adb_request *req)
{
unsigned long flags;
int nsend;
if (req->nbytes <= 0) {
req->complete = 1;
return 0;
}
nsend = pmu_data_len[req->data[0]][0];
if (nsend >= 0 && req->nbytes != nsend + 1) {
req->complete = 1;
return -EINVAL;
}
req->next = NULL;
req->sent = 0;
req->complete = 0;
local_irq_save(flags);
if (current_req != 0) {
last_req->next = req;
last_req = req;
} else {
current_req = req;
last_req = req;
if (pmu_state == idle)
pmu_start();
}
local_irq_restore(flags);
return 0;
}
static void
send_byte(int x)
{
via1[ACR] |= SR_CTRL;
via1[SR] = x;
via2[B] &= ~TREQ; /* assert TREQ */
}
static void
recv_byte(void)
{
char c;
via1[ACR] = (via1[ACR] | SR_EXT) & ~SR_OUT;
c = via1[SR]; /* resets SR */
via2[B] &= ~TREQ;
}
static void
pmu_start(void)
{
unsigned long flags;
struct adb_request *req;
/* assert pmu_state == idle */
/* get the packet to send */
local_irq_save(flags);
req = current_req;
if (req == 0 || pmu_state != idle
|| (req->reply_expected && req_awaiting_reply))
goto out;
pmu_state = sending;
data_index = 1;
data_len = pmu_data_len[req->data[0]][0];
/* set the shift register to shift out and send a byte */
send_byte(req->data[0]);
out:
local_irq_restore(flags);
}
void
pmu_poll(void)
{
unsigned long flags;
local_irq_save(flags);
if (via1[IFR] & SR_INT) {
via1[IFR] = SR_INT;
pmu_interrupt(IRQ_MAC_ADB_SR, NULL, NULL);
}
if (via1[IFR] & CB1_INT) {
via1[IFR] = CB1_INT;
pmu_interrupt(IRQ_MAC_ADB_CL, NULL, NULL);
}
local_irq_restore(flags);
}
static irqreturn_t
pmu_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct adb_request *req;
int timeout, bite = 0; /* to prevent compiler warning */
#if 0
printk("pmu_interrupt: irq %d state %d acr %02X, b %02X data_index %d/%d adb_int_pending %d\n",
irq, pmu_state, (uint) via1[ACR], (uint) via2[B], data_index, data_len, adb_int_pending);
#endif
if (irq == IRQ_MAC_ADB_CL) { /* CB1 interrupt */
adb_int_pending = 1;
} else if (irq == IRQ_MAC_ADB_SR) { /* SR interrupt */
if (via2[B] & TACK) {
printk(KERN_DEBUG "PMU: SR_INT but ack still high! (%x)\n", via2[B]);
}
/* if reading grab the byte */
if ((via1[ACR] & SR_OUT) == 0) bite = via1[SR];
/* reset TREQ and wait for TACK to go high */
via2[B] |= TREQ;
timeout = 3200;
while (!(via2[B] & TACK)) {
if (--timeout < 0) {
printk(KERN_ERR "PMU not responding (!ack)\n");
goto finish;
}
udelay(10);
}
switch (pmu_state) {
case sending:
req = current_req;
if (data_len < 0) {
data_len = req->nbytes - 1;
send_byte(data_len);
break;
}
if (data_index <= data_len) {
send_byte(req->data[data_index++]);
break;
}
req->sent = 1;
data_len = pmu_data_len[req->data[0]][1];
if (data_len == 0) {
pmu_state = idle;
current_req = req->next;
if (req->reply_expected)
req_awaiting_reply = req;
else
pmu_done(req);
} else {
pmu_state = reading;
data_index = 0;
reply_ptr = req->reply + req->reply_len;
recv_byte();
}
break;
case intack:
data_index = 0;
data_len = -1;
pmu_state = reading_intr;
reply_ptr = interrupt_data;
recv_byte();
break;
case reading:
case reading_intr:
if (data_len == -1) {
data_len = bite;
if (bite > 32)
printk(KERN_ERR "PMU: bad reply len %d\n",
bite);
} else {
reply_ptr[data_index++] = bite;
}
if (data_index < data_len) {
recv_byte();
break;
}
if (pmu_state == reading_intr) {
pmu_handle_data(interrupt_data, data_index, regs);
} else {
req = current_req;
current_req = req->next;
req->reply_len += data_index;
pmu_done(req);
}
pmu_state = idle;
break;
default:
printk(KERN_ERR "pmu_interrupt: unknown state %d?\n",
pmu_state);
}
}
finish:
if (pmu_state == idle) {
if (adb_int_pending) {
pmu_state = intack;
send_byte(PMU_INT_ACK);
adb_int_pending = 0;
} else if (current_req) {
pmu_start();
}
}
#if 0
printk("pmu_interrupt: exit state %d acr %02X, b %02X data_index %d/%d adb_int_pending %d\n",
pmu_state, (uint) via1[ACR], (uint) via2[B], data_index, data_len, adb_int_pending);
#endif
return IRQ_HANDLED;
}
static void
pmu_done(struct adb_request *req)
{
req->complete = 1;
if (req->done)
(*req->done)(req);
}
/* Interrupt data could be the result data from an ADB cmd */
static void
pmu_handle_data(unsigned char *data, int len, struct pt_regs *regs)
{
static int show_pmu_ints = 1;
asleep = 0;
if (len < 1) {
adb_int_pending = 0;
return;
}
if (data[0] & PMU_INT_ADB) {
if ((data[0] & PMU_INT_ADB_AUTO) == 0) {
struct adb_request *req = req_awaiting_reply;
if (req == 0) {
printk(KERN_ERR "PMU: extra ADB reply\n");
return;
}
req_awaiting_reply = NULL;
if (len <= 2)
req->reply_len = 0;
else {
memcpy(req->reply, data + 1, len - 1);
req->reply_len = len - 1;
}
pmu_done(req);
} else {
adb_input(data+1, len-1, regs, 1);
}
} else {
if (data[0] == 0x08 && len == 3) {
/* sound/brightness buttons pressed */
pmu_set_brightness(data[1] >> 3);
set_volume(data[2]);
} else if (show_pmu_ints
&& !(data[0] == PMU_INT_TICK && len == 1)) {
int i;
printk(KERN_DEBUG "pmu intr");
for (i = 0; i < len; ++i)
printk(" %.2x", data[i]);
printk("\n");
}
}
}
int backlight_level = -1;
int backlight_enabled = 0;
#define LEVEL_TO_BRIGHT(lev) ((lev) < 1? 0x7f: 0x4a - ((lev) << 1))
static void
pmu_enable_backlight(int on)
{
struct adb_request req;
if (on) {
/* first call: get current backlight value */
if (backlight_level < 0) {
switch(pmu_kind) {
case PMU_68K_V1:
case PMU_68K_V2:
pmu_request(&req, NULL, 3, PMU_READ_NVRAM, 0x14, 0xe);
while (!req.complete)
pmu_poll();
printk(KERN_DEBUG "pmu: nvram returned bright: %d\n", (int)req.reply[1]);
backlight_level = req.reply[1];
break;
default:
backlight_enabled = 0;
return;
}
}
pmu_request(&req, NULL, 2, PMU_BACKLIGHT_BRIGHT,
LEVEL_TO_BRIGHT(backlight_level));
while (!req.complete)
pmu_poll();
}
pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
PMU_POW_BACKLIGHT | (on ? PMU_POW_ON : PMU_POW_OFF));
while (!req.complete)
pmu_poll();
backlight_enabled = on;
}
static void
pmu_set_brightness(int level)
{
int bright;
backlight_level = level;
bright = LEVEL_TO_BRIGHT(level);
if (!backlight_enabled)
return;
if (bright_req_1.complete)
pmu_request(&bright_req_1, NULL, 2, PMU_BACKLIGHT_BRIGHT,
bright);
if (bright_req_2.complete)
pmu_request(&bright_req_2, NULL, 2, PMU_POWER_CTRL,
PMU_POW_BACKLIGHT | (bright < 0x7f ? PMU_POW_ON : PMU_POW_OFF));
}
void
pmu_enable_irled(int on)
{
struct adb_request req;
pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED |
(on ? PMU_POW_ON : PMU_POW_OFF));
while (!req.complete)
pmu_poll();
}
static void
set_volume(int level)
{
}
int
pmu_present(void)
{
return (pmu_kind != PMU_UNKNOWN);
}
#if 0 /* needs some work for 68K */
/*
* This struct is used to store config register values for
* PCI devices which may get powered off when we sleep.
*/
static struct pci_save {
u16 command;
u16 cache_lat;
u16 intr;
} *pbook_pci_saves;
static int n_pbook_pci_saves;
static inline void
pbook_pci_save(void)
{
int npci;
struct pci_dev *pd = NULL;
struct pci_save *ps;
npci = 0;
while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL)
++npci;
n_pbook_pci_saves = npci;
if (npci == 0)
return;
ps = (struct pci_save *) kmalloc(npci * sizeof(*ps), GFP_KERNEL);
pbook_pci_saves = ps;
if (ps == NULL)
return;
pd = NULL;
while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
pci_read_config_word(pd, PCI_COMMAND, &ps->command);
pci_read_config_word(pd, PCI_CACHE_LINE_SIZE, &ps->cache_lat);
pci_read_config_word(pd, PCI_INTERRUPT_LINE, &ps->intr);
++ps;
--npci;
}
}
static inline void
pbook_pci_restore(void)
{
u16 cmd;
struct pci_save *ps = pbook_pci_saves;
struct pci_dev *pd = NULL;
int j;
while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
if (ps->command == 0)
continue;
pci_read_config_word(pd, PCI_COMMAND, &cmd);
if ((ps->command & ~cmd) == 0)
continue;
switch (pd->hdr_type) {
case PCI_HEADER_TYPE_NORMAL:
for (j = 0; j < 6; ++j)
pci_write_config_dword(pd,
PCI_BASE_ADDRESS_0 + j*4,
pd->resource[j].start);
pci_write_config_dword(pd, PCI_ROM_ADDRESS,
pd->resource[PCI_ROM_RESOURCE].start);
pci_write_config_word(pd, PCI_CACHE_LINE_SIZE,
ps->cache_lat);
pci_write_config_word(pd, PCI_INTERRUPT_LINE,
ps->intr);
pci_write_config_word(pd, PCI_COMMAND, ps->command);
break;
/* other header types not restored at present */
}
}
}
/*
* Put the powerbook to sleep.
*/
#define IRQ_ENABLE ((unsigned int *)0xf3000024)
#define MEM_CTRL ((unsigned int *)0xf8000070)
int powerbook_sleep(void)
{
int ret, i, x;
static int save_backlight;
static unsigned int save_irqen;
unsigned long msr;
unsigned int hid0;
unsigned long p, wait;
struct adb_request sleep_req;
/* Notify device drivers */
ret = notifier_call_chain(&sleep_notifier_list, PBOOK_SLEEP, NULL);
if (ret & NOTIFY_STOP_MASK)
return -EBUSY;
/* Sync the disks. */
/* XXX It would be nice to have some way to ensure that
* nobody is dirtying any new buffers while we wait. */
sys_sync();
/* Turn off the display backlight */
save_backlight = backlight_enabled;
if (save_backlight)
pmu_enable_backlight(0);
/* Give the disks a little time to actually finish writing */
for (wait = jiffies + (HZ/4); time_before(jiffies, wait); )
mb();
/* Disable all interrupts except pmu */
save_irqen = in_le32(IRQ_ENABLE);
for (i = 0; i < 32; ++i)
if (i != vias->intrs[0].line && (save_irqen & (1 << i)))
disable_irq(i);
asm volatile("mtdec %0" : : "r" (0x7fffffff));
/* Save the state of PCI config space for some slots */
pbook_pci_save();
/* Set the memory controller to keep the memory refreshed
while we're asleep */
for (i = 0x403f; i >= 0x4000; --i) {
out_be32(MEM_CTRL, i);
do {
x = (in_be32(MEM_CTRL) >> 16) & 0x3ff;
} while (x == 0);
if (x >= 0x100)
break;
}
/* Ask the PMU to put us to sleep */
pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
while (!sleep_req.complete)
mb();
/* displacement-flush the L2 cache - necessary? */
for (p = KERNELBASE; p < KERNELBASE + 0x100000; p += 0x1000)
i = *(volatile int *)p;
asleep = 1;
/* Put the CPU into sleep mode */
asm volatile("mfspr %0,1008" : "=r" (hid0) :);
hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP;
asm volatile("mtspr 1008,%0" : : "r" (hid0));
local_save_flags(msr);
msr |= MSR_POW | MSR_EE;
local_irq_restore(msr);
udelay(10);
/* OK, we're awake again, start restoring things */
out_be32(MEM_CTRL, 0x3f);
pbook_pci_restore();
/* wait for the PMU interrupt sequence to complete */
while (asleep)
mb();
/* reenable interrupts */
for (i = 0; i < 32; ++i)
if (i != vias->intrs[0].line && (save_irqen & (1 << i)))
enable_irq(i);
/* Notify drivers */
notifier_call_chain(&sleep_notifier_list, PBOOK_WAKE, NULL);
/* reenable ADB autopoll */
pmu_adb_autopoll(adb_dev_map);
/* Turn on the screen backlight, if it was on before */
if (save_backlight)
pmu_enable_backlight(1);
/* Wait for the hard disk to spin up */
return 0;
}
/*
* Support for /dev/pmu device
*/
static int pmu_open(struct inode *inode, struct file *file)
{
return 0;
}
static ssize_t pmu_read(struct file *file, char *buf,
size_t count, loff_t *ppos)
{
return 0;
}
static ssize_t pmu_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)
{
return 0;
}
static int pmu_ioctl(struct inode * inode, struct file *filp,
u_int cmd, u_long arg)
{
int error;
__u32 value;
switch (cmd) {
case PMU_IOC_SLEEP:
return -ENOSYS;
case PMU_IOC_GET_BACKLIGHT:
return put_user(backlight_level, (__u32 *)arg);
case PMU_IOC_SET_BACKLIGHT:
error = get_user(value, (__u32 *)arg);
if (!error)
pmu_set_brightness(value);
return error;
case PMU_IOC_GET_MODEL:
return put_user(pmu_kind, (__u32 *)arg);
}
return -EINVAL;
}
static struct file_operations pmu_device_fops = {
.read = pmu_read,
.write = pmu_write,
.ioctl = pmu_ioctl,
.open = pmu_open,
};
static struct miscdevice pmu_device = {
PMU_MINOR, "pmu", &pmu_device_fops
};
void pmu_device_init(void)
{
if (!via)
return;
if (misc_register(&pmu_device) < 0)
printk(KERN_ERR "via-pmu68k: cannot register misc device.\n");
}
#endif /* CONFIG_PMAC_PBOOK */