You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2226 lines
61 KiB
2226 lines
61 KiB
18 years ago
|
/*******************************************************************************
|
||
|
|
||
|
Intel PRO/1000 Linux driver
|
||
|
Copyright(c) 1999 - 2007 Intel Corporation.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify it
|
||
|
under the terms and conditions of the GNU General Public License,
|
||
|
version 2, as published by the Free Software Foundation.
|
||
|
|
||
|
This program is distributed in the hope it will be useful, but WITHOUT
|
||
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License along with
|
||
|
this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
|
||
|
The full GNU General Public License is included in this distribution in
|
||
|
the file called "COPYING".
|
||
|
|
||
|
Contact Information:
|
||
|
Linux NICS <linux.nics@intel.com>
|
||
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
||
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
||
|
|
||
|
*******************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* 82562G-2 10/100 Network Connection
|
||
|
* 82562GT 10/100 Network Connection
|
||
|
* 82562GT-2 10/100 Network Connection
|
||
|
* 82562V 10/100 Network Connection
|
||
|
* 82562V-2 10/100 Network Connection
|
||
|
* 82566DC-2 Gigabit Network Connection
|
||
|
* 82566DC Gigabit Network Connection
|
||
|
* 82566DM-2 Gigabit Network Connection
|
||
|
* 82566DM Gigabit Network Connection
|
||
|
* 82566MC Gigabit Network Connection
|
||
|
* 82566MM Gigabit Network Connection
|
||
|
*/
|
||
|
|
||
|
#include <linux/netdevice.h>
|
||
|
#include <linux/ethtool.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/pci.h>
|
||
|
|
||
|
#include "e1000.h"
|
||
|
|
||
|
#define ICH_FLASH_GFPREG 0x0000
|
||
|
#define ICH_FLASH_HSFSTS 0x0004
|
||
|
#define ICH_FLASH_HSFCTL 0x0006
|
||
|
#define ICH_FLASH_FADDR 0x0008
|
||
|
#define ICH_FLASH_FDATA0 0x0010
|
||
|
|
||
|
#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
|
||
|
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
|
||
|
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
|
||
|
#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
|
||
|
#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
|
||
|
|
||
|
#define ICH_CYCLE_READ 0
|
||
|
#define ICH_CYCLE_WRITE 2
|
||
|
#define ICH_CYCLE_ERASE 3
|
||
|
|
||
|
#define FLASH_GFPREG_BASE_MASK 0x1FFF
|
||
|
#define FLASH_SECTOR_ADDR_SHIFT 12
|
||
|
|
||
|
#define ICH_FLASH_SEG_SIZE_256 256
|
||
|
#define ICH_FLASH_SEG_SIZE_4K 4096
|
||
|
#define ICH_FLASH_SEG_SIZE_8K 8192
|
||
|
#define ICH_FLASH_SEG_SIZE_64K 65536
|
||
|
|
||
|
|
||
|
#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
|
||
|
|
||
|
#define E1000_ICH_MNG_IAMT_MODE 0x2
|
||
|
|
||
|
#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
|
||
|
(ID_LED_DEF1_OFF2 << 8) | \
|
||
|
(ID_LED_DEF1_ON2 << 4) | \
|
||
|
(ID_LED_DEF1_DEF2))
|
||
|
|
||
|
#define E1000_ICH_NVM_SIG_WORD 0x13
|
||
|
#define E1000_ICH_NVM_SIG_MASK 0xC000
|
||
|
|
||
|
#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
|
||
|
|
||
|
#define E1000_FEXTNVM_SW_CONFIG 1
|
||
|
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
|
||
|
|
||
|
#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
|
||
|
|
||
|
#define E1000_ICH_RAR_ENTRIES 7
|
||
|
|
||
|
#define PHY_PAGE_SHIFT 5
|
||
|
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
|
||
|
((reg) & MAX_PHY_REG_ADDRESS))
|
||
|
#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
|
||
|
#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
|
||
|
|
||
|
#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
|
||
|
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
|
||
|
#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
|
||
|
|
||
|
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
|
||
|
/* Offset 04h HSFSTS */
|
||
|
union ich8_hws_flash_status {
|
||
|
struct ich8_hsfsts {
|
||
|
u16 flcdone :1; /* bit 0 Flash Cycle Done */
|
||
|
u16 flcerr :1; /* bit 1 Flash Cycle Error */
|
||
|
u16 dael :1; /* bit 2 Direct Access error Log */
|
||
|
u16 berasesz :2; /* bit 4:3 Sector Erase Size */
|
||
|
u16 flcinprog :1; /* bit 5 flash cycle in Progress */
|
||
|
u16 reserved1 :2; /* bit 13:6 Reserved */
|
||
|
u16 reserved2 :6; /* bit 13:6 Reserved */
|
||
|
u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
|
||
|
u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
|
||
|
} hsf_status;
|
||
|
u16 regval;
|
||
|
};
|
||
|
|
||
|
/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
|
||
|
/* Offset 06h FLCTL */
|
||
|
union ich8_hws_flash_ctrl {
|
||
|
struct ich8_hsflctl {
|
||
|
u16 flcgo :1; /* 0 Flash Cycle Go */
|
||
|
u16 flcycle :2; /* 2:1 Flash Cycle */
|
||
|
u16 reserved :5; /* 7:3 Reserved */
|
||
|
u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
|
||
|
u16 flockdn :6; /* 15:10 Reserved */
|
||
|
} hsf_ctrl;
|
||
|
u16 regval;
|
||
|
};
|
||
|
|
||
|
/* ICH Flash Region Access Permissions */
|
||
|
union ich8_hws_flash_regacc {
|
||
|
struct ich8_flracc {
|
||
|
u32 grra :8; /* 0:7 GbE region Read Access */
|
||
|
u32 grwa :8; /* 8:15 GbE region Write Access */
|
||
|
u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
|
||
|
u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
|
||
|
} hsf_flregacc;
|
||
|
u16 regval;
|
||
|
};
|
||
|
|
||
|
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
|
||
|
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
|
||
|
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
|
||
|
static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
|
||
|
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
|
||
|
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
|
||
|
u32 offset, u8 byte);
|
||
|
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
|
||
|
u16 *data);
|
||
|
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
||
|
u8 size, u16 *data);
|
||
|
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
|
||
|
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
|
||
|
|
||
|
static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
|
||
|
{
|
||
|
return readw(hw->flash_address + reg);
|
||
|
}
|
||
|
|
||
|
static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
|
||
|
{
|
||
|
return readl(hw->flash_address + reg);
|
||
|
}
|
||
|
|
||
|
static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
|
||
|
{
|
||
|
writew(val, hw->flash_address + reg);
|
||
|
}
|
||
|
|
||
|
static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
|
||
|
{
|
||
|
writel(val, hw->flash_address + reg);
|
||
|
}
|
||
|
|
||
|
#define er16flash(reg) __er16flash(hw, (reg))
|
||
|
#define er32flash(reg) __er32flash(hw, (reg))
|
||
|
#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
|
||
|
#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
|
||
|
|
||
|
/**
|
||
|
* e1000_init_phy_params_ich8lan - Initialize PHY function pointers
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Initialize family-specific PHY parameters and function pointers.
|
||
|
**/
|
||
|
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 i = 0;
|
||
|
|
||
|
phy->addr = 1;
|
||
|
phy->reset_delay_us = 100;
|
||
|
|
||
|
phy->id = 0;
|
||
|
while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
|
||
|
(i++ < 100)) {
|
||
|
msleep(1);
|
||
|
ret_val = e1000e_get_phy_id(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Verify phy id */
|
||
|
switch (phy->id) {
|
||
|
case IGP03E1000_E_PHY_ID:
|
||
|
phy->type = e1000_phy_igp_3;
|
||
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
||
|
break;
|
||
|
case IFE_E_PHY_ID:
|
||
|
case IFE_PLUS_E_PHY_ID:
|
||
|
case IFE_C_E_PHY_ID:
|
||
|
phy->type = e1000_phy_ife;
|
||
|
phy->autoneg_mask = E1000_ALL_NOT_GIG;
|
||
|
break;
|
||
|
default:
|
||
|
return -E1000_ERR_PHY;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Initialize family-specific NVM parameters and function
|
||
|
* pointers.
|
||
|
**/
|
||
|
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
||
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
||
|
u32 gfpreg;
|
||
|
u32 sector_base_addr;
|
||
|
u32 sector_end_addr;
|
||
|
u16 i;
|
||
|
|
||
|
/* Can't read flash registers if the register set isn't mapped.
|
||
|
*/
|
||
|
if (!hw->flash_address) {
|
||
|
hw_dbg(hw, "ERROR: Flash registers not mapped\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
|
||
|
nvm->type = e1000_nvm_flash_sw;
|
||
|
|
||
|
gfpreg = er32flash(ICH_FLASH_GFPREG);
|
||
|
|
||
|
/* sector_X_addr is a "sector"-aligned address (4096 bytes)
|
||
|
* Add 1 to sector_end_addr since this sector is included in
|
||
|
* the overall size. */
|
||
|
sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
|
||
|
sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
|
||
|
|
||
|
/* flash_base_addr is byte-aligned */
|
||
|
nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
|
||
|
|
||
|
/* find total size of the NVM, then cut in half since the total
|
||
|
* size represents two separate NVM banks. */
|
||
|
nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
|
||
|
<< FLASH_SECTOR_ADDR_SHIFT;
|
||
|
nvm->flash_bank_size /= 2;
|
||
|
/* Adjust to word count */
|
||
|
nvm->flash_bank_size /= sizeof(u16);
|
||
|
|
||
|
nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
|
||
|
|
||
|
/* Clear shadow ram */
|
||
|
for (i = 0; i < nvm->word_size; i++) {
|
||
|
dev_spec->shadow_ram[i].modified = 0;
|
||
|
dev_spec->shadow_ram[i].value = 0xFFFF;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_init_mac_params_ich8lan - Initialize MAC function pointers
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Initialize family-specific MAC parameters and function
|
||
|
* pointers.
|
||
|
**/
|
||
|
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
struct e1000_mac_info *mac = &hw->mac;
|
||
|
|
||
|
/* Set media type function pointer */
|
||
|
hw->media_type = e1000_media_type_copper;
|
||
|
|
||
|
/* Set mta register count */
|
||
|
mac->mta_reg_count = 32;
|
||
|
/* Set rar entry count */
|
||
|
mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
|
||
|
if (mac->type == e1000_ich8lan)
|
||
|
mac->rar_entry_count--;
|
||
|
/* Set if manageability features are enabled. */
|
||
|
mac->arc_subsystem_valid = 1;
|
||
|
|
||
|
/* Enable PCS Lock-loss workaround for ICH8 */
|
||
|
if (mac->type == e1000_ich8lan)
|
||
|
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
|
||
|
{
|
||
|
struct e1000_hw *hw = &adapter->hw;
|
||
|
s32 rc;
|
||
|
|
||
|
rc = e1000_init_mac_params_ich8lan(adapter);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
rc = e1000_init_nvm_params_ich8lan(hw);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
rc = e1000_init_phy_params_ich8lan(hw);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
if ((adapter->hw.mac.type == e1000_ich8lan) &&
|
||
|
(adapter->hw.phy.type == e1000_phy_igp_3))
|
||
|
adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_acquire_swflag_ich8lan - Acquire software control flag
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Acquires the software control flag for performing NVM and PHY
|
||
|
* operations. This is a function pointer entry point only called by
|
||
|
* read/write routines for the PHY and NVM parts.
|
||
|
**/
|
||
|
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 extcnf_ctrl;
|
||
|
u32 timeout = PHY_CFG_TIMEOUT;
|
||
|
|
||
|
while (timeout) {
|
||
|
extcnf_ctrl = er32(EXTCNF_CTRL);
|
||
|
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
|
||
|
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
||
|
|
||
|
extcnf_ctrl = er32(EXTCNF_CTRL);
|
||
|
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
|
||
|
break;
|
||
|
mdelay(1);
|
||
|
timeout--;
|
||
|
}
|
||
|
|
||
|
if (!timeout) {
|
||
|
hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_release_swflag_ich8lan - Release software control flag
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Releases the software control flag for performing NVM and PHY operations.
|
||
|
* This is a function pointer entry point only called by read/write
|
||
|
* routines for the PHY and NVM parts.
|
||
|
**/
|
||
|
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 extcnf_ctrl;
|
||
|
|
||
|
extcnf_ctrl = er32(EXTCNF_CTRL);
|
||
|
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
|
||
|
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Checks if firmware is blocking the reset of the PHY.
|
||
|
* This is a function pointer entry point only called by
|
||
|
* reset routines.
|
||
|
**/
|
||
|
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 fwsm;
|
||
|
|
||
|
fwsm = er32(FWSM);
|
||
|
|
||
|
return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Forces the speed and duplex settings of the PHY.
|
||
|
* This is a function pointer entry point only called by
|
||
|
* PHY setup routines.
|
||
|
**/
|
||
|
static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
bool link;
|
||
|
|
||
|
if (phy->type != e1000_phy_ife) {
|
||
|
ret_val = e1000e_phy_force_speed_duplex_igp(hw);
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
e1000e_phy_force_speed_duplex_setup(hw, &data);
|
||
|
|
||
|
ret_val = e1e_wphy(hw, PHY_CONTROL, data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Disable MDI-X support for 10/100 */
|
||
|
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~IFE_PMC_AUTO_MDIX;
|
||
|
data &= ~IFE_PMC_FORCE_MDIX;
|
||
|
|
||
|
ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
hw_dbg(hw, "IFE PMC: %X\n", data);
|
||
|
|
||
|
udelay(1);
|
||
|
|
||
|
if (phy->wait_for_link) {
|
||
|
hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
|
||
|
|
||
|
ret_val = e1000e_phy_has_link_generic(hw,
|
||
|
PHY_FORCE_LIMIT,
|
||
|
100000,
|
||
|
&link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (!link)
|
||
|
hw_dbg(hw, "Link taking longer than expected.\n");
|
||
|
|
||
|
/* Try once more */
|
||
|
ret_val = e1000e_phy_has_link_generic(hw,
|
||
|
PHY_FORCE_LIMIT,
|
||
|
100000,
|
||
|
&link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_phy_hw_reset_ich8lan - Performs a PHY reset
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Resets the PHY
|
||
|
* This is a function pointer entry point called by drivers
|
||
|
* or other shared routines.
|
||
|
**/
|
||
|
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
u32 i;
|
||
|
u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
|
||
|
s32 ret_val;
|
||
|
u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
|
||
|
u16 word_addr, reg_data, reg_addr, phy_page = 0;
|
||
|
|
||
|
ret_val = e1000e_phy_hw_reset_generic(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Initialize the PHY from the NVM on ICH platforms. This
|
||
|
* is needed due to an issue where the NVM configuration is
|
||
|
* not properly autoloaded after power transitions.
|
||
|
* Therefore, after each PHY reset, we will load the
|
||
|
* configuration data out of the NVM manually.
|
||
|
*/
|
||
|
if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
|
||
|
struct e1000_adapter *adapter = hw->adapter;
|
||
|
|
||
|
/* Check if SW needs configure the PHY */
|
||
|
if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
|
||
|
(adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
|
||
|
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
|
||
|
else
|
||
|
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
|
||
|
|
||
|
data = er32(FEXTNVM);
|
||
|
if (!(data & sw_cfg_mask))
|
||
|
return 0;
|
||
|
|
||
|
/* Wait for basic configuration completes before proceeding*/
|
||
|
do {
|
||
|
data = er32(STATUS);
|
||
|
data &= E1000_STATUS_LAN_INIT_DONE;
|
||
|
udelay(100);
|
||
|
} while ((!data) && --loop);
|
||
|
|
||
|
/* If basic configuration is incomplete before the above loop
|
||
|
* count reaches 0, loading the configuration from NVM will
|
||
|
* leave the PHY in a bad state possibly resulting in no link.
|
||
|
*/
|
||
|
if (loop == 0) {
|
||
|
hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
|
||
|
}
|
||
|
|
||
|
/* Clear the Init Done bit for the next init event */
|
||
|
data = er32(STATUS);
|
||
|
data &= ~E1000_STATUS_LAN_INIT_DONE;
|
||
|
ew32(STATUS, data);
|
||
|
|
||
|
/* Make sure HW does not configure LCD from PHY
|
||
|
* extended configuration before SW configuration */
|
||
|
data = er32(EXTCNF_CTRL);
|
||
|
if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
|
||
|
return 0;
|
||
|
|
||
|
cnf_size = er32(EXTCNF_SIZE);
|
||
|
cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
|
||
|
cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
|
||
|
if (!cnf_size)
|
||
|
return 0;
|
||
|
|
||
|
cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
|
||
|
cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
|
||
|
|
||
|
/* Configure LCD from extended configuration
|
||
|
* region. */
|
||
|
|
||
|
/* cnf_base_addr is in DWORD */
|
||
|
word_addr = (u16)(cnf_base_addr << 1);
|
||
|
|
||
|
for (i = 0; i < cnf_size; i++) {
|
||
|
ret_val = e1000_read_nvm(hw,
|
||
|
(word_addr + i * 2),
|
||
|
1,
|
||
|
®_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ret_val = e1000_read_nvm(hw,
|
||
|
(word_addr + i * 2 + 1),
|
||
|
1,
|
||
|
®_addr);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Save off the PHY page for future writes. */
|
||
|
if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
|
||
|
phy_page = reg_data;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
reg_addr |= phy_page;
|
||
|
|
||
|
ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Populates "phy" structure with various feature states.
|
||
|
* This function is only called by other family-specific
|
||
|
* routines.
|
||
|
**/
|
||
|
static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
bool link;
|
||
|
|
||
|
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (!link) {
|
||
|
hw_dbg(hw, "Phy info is only valid if link is up\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
|
||
|
|
||
|
if (phy->polarity_correction) {
|
||
|
ret_val = e1000_check_polarity_ife_ich8lan(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
} else {
|
||
|
/* Polarity is forced */
|
||
|
phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
|
||
|
? e1000_rev_polarity_reversed
|
||
|
: e1000_rev_polarity_normal;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
|
||
|
|
||
|
/* The following parameters are undefined for 10/100 operation. */
|
||
|
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
|
||
|
phy->local_rx = e1000_1000t_rx_status_undefined;
|
||
|
phy->remote_rx = e1000_1000t_rx_status_undefined;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Wrapper for calling the get_phy_info routines for the appropriate phy type.
|
||
|
* This is a function pointer entry point called by drivers
|
||
|
* or other shared routines.
|
||
|
**/
|
||
|
static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
switch (hw->phy.type) {
|
||
|
case e1000_phy_ife:
|
||
|
return e1000_get_phy_info_ife_ich8lan(hw);
|
||
|
break;
|
||
|
case e1000_phy_igp_3:
|
||
|
return e1000e_get_phy_info_igp(hw);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return -E1000_ERR_PHY_TYPE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Polarity is determined on the polarity reveral feature being enabled.
|
||
|
* This function is only called by other family-specific
|
||
|
* routines.
|
||
|
**/
|
||
|
static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
s32 ret_val;
|
||
|
u16 phy_data, offset, mask;
|
||
|
|
||
|
/* Polarity is determined based on the reversal feature
|
||
|
* being enabled.
|
||
|
*/
|
||
|
if (phy->polarity_correction) {
|
||
|
offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
|
||
|
mask = IFE_PESC_POLARITY_REVERSED;
|
||
|
} else {
|
||
|
offset = IFE_PHY_SPECIAL_CONTROL;
|
||
|
mask = IFE_PSC_FORCE_POLARITY;
|
||
|
}
|
||
|
|
||
|
ret_val = e1e_rphy(hw, offset, &phy_data);
|
||
|
|
||
|
if (!ret_val)
|
||
|
phy->cable_polarity = (phy_data & mask)
|
||
|
? e1000_rev_polarity_reversed
|
||
|
: e1000_rev_polarity_normal;
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @active: TRUE to enable LPLU, FALSE to disable
|
||
|
*
|
||
|
* Sets the LPLU D0 state according to the active flag. When
|
||
|
* activating LPLU this function also disables smart speed
|
||
|
* and vice versa. LPLU will not be activated unless the
|
||
|
* device autonegotiation advertisement meets standards of
|
||
|
* either 10 or 10/100 or 10/100/1000 at all duplexes.
|
||
|
* This is a function pointer entry point only called by
|
||
|
* PHY setup routines.
|
||
|
**/
|
||
|
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
u32 phy_ctrl;
|
||
|
s32 ret_val = 0;
|
||
|
u16 data;
|
||
|
|
||
|
if (phy->type != e1000_phy_igp_3)
|
||
|
return ret_val;
|
||
|
|
||
|
phy_ctrl = er32(PHY_CTRL);
|
||
|
|
||
|
if (active) {
|
||
|
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
|
||
|
ew32(PHY_CTRL, phy_ctrl);
|
||
|
|
||
|
/* Call gig speed drop workaround on LPLU before accessing
|
||
|
* any PHY registers */
|
||
|
if ((hw->mac.type == e1000_ich8lan) &&
|
||
|
(hw->phy.type == e1000_phy_igp_3))
|
||
|
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||
|
|
||
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
|
||
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
} else {
|
||
|
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
|
||
|
ew32(PHY_CTRL, phy_ctrl);
|
||
|
|
||
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||
|
* during Dx states where the power conservation is most
|
||
|
* important. During driver activity we should enable
|
||
|
* SmartSpeed, so performance is maintained. */
|
||
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
||
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
||
|
data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @active: TRUE to enable LPLU, FALSE to disable
|
||
|
*
|
||
|
* Sets the LPLU D3 state according to the active flag. When
|
||
|
* activating LPLU this function also disables smart speed
|
||
|
* and vice versa. LPLU will not be activated unless the
|
||
|
* device autonegotiation advertisement meets standards of
|
||
|
* either 10 or 10/100 or 10/100/1000 at all duplexes.
|
||
|
* This is a function pointer entry point only called by
|
||
|
* PHY setup routines.
|
||
|
**/
|
||
|
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
|
||
|
{
|
||
|
struct e1000_phy_info *phy = &hw->phy;
|
||
|
u32 phy_ctrl;
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
|
||
|
phy_ctrl = er32(PHY_CTRL);
|
||
|
|
||
|
if (!active) {
|
||
|
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
|
||
|
ew32(PHY_CTRL, phy_ctrl);
|
||
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
||
|
* during Dx states where the power conservation is most
|
||
|
* important. During driver activity we should enable
|
||
|
* SmartSpeed, so performance is maintained. */
|
||
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
||
|
ret_val = e1e_rphy(hw,
|
||
|
IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw,
|
||
|
IGP01E1000_PHY_PORT_CONFIG,
|
||
|
data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
||
|
ret_val = e1e_rphy(hw,
|
||
|
IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw,
|
||
|
IGP01E1000_PHY_PORT_CONFIG,
|
||
|
data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
|
||
|
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
|
||
|
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
|
||
|
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
|
||
|
ew32(PHY_CTRL, phy_ctrl);
|
||
|
|
||
|
/* Call gig speed drop workaround on LPLU before accessing
|
||
|
* any PHY registers */
|
||
|
if ((hw->mac.type == e1000_ich8lan) &&
|
||
|
(hw->phy.type == e1000_phy_igp_3))
|
||
|
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||
|
|
||
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
||
|
ret_val = e1e_rphy(hw,
|
||
|
IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
ret_val = e1e_wphy(hw,
|
||
|
IGP01E1000_PHY_PORT_CONFIG,
|
||
|
data);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_read_nvm_ich8lan - Read word(s) from the NVM
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: The offset (in bytes) of the word(s) to read.
|
||
|
* @words: Size of data to read in words
|
||
|
* @data: Pointer to the word(s) to read at offset.
|
||
|
*
|
||
|
* Reads a word(s) from the NVM using the flash access registers.
|
||
|
**/
|
||
|
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
|
||
|
u16 *data)
|
||
|
{
|
||
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
||
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
||
|
u32 act_offset;
|
||
|
s32 ret_val;
|
||
|
u16 i, word;
|
||
|
|
||
|
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
|
||
|
(words == 0)) {
|
||
|
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
|
||
|
return -E1000_ERR_NVM;
|
||
|
}
|
||
|
|
||
|
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Start with the bank offset, then add the relative offset. */
|
||
|
act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
|
||
|
? nvm->flash_bank_size
|
||
|
: 0;
|
||
|
act_offset += offset;
|
||
|
|
||
|
for (i = 0; i < words; i++) {
|
||
|
if ((dev_spec->shadow_ram) &&
|
||
|
(dev_spec->shadow_ram[offset+i].modified)) {
|
||
|
data[i] = dev_spec->shadow_ram[offset+i].value;
|
||
|
} else {
|
||
|
ret_val = e1000_read_flash_word_ich8lan(hw,
|
||
|
act_offset + i,
|
||
|
&word);
|
||
|
if (ret_val)
|
||
|
break;
|
||
|
data[i] = word;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
e1000_release_swflag_ich8lan(hw);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_flash_cycle_init_ich8lan - Initialize flash
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* This function does initial flash setup so that a new read/write/erase cycle
|
||
|
* can be started.
|
||
|
**/
|
||
|
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
union ich8_hws_flash_status hsfsts;
|
||
|
s32 ret_val = -E1000_ERR_NVM;
|
||
|
s32 i = 0;
|
||
|
|
||
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
||
|
|
||
|
/* Check if the flash descriptor is valid */
|
||
|
if (hsfsts.hsf_status.fldesvalid == 0) {
|
||
|
hw_dbg(hw, "Flash descriptor invalid. "
|
||
|
"SW Sequencing must be used.");
|
||
|
return -E1000_ERR_NVM;
|
||
|
}
|
||
|
|
||
|
/* Clear FCERR and DAEL in hw status by writing 1 */
|
||
|
hsfsts.hsf_status.flcerr = 1;
|
||
|
hsfsts.hsf_status.dael = 1;
|
||
|
|
||
|
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
||
|
|
||
|
/* Either we should have a hardware SPI cycle in progress
|
||
|
* bit to check against, in order to start a new cycle or
|
||
|
* FDONE bit should be changed in the hardware so that it
|
||
|
* is 1 after harware reset, which can then be used as an
|
||
|
* indication whether a cycle is in progress or has been
|
||
|
* completed.
|
||
|
*/
|
||
|
|
||
|
if (hsfsts.hsf_status.flcinprog == 0) {
|
||
|
/* There is no cycle running at present,
|
||
|
* so we can start a cycle */
|
||
|
/* Begin by setting Flash Cycle Done. */
|
||
|
hsfsts.hsf_status.flcdone = 1;
|
||
|
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
||
|
ret_val = 0;
|
||
|
} else {
|
||
|
/* otherwise poll for sometime so the current
|
||
|
* cycle has a chance to end before giving up. */
|
||
|
for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
|
||
|
hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
|
||
|
if (hsfsts.hsf_status.flcinprog == 0) {
|
||
|
ret_val = 0;
|
||
|
break;
|
||
|
}
|
||
|
udelay(1);
|
||
|
}
|
||
|
if (ret_val == 0) {
|
||
|
/* Successful in waiting for previous cycle to timeout,
|
||
|
* now set the Flash Cycle Done. */
|
||
|
hsfsts.hsf_status.flcdone = 1;
|
||
|
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
||
|
} else {
|
||
|
hw_dbg(hw, "Flash controller busy, cannot get access");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @timeout: maximum time to wait for completion
|
||
|
*
|
||
|
* This function starts a flash cycle and waits for its completion.
|
||
|
**/
|
||
|
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
|
||
|
{
|
||
|
union ich8_hws_flash_ctrl hsflctl;
|
||
|
union ich8_hws_flash_status hsfsts;
|
||
|
s32 ret_val = -E1000_ERR_NVM;
|
||
|
u32 i = 0;
|
||
|
|
||
|
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
|
||
|
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
||
|
hsflctl.hsf_ctrl.flcgo = 1;
|
||
|
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
||
|
|
||
|
/* wait till FDONE bit is set to 1 */
|
||
|
do {
|
||
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
||
|
if (hsfsts.hsf_status.flcdone == 1)
|
||
|
break;
|
||
|
udelay(1);
|
||
|
} while (i++ < timeout);
|
||
|
|
||
|
if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
|
||
|
return 0;
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_read_flash_word_ich8lan - Read word from flash
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: offset to data location
|
||
|
* @data: pointer to the location for storing the data
|
||
|
*
|
||
|
* Reads the flash word at offset into data. Offset is converted
|
||
|
* to bytes before read.
|
||
|
**/
|
||
|
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
|
||
|
u16 *data)
|
||
|
{
|
||
|
/* Must convert offset into bytes. */
|
||
|
offset <<= 1;
|
||
|
|
||
|
return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_read_flash_data_ich8lan - Read byte or word from NVM
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: The offset (in bytes) of the byte or word to read.
|
||
|
* @size: Size of data to read, 1=byte 2=word
|
||
|
* @data: Pointer to the word to store the value read.
|
||
|
*
|
||
|
* Reads a byte or word from the NVM using the flash access registers.
|
||
|
**/
|
||
|
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
||
|
u8 size, u16 *data)
|
||
|
{
|
||
|
union ich8_hws_flash_status hsfsts;
|
||
|
union ich8_hws_flash_ctrl hsflctl;
|
||
|
u32 flash_linear_addr;
|
||
|
u32 flash_data = 0;
|
||
|
s32 ret_val = -E1000_ERR_NVM;
|
||
|
u8 count = 0;
|
||
|
|
||
|
if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
|
||
|
return -E1000_ERR_NVM;
|
||
|
|
||
|
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
|
||
|
hw->nvm.flash_base_addr;
|
||
|
|
||
|
do {
|
||
|
udelay(1);
|
||
|
/* Steps */
|
||
|
ret_val = e1000_flash_cycle_init_ich8lan(hw);
|
||
|
if (ret_val != 0)
|
||
|
break;
|
||
|
|
||
|
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
||
|
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
|
||
|
hsflctl.hsf_ctrl.fldbcount = size - 1;
|
||
|
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
|
||
|
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
||
|
|
||
|
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
|
||
|
|
||
|
ret_val = e1000_flash_cycle_ich8lan(hw,
|
||
|
ICH_FLASH_READ_COMMAND_TIMEOUT);
|
||
|
|
||
|
/* Check if FCERR is set to 1, if set to 1, clear it
|
||
|
* and try the whole sequence a few more times, else
|
||
|
* read in (shift in) the Flash Data0, the order is
|
||
|
* least significant byte first msb to lsb */
|
||
|
if (ret_val == 0) {
|
||
|
flash_data = er32flash(ICH_FLASH_FDATA0);
|
||
|
if (size == 1) {
|
||
|
*data = (u8)(flash_data & 0x000000FF);
|
||
|
} else if (size == 2) {
|
||
|
*data = (u16)(flash_data & 0x0000FFFF);
|
||
|
}
|
||
|
break;
|
||
|
} else {
|
||
|
/* If we've gotten here, then things are probably
|
||
|
* completely hosed, but if the error condition is
|
||
|
* detected, it won't hurt to give it another try...
|
||
|
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
|
||
|
*/
|
||
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
||
|
if (hsfsts.hsf_status.flcerr == 1) {
|
||
|
/* Repeat for some time before giving up. */
|
||
|
continue;
|
||
|
} else if (hsfsts.hsf_status.flcdone == 0) {
|
||
|
hw_dbg(hw, "Timeout error - flash cycle "
|
||
|
"did not complete.");
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_write_nvm_ich8lan - Write word(s) to the NVM
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: The offset (in bytes) of the word(s) to write.
|
||
|
* @words: Size of data to write in words
|
||
|
* @data: Pointer to the word(s) to write at offset.
|
||
|
*
|
||
|
* Writes a byte or word to the NVM using the flash access registers.
|
||
|
**/
|
||
|
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
|
||
|
u16 *data)
|
||
|
{
|
||
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
||
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
||
|
s32 ret_val;
|
||
|
u16 i;
|
||
|
|
||
|
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
|
||
|
(words == 0)) {
|
||
|
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
|
||
|
return -E1000_ERR_NVM;
|
||
|
}
|
||
|
|
||
|
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
for (i = 0; i < words; i++) {
|
||
|
dev_spec->shadow_ram[offset+i].modified = 1;
|
||
|
dev_spec->shadow_ram[offset+i].value = data[i];
|
||
|
}
|
||
|
|
||
|
e1000_release_swflag_ich8lan(hw);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* The NVM checksum is updated by calling the generic update_nvm_checksum,
|
||
|
* which writes the checksum to the shadow ram. The changes in the shadow
|
||
|
* ram are then committed to the EEPROM by processing each bank at a time
|
||
|
* checking for the modified bit and writing only the pending changes.
|
||
|
* After a succesful commit, the shadow ram is cleared and is ready for
|
||
|
* future writes.
|
||
|
**/
|
||
|
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
||
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
||
|
u32 i, act_offset, new_bank_offset, old_bank_offset;
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
|
||
|
ret_val = e1000e_update_nvm_checksum_generic(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;;
|
||
|
|
||
|
if (nvm->type != e1000_nvm_flash_sw)
|
||
|
return ret_val;;
|
||
|
|
||
|
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;;
|
||
|
|
||
|
/* We're writing to the opposite bank so if we're on bank 1,
|
||
|
* write to bank 0 etc. We also need to erase the segment that
|
||
|
* is going to be written */
|
||
|
if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
|
||
|
new_bank_offset = nvm->flash_bank_size;
|
||
|
old_bank_offset = 0;
|
||
|
e1000_erase_flash_bank_ich8lan(hw, 1);
|
||
|
} else {
|
||
|
old_bank_offset = nvm->flash_bank_size;
|
||
|
new_bank_offset = 0;
|
||
|
e1000_erase_flash_bank_ich8lan(hw, 0);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
|
||
|
/* Determine whether to write the value stored
|
||
|
* in the other NVM bank or a modified value stored
|
||
|
* in the shadow RAM */
|
||
|
if (dev_spec->shadow_ram[i].modified) {
|
||
|
data = dev_spec->shadow_ram[i].value;
|
||
|
} else {
|
||
|
e1000_read_flash_word_ich8lan(hw,
|
||
|
i + old_bank_offset,
|
||
|
&data);
|
||
|
}
|
||
|
|
||
|
/* If the word is 0x13, then make sure the signature bits
|
||
|
* (15:14) are 11b until the commit has completed.
|
||
|
* This will allow us to write 10b which indicates the
|
||
|
* signature is valid. We want to do this after the write
|
||
|
* has completed so that we don't mark the segment valid
|
||
|
* while the write is still in progress */
|
||
|
if (i == E1000_ICH_NVM_SIG_WORD)
|
||
|
data |= E1000_ICH_NVM_SIG_MASK;
|
||
|
|
||
|
/* Convert offset to bytes. */
|
||
|
act_offset = (i + new_bank_offset) << 1;
|
||
|
|
||
|
udelay(100);
|
||
|
/* Write the bytes to the new bank. */
|
||
|
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
|
||
|
act_offset,
|
||
|
(u8)data);
|
||
|
if (ret_val)
|
||
|
break;
|
||
|
|
||
|
udelay(100);
|
||
|
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
|
||
|
act_offset + 1,
|
||
|
(u8)(data >> 8));
|
||
|
if (ret_val)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Don't bother writing the segment valid bits if sector
|
||
|
* programming failed. */
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "Flash commit failed.\n");
|
||
|
e1000_release_swflag_ich8lan(hw);
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Finally validate the new segment by setting bit 15:14
|
||
|
* to 10b in word 0x13 , this can be done without an
|
||
|
* erase as well since these bits are 11 to start with
|
||
|
* and we need to change bit 14 to 0b */
|
||
|
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
|
||
|
e1000_read_flash_word_ich8lan(hw, act_offset, &data);
|
||
|
data &= 0xBFFF;
|
||
|
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
|
||
|
act_offset * 2 + 1,
|
||
|
(u8)(data >> 8));
|
||
|
if (ret_val) {
|
||
|
e1000_release_swflag_ich8lan(hw);
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* And invalidate the previously valid segment by setting
|
||
|
* its signature word (0x13) high_byte to 0b. This can be
|
||
|
* done without an erase because flash erase sets all bits
|
||
|
* to 1's. We can write 1's to 0's without an erase */
|
||
|
act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
|
||
|
ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
|
||
|
if (ret_val) {
|
||
|
e1000_release_swflag_ich8lan(hw);
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Great! Everything worked, we can now clear the cached entries. */
|
||
|
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
|
||
|
dev_spec->shadow_ram[i].modified = 0;
|
||
|
dev_spec->shadow_ram[i].value = 0xFFFF;
|
||
|
}
|
||
|
|
||
|
e1000_release_swflag_ich8lan(hw);
|
||
|
|
||
|
/* Reload the EEPROM, or else modifications will not appear
|
||
|
* until after the next adapter reset.
|
||
|
*/
|
||
|
e1000e_reload_nvm(hw);
|
||
|
msleep(10);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
|
||
|
* If the bit is 0, that the EEPROM had been modified, but the checksum was not
|
||
|
* calculated, in which case we need to calculate the checksum and set bit 6.
|
||
|
**/
|
||
|
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
u16 data;
|
||
|
|
||
|
/* Read 0x19 and check bit 6. If this bit is 0, the checksum
|
||
|
* needs to be fixed. This bit is an indication that the NVM
|
||
|
* was prepared by OEM software and did not calculate the
|
||
|
* checksum...a likely scenario.
|
||
|
*/
|
||
|
ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if ((data & 0x40) == 0) {
|
||
|
data |= 0x40;
|
||
|
ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
ret_val = e1000e_update_nvm_checksum(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
return e1000e_validate_nvm_checksum_generic(hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_write_flash_data_ich8lan - Writes bytes to the NVM
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: The offset (in bytes) of the byte/word to read.
|
||
|
* @size: Size of data to read, 1=byte 2=word
|
||
|
* @data: The byte(s) to write to the NVM.
|
||
|
*
|
||
|
* Writes one/two bytes to the NVM using the flash access registers.
|
||
|
**/
|
||
|
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
||
|
u8 size, u16 data)
|
||
|
{
|
||
|
union ich8_hws_flash_status hsfsts;
|
||
|
union ich8_hws_flash_ctrl hsflctl;
|
||
|
u32 flash_linear_addr;
|
||
|
u32 flash_data = 0;
|
||
|
s32 ret_val;
|
||
|
u8 count = 0;
|
||
|
|
||
|
if (size < 1 || size > 2 || data > size * 0xff ||
|
||
|
offset > ICH_FLASH_LINEAR_ADDR_MASK)
|
||
|
return -E1000_ERR_NVM;
|
||
|
|
||
|
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
|
||
|
hw->nvm.flash_base_addr;
|
||
|
|
||
|
do {
|
||
|
udelay(1);
|
||
|
/* Steps */
|
||
|
ret_val = e1000_flash_cycle_init_ich8lan(hw);
|
||
|
if (ret_val)
|
||
|
break;
|
||
|
|
||
|
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
||
|
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
|
||
|
hsflctl.hsf_ctrl.fldbcount = size -1;
|
||
|
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
|
||
|
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
||
|
|
||
|
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
|
||
|
|
||
|
if (size == 1)
|
||
|
flash_data = (u32)data & 0x00FF;
|
||
|
else
|
||
|
flash_data = (u32)data;
|
||
|
|
||
|
ew32flash(ICH_FLASH_FDATA0, flash_data);
|
||
|
|
||
|
/* check if FCERR is set to 1 , if set to 1, clear it
|
||
|
* and try the whole sequence a few more times else done */
|
||
|
ret_val = e1000_flash_cycle_ich8lan(hw,
|
||
|
ICH_FLASH_WRITE_COMMAND_TIMEOUT);
|
||
|
if (!ret_val)
|
||
|
break;
|
||
|
|
||
|
/* If we're here, then things are most likely
|
||
|
* completely hosed, but if the error condition
|
||
|
* is detected, it won't hurt to give it another
|
||
|
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
|
||
|
*/
|
||
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
||
|
if (hsfsts.hsf_status.flcerr == 1)
|
||
|
/* Repeat for some time before giving up. */
|
||
|
continue;
|
||
|
if (hsfsts.hsf_status.flcdone == 0) {
|
||
|
hw_dbg(hw, "Timeout error - flash cycle "
|
||
|
"did not complete.");
|
||
|
break;
|
||
|
}
|
||
|
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_write_flash_byte_ich8lan - Write a single byte to NVM
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: The index of the byte to read.
|
||
|
* @data: The byte to write to the NVM.
|
||
|
*
|
||
|
* Writes a single byte to the NVM using the flash access registers.
|
||
|
**/
|
||
|
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
|
||
|
u8 data)
|
||
|
{
|
||
|
u16 word = (u16)data;
|
||
|
|
||
|
return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @offset: The offset of the byte to write.
|
||
|
* @byte: The byte to write to the NVM.
|
||
|
*
|
||
|
* Writes a single byte to the NVM using the flash access registers.
|
||
|
* Goes through a retry algorithm before giving up.
|
||
|
**/
|
||
|
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
|
||
|
u32 offset, u8 byte)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
u16 program_retries;
|
||
|
|
||
|
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
|
||
|
if (!ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
for (program_retries = 0; program_retries < 100; program_retries++) {
|
||
|
hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
|
||
|
udelay(100);
|
||
|
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
|
||
|
if (!ret_val)
|
||
|
break;
|
||
|
}
|
||
|
if (program_retries == 100)
|
||
|
return -E1000_ERR_NVM;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @bank: 0 for first bank, 1 for second bank, etc.
|
||
|
*
|
||
|
* Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
|
||
|
* bank N is 4096 * N + flash_reg_addr.
|
||
|
**/
|
||
|
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
|
||
|
{
|
||
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
||
|
union ich8_hws_flash_status hsfsts;
|
||
|
union ich8_hws_flash_ctrl hsflctl;
|
||
|
u32 flash_linear_addr;
|
||
|
/* bank size is in 16bit words - adjust to bytes */
|
||
|
u32 flash_bank_size = nvm->flash_bank_size * 2;
|
||
|
s32 ret_val;
|
||
|
s32 count = 0;
|
||
|
s32 iteration;
|
||
|
s32 sector_size;
|
||
|
s32 j;
|
||
|
|
||
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
||
|
|
||
|
/* Determine HW Sector size: Read BERASE bits of hw flash status
|
||
|
* register */
|
||
|
/* 00: The Hw sector is 256 bytes, hence we need to erase 16
|
||
|
* consecutive sectors. The start index for the nth Hw sector
|
||
|
* can be calculated as = bank * 4096 + n * 256
|
||
|
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
|
||
|
* The start index for the nth Hw sector can be calculated
|
||
|
* as = bank * 4096
|
||
|
* 10: The Hw sector is 8K bytes, nth sector = bank * 8192
|
||
|
* (ich9 only, otherwise error condition)
|
||
|
* 11: The Hw sector is 64K bytes, nth sector = bank * 65536
|
||
|
*/
|
||
|
switch (hsfsts.hsf_status.berasesz) {
|
||
|
case 0:
|
||
|
/* Hw sector size 256 */
|
||
|
sector_size = ICH_FLASH_SEG_SIZE_256;
|
||
|
iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
|
||
|
break;
|
||
|
case 1:
|
||
|
sector_size = ICH_FLASH_SEG_SIZE_4K;
|
||
|
iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
|
||
|
break;
|
||
|
case 2:
|
||
|
if (hw->mac.type == e1000_ich9lan) {
|
||
|
sector_size = ICH_FLASH_SEG_SIZE_8K;
|
||
|
iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
|
||
|
} else {
|
||
|
return -E1000_ERR_NVM;
|
||
|
}
|
||
|
break;
|
||
|
case 3:
|
||
|
sector_size = ICH_FLASH_SEG_SIZE_64K;
|
||
|
iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
|
||
|
break;
|
||
|
default:
|
||
|
return -E1000_ERR_NVM;
|
||
|
}
|
||
|
|
||
|
/* Start with the base address, then add the sector offset. */
|
||
|
flash_linear_addr = hw->nvm.flash_base_addr;
|
||
|
flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
|
||
|
|
||
|
for (j = 0; j < iteration ; j++) {
|
||
|
do {
|
||
|
/* Steps */
|
||
|
ret_val = e1000_flash_cycle_init_ich8lan(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* Write a value 11 (block Erase) in Flash
|
||
|
* Cycle field in hw flash control */
|
||
|
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
||
|
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
|
||
|
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
||
|
|
||
|
/* Write the last 24 bits of an index within the
|
||
|
* block into Flash Linear address field in Flash
|
||
|
* Address.
|
||
|
*/
|
||
|
flash_linear_addr += (j * sector_size);
|
||
|
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
|
||
|
|
||
|
ret_val = e1000_flash_cycle_ich8lan(hw,
|
||
|
ICH_FLASH_ERASE_COMMAND_TIMEOUT);
|
||
|
if (ret_val == 0)
|
||
|
break;
|
||
|
|
||
|
/* Check if FCERR is set to 1. If 1,
|
||
|
* clear it and try the whole sequence
|
||
|
* a few more times else Done */
|
||
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
||
|
if (hsfsts.hsf_status.flcerr == 1)
|
||
|
/* repeat for some time before
|
||
|
* giving up */
|
||
|
continue;
|
||
|
else if (hsfsts.hsf_status.flcdone == 0)
|
||
|
return ret_val;
|
||
|
} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_valid_led_default_ich8lan - Set the default LED settings
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @data: Pointer to the LED settings
|
||
|
*
|
||
|
* Reads the LED default settings from the NVM to data. If the NVM LED
|
||
|
* settings is all 0's or F's, set the LED default to a valid LED default
|
||
|
* setting.
|
||
|
**/
|
||
|
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "NVM Read Error\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
if (*data == ID_LED_RESERVED_0000 ||
|
||
|
*data == ID_LED_RESERVED_FFFF)
|
||
|
*data = ID_LED_DEFAULT_ICH8LAN;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_get_bus_info_ich8lan - Get/Set the bus type and width
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
|
||
|
* register, so the the bus width is hard coded.
|
||
|
**/
|
||
|
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_bus_info *bus = &hw->bus;
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = e1000e_get_bus_info_pcie(hw);
|
||
|
|
||
|
/* ICH devices are "PCI Express"-ish. They have
|
||
|
* a configuration space, but do not contain
|
||
|
* PCI Express Capability registers, so bus width
|
||
|
* must be hardcoded.
|
||
|
*/
|
||
|
if (bus->width == e1000_bus_width_unknown)
|
||
|
bus->width = e1000_bus_width_pcie_x1;
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_reset_hw_ich8lan - Reset the hardware
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Does a full reset of the hardware which includes a reset of the PHY and
|
||
|
* MAC.
|
||
|
**/
|
||
|
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 ctrl, icr, kab;
|
||
|
s32 ret_val;
|
||
|
|
||
|
/* Prevent the PCI-E bus from sticking if there is no TLP connection
|
||
|
* on the last TLP read/write transaction when MAC is reset.
|
||
|
*/
|
||
|
ret_val = e1000e_disable_pcie_master(hw);
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
|
||
|
}
|
||
|
|
||
|
hw_dbg(hw, "Masking off all interrupts\n");
|
||
|
ew32(IMC, 0xffffffff);
|
||
|
|
||
|
/* Disable the Transmit and Receive units. Then delay to allow
|
||
|
* any pending transactions to complete before we hit the MAC
|
||
|
* with the global reset.
|
||
|
*/
|
||
|
ew32(RCTL, 0);
|
||
|
ew32(TCTL, E1000_TCTL_PSP);
|
||
|
e1e_flush();
|
||
|
|
||
|
msleep(10);
|
||
|
|
||
|
/* Workaround for ICH8 bit corruption issue in FIFO memory */
|
||
|
if (hw->mac.type == e1000_ich8lan) {
|
||
|
/* Set Tx and Rx buffer allocation to 8k apiece. */
|
||
|
ew32(PBA, E1000_PBA_8K);
|
||
|
/* Set Packet Buffer Size to 16k. */
|
||
|
ew32(PBS, E1000_PBS_16K);
|
||
|
}
|
||
|
|
||
|
ctrl = er32(CTRL);
|
||
|
|
||
|
if (!e1000_check_reset_block(hw)) {
|
||
|
/* PHY HW reset requires MAC CORE reset at the same
|
||
|
* time to make sure the interface between MAC and the
|
||
|
* external PHY is reset.
|
||
|
*/
|
||
|
ctrl |= E1000_CTRL_PHY_RST;
|
||
|
}
|
||
|
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
||
|
hw_dbg(hw, "Issuing a global reset to ich8lan");
|
||
|
ew32(CTRL, (ctrl | E1000_CTRL_RST));
|
||
|
msleep(20);
|
||
|
|
||
|
ret_val = e1000e_get_auto_rd_done(hw);
|
||
|
if (ret_val) {
|
||
|
/*
|
||
|
* When auto config read does not complete, do not
|
||
|
* return with an error. This can happen in situations
|
||
|
* where there is no eeprom and prevents getting link.
|
||
|
*/
|
||
|
hw_dbg(hw, "Auto Read Done did not complete\n");
|
||
|
}
|
||
|
|
||
|
ew32(IMC, 0xffffffff);
|
||
|
icr = er32(ICR);
|
||
|
|
||
|
kab = er32(KABGTXD);
|
||
|
kab |= E1000_KABGTXD_BGSQLBIAS;
|
||
|
ew32(KABGTXD, kab);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_init_hw_ich8lan - Initialize the hardware
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Prepares the hardware for transmit and receive by doing the following:
|
||
|
* - initialize hardware bits
|
||
|
* - initialize LED identification
|
||
|
* - setup receive address registers
|
||
|
* - setup flow control
|
||
|
* - setup transmit discriptors
|
||
|
* - clear statistics
|
||
|
**/
|
||
|
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_mac_info *mac = &hw->mac;
|
||
|
u32 ctrl_ext, txdctl, snoop;
|
||
|
s32 ret_val;
|
||
|
u16 i;
|
||
|
|
||
|
e1000_initialize_hw_bits_ich8lan(hw);
|
||
|
|
||
|
/* Initialize identification LED */
|
||
|
ret_val = e1000e_id_led_init(hw);
|
||
|
if (ret_val) {
|
||
|
hw_dbg(hw, "Error initializing identification LED\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Setup the receive address. */
|
||
|
e1000e_init_rx_addrs(hw, mac->rar_entry_count);
|
||
|
|
||
|
/* Zero out the Multicast HASH table */
|
||
|
hw_dbg(hw, "Zeroing the MTA\n");
|
||
|
for (i = 0; i < mac->mta_reg_count; i++)
|
||
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
||
|
|
||
|
/* Setup link and flow control */
|
||
|
ret_val = e1000_setup_link_ich8lan(hw);
|
||
|
|
||
|
/* Set the transmit descriptor write-back policy for both queues */
|
||
|
txdctl = er32(TXDCTL);
|
||
|
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
|
||
|
E1000_TXDCTL_FULL_TX_DESC_WB;
|
||
|
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
|
||
|
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
|
||
|
ew32(TXDCTL, txdctl);
|
||
|
txdctl = er32(TXDCTL1);
|
||
|
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
|
||
|
E1000_TXDCTL_FULL_TX_DESC_WB;
|
||
|
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
|
||
|
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
|
||
|
ew32(TXDCTL1, txdctl);
|
||
|
|
||
|
/* ICH8 has opposite polarity of no_snoop bits.
|
||
|
* By default, we should use snoop behavior. */
|
||
|
if (mac->type == e1000_ich8lan)
|
||
|
snoop = PCIE_ICH8_SNOOP_ALL;
|
||
|
else
|
||
|
snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
|
||
|
e1000e_set_pcie_no_snoop(hw, snoop);
|
||
|
|
||
|
ctrl_ext = er32(CTRL_EXT);
|
||
|
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
|
||
|
ew32(CTRL_EXT, ctrl_ext);
|
||
|
|
||
|
/* Clear all of the statistics registers (clear on read). It is
|
||
|
* important that we do this after we have tried to establish link
|
||
|
* because the symbol error count will increment wildly if there
|
||
|
* is no link.
|
||
|
*/
|
||
|
e1000_clear_hw_cntrs_ich8lan(hw);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
/**
|
||
|
* e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Sets/Clears required hardware bits necessary for correctly setting up the
|
||
|
* hardware for transmit and receive.
|
||
|
**/
|
||
|
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 reg;
|
||
|
|
||
|
/* Extended Device Control */
|
||
|
reg = er32(CTRL_EXT);
|
||
|
reg |= (1 << 22);
|
||
|
ew32(CTRL_EXT, reg);
|
||
|
|
||
|
/* Transmit Descriptor Control 0 */
|
||
|
reg = er32(TXDCTL);
|
||
|
reg |= (1 << 22);
|
||
|
ew32(TXDCTL, reg);
|
||
|
|
||
|
/* Transmit Descriptor Control 1 */
|
||
|
reg = er32(TXDCTL1);
|
||
|
reg |= (1 << 22);
|
||
|
ew32(TXDCTL1, reg);
|
||
|
|
||
|
/* Transmit Arbitration Control 0 */
|
||
|
reg = er32(TARC0);
|
||
|
if (hw->mac.type == e1000_ich8lan)
|
||
|
reg |= (1 << 28) | (1 << 29);
|
||
|
reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
|
||
|
ew32(TARC0, reg);
|
||
|
|
||
|
/* Transmit Arbitration Control 1 */
|
||
|
reg = er32(TARC1);
|
||
|
if (er32(TCTL) & E1000_TCTL_MULR)
|
||
|
reg &= ~(1 << 28);
|
||
|
else
|
||
|
reg |= (1 << 28);
|
||
|
reg |= (1 << 24) | (1 << 26) | (1 << 30);
|
||
|
ew32(TARC1, reg);
|
||
|
|
||
|
/* Device Status */
|
||
|
if (hw->mac.type == e1000_ich8lan) {
|
||
|
reg = er32(STATUS);
|
||
|
reg &= ~(1 << 31);
|
||
|
ew32(STATUS, reg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_setup_link_ich8lan - Setup flow control and link settings
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Determines which flow control settings to use, then configures flow
|
||
|
* control. Calls the appropriate media-specific link configuration
|
||
|
* function. Assuming the adapter has a valid link partner, a valid link
|
||
|
* should be established. Assumes the hardware has previously been reset
|
||
|
* and the transmitter and receiver are not enabled.
|
||
|
**/
|
||
|
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_mac_info *mac = &hw->mac;
|
||
|
s32 ret_val;
|
||
|
|
||
|
if (e1000_check_reset_block(hw))
|
||
|
return 0;
|
||
|
|
||
|
/* ICH parts do not have a word in the NVM to determine
|
||
|
* the default flow control setting, so we explicitly
|
||
|
* set it to full.
|
||
|
*/
|
||
|
if (mac->fc == e1000_fc_default)
|
||
|
mac->fc = e1000_fc_full;
|
||
|
|
||
|
mac->original_fc = mac->fc;
|
||
|
|
||
|
hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
|
||
|
|
||
|
/* Continue to configure the copper link. */
|
||
|
ret_val = e1000_setup_copper_link_ich8lan(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
ew32(FCTTV, mac->fc_pause_time);
|
||
|
|
||
|
return e1000e_set_fc_watermarks(hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Configures the kumeran interface to the PHY to wait the appropriate time
|
||
|
* when polling the PHY, then call the generic setup_copper_link to finish
|
||
|
* configuring the copper link.
|
||
|
**/
|
||
|
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 ctrl;
|
||
|
s32 ret_val;
|
||
|
u16 reg_data;
|
||
|
|
||
|
ctrl = er32(CTRL);
|
||
|
ctrl |= E1000_CTRL_SLU;
|
||
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
||
|
ew32(CTRL, ctrl);
|
||
|
|
||
|
/* Set the mac to wait the maximum time between each iteration
|
||
|
* and increase the max iterations when polling the phy;
|
||
|
* this fixes erroneous timeouts at 10Mbps. */
|
||
|
ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
reg_data |= 0x3F;
|
||
|
ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if (hw->phy.type == e1000_phy_igp_3) {
|
||
|
ret_val = e1000e_copper_link_setup_igp(hw);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
return e1000e_setup_copper_link(hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_get_link_up_info_ich8lan - Get current link speed and duplex
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @speed: pointer to store current link speed
|
||
|
* @duplex: pointer to store the current link duplex
|
||
|
*
|
||
|
* Calls the generic get_speed_and_duplex to retreive the current link
|
||
|
* information and then calls the Kumeran lock loss workaround for links at
|
||
|
* gigabit speeds.
|
||
|
**/
|
||
|
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
|
||
|
u16 *duplex)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
|
||
|
ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
if ((hw->mac.type == e1000_ich8lan) &&
|
||
|
(hw->phy.type == e1000_phy_igp_3) &&
|
||
|
(*speed == SPEED_1000)) {
|
||
|
ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
|
||
|
}
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Work-around for 82566 Kumeran PCS lock loss:
|
||
|
* On link status change (i.e. PCI reset, speed change) and link is up and
|
||
|
* speed is gigabit-
|
||
|
* 0) if workaround is optionally disabled do nothing
|
||
|
* 1) wait 1ms for Kumeran link to come up
|
||
|
* 2) check Kumeran Diagnostic register PCS lock loss bit
|
||
|
* 3) if not set the link is locked (all is good), otherwise...
|
||
|
* 4) reset the PHY
|
||
|
* 5) repeat up to 10 times
|
||
|
* Note: this is only called for IGP3 copper when speed is 1gb.
|
||
|
**/
|
||
|
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
||
|
u32 phy_ctrl;
|
||
|
s32 ret_val;
|
||
|
u16 i, data;
|
||
|
bool link;
|
||
|
|
||
|
if (!dev_spec->kmrn_lock_loss_workaround_enabled)
|
||
|
return 0;
|
||
|
|
||
|
/* Make sure link is up before proceeding. If not just return.
|
||
|
* Attempting this while link is negotiating fouled up link
|
||
|
* stability */
|
||
|
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
||
|
if (!link)
|
||
|
return 0;
|
||
|
|
||
|
for (i = 0; i < 10; i++) {
|
||
|
/* read once to clear */
|
||
|
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
/* and again to get new status */
|
||
|
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
|
||
|
if (ret_val)
|
||
|
return ret_val;
|
||
|
|
||
|
/* check for PCS lock */
|
||
|
if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
|
||
|
return 0;
|
||
|
|
||
|
/* Issue PHY reset */
|
||
|
e1000_phy_hw_reset(hw);
|
||
|
mdelay(5);
|
||
|
}
|
||
|
/* Disable GigE link negotiation */
|
||
|
phy_ctrl = er32(PHY_CTRL);
|
||
|
phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
|
||
|
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
|
||
|
ew32(PHY_CTRL, phy_ctrl);
|
||
|
|
||
|
/* Call gig speed drop workaround on Giga disable before accessing
|
||
|
* any PHY registers */
|
||
|
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||
|
|
||
|
/* unable to acquire PCS lock */
|
||
|
return -E1000_ERR_PHY;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
|
||
|
* @hw: pointer to the HW structure
|
||
|
* @state: boolean value used to set the current Kumaran workaround state
|
||
|
*
|
||
|
* If ICH8, set the current Kumeran workaround state (enabled - TRUE
|
||
|
* /disabled - FALSE).
|
||
|
**/
|
||
|
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
|
||
|
bool state)
|
||
|
{
|
||
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
||
|
|
||
|
if (hw->mac.type != e1000_ich8lan) {
|
||
|
hw_dbg(hw, "Workaround applies to ICH8 only.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dev_spec->kmrn_lock_loss_workaround_enabled = state;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Workaround for 82566 power-down on D3 entry:
|
||
|
* 1) disable gigabit link
|
||
|
* 2) write VR power-down enable
|
||
|
* 3) read it back
|
||
|
* Continue if successful, else issue LCD reset and repeat
|
||
|
**/
|
||
|
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 reg;
|
||
|
u16 data;
|
||
|
u8 retry = 0;
|
||
|
|
||
|
if (hw->phy.type != e1000_phy_igp_3)
|
||
|
return;
|
||
|
|
||
|
/* Try the workaround twice (if needed) */
|
||
|
do {
|
||
|
/* Disable link */
|
||
|
reg = er32(PHY_CTRL);
|
||
|
reg |= (E1000_PHY_CTRL_GBE_DISABLE |
|
||
|
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
|
||
|
ew32(PHY_CTRL, reg);
|
||
|
|
||
|
/* Call gig speed drop workaround on Giga disable before
|
||
|
* accessing any PHY registers */
|
||
|
if (hw->mac.type == e1000_ich8lan)
|
||
|
e1000e_gig_downshift_workaround_ich8lan(hw);
|
||
|
|
||
|
/* Write VR power-down enable */
|
||
|
e1e_rphy(hw, IGP3_VR_CTRL, &data);
|
||
|
data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
|
||
|
e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
|
||
|
|
||
|
/* Read it back and test */
|
||
|
e1e_rphy(hw, IGP3_VR_CTRL, &data);
|
||
|
data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
|
||
|
if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
|
||
|
break;
|
||
|
|
||
|
/* Issue PHY reset and repeat at most one more time */
|
||
|
reg = er32(CTRL);
|
||
|
ew32(CTRL, reg | E1000_CTRL_PHY_RST);
|
||
|
retry++;
|
||
|
} while (retry);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
|
||
|
* LPLU, Giga disable, MDIC PHY reset):
|
||
|
* 1) Set Kumeran Near-end loopback
|
||
|
* 2) Clear Kumeran Near-end loopback
|
||
|
* Should only be called for ICH8[m] devices with IGP_3 Phy.
|
||
|
**/
|
||
|
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
s32 ret_val;
|
||
|
u16 reg_data;
|
||
|
|
||
|
if ((hw->mac.type != e1000_ich8lan) ||
|
||
|
(hw->phy.type != e1000_phy_igp_3))
|
||
|
return;
|
||
|
|
||
|
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
|
||
|
®_data);
|
||
|
if (ret_val)
|
||
|
return;
|
||
|
reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
|
||
|
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
|
||
|
reg_data);
|
||
|
if (ret_val)
|
||
|
return;
|
||
|
reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
|
||
|
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
|
||
|
reg_data);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_cleanup_led_ich8lan - Restore the default LED operation
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Return the LED back to the default configuration.
|
||
|
**/
|
||
|
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
if (hw->phy.type == e1000_phy_ife)
|
||
|
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
|
||
|
|
||
|
ew32(LEDCTL, hw->mac.ledctl_default);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_led_on_ich8lan - Turn LED's on
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Turn on the LED's.
|
||
|
**/
|
||
|
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
if (hw->phy.type == e1000_phy_ife)
|
||
|
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
|
||
|
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
|
||
|
|
||
|
ew32(LEDCTL, hw->mac.ledctl_mode2);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_led_off_ich8lan - Turn LED's off
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Turn off the LED's.
|
||
|
**/
|
||
|
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
if (hw->phy.type == e1000_phy_ife)
|
||
|
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
|
||
|
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
|
||
|
|
||
|
ew32(LEDCTL, hw->mac.ledctl_mode1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
|
||
|
* @hw: pointer to the HW structure
|
||
|
*
|
||
|
* Clears hardware counters specific to the silicon family and calls
|
||
|
* clear_hw_cntrs_generic to clear all general purpose counters.
|
||
|
**/
|
||
|
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
|
||
|
{
|
||
|
u32 temp;
|
||
|
|
||
|
e1000e_clear_hw_cntrs_base(hw);
|
||
|
|
||
|
temp = er32(ALGNERRC);
|
||
|
temp = er32(RXERRC);
|
||
|
temp = er32(TNCRS);
|
||
|
temp = er32(CEXTERR);
|
||
|
temp = er32(TSCTC);
|
||
|
temp = er32(TSCTFC);
|
||
|
|
||
|
temp = er32(MGTPRC);
|
||
|
temp = er32(MGTPDC);
|
||
|
temp = er32(MGTPTC);
|
||
|
|
||
|
temp = er32(IAC);
|
||
|
temp = er32(ICRXOC);
|
||
|
|
||
|
}
|
||
|
|
||
|
static struct e1000_mac_operations ich8_mac_ops = {
|
||
|
.mng_mode_enab = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
|
||
|
.check_for_link = e1000e_check_for_copper_link,
|
||
|
.cleanup_led = e1000_cleanup_led_ich8lan,
|
||
|
.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
|
||
|
.get_bus_info = e1000_get_bus_info_ich8lan,
|
||
|
.get_link_up_info = e1000_get_link_up_info_ich8lan,
|
||
|
.led_on = e1000_led_on_ich8lan,
|
||
|
.led_off = e1000_led_off_ich8lan,
|
||
|
.mc_addr_list_update = e1000e_mc_addr_list_update_generic,
|
||
|
.reset_hw = e1000_reset_hw_ich8lan,
|
||
|
.init_hw = e1000_init_hw_ich8lan,
|
||
|
.setup_link = e1000_setup_link_ich8lan,
|
||
|
.setup_physical_interface= e1000_setup_copper_link_ich8lan,
|
||
|
};
|
||
|
|
||
|
static struct e1000_phy_operations ich8_phy_ops = {
|
||
|
.acquire_phy = e1000_acquire_swflag_ich8lan,
|
||
|
.check_reset_block = e1000_check_reset_block_ich8lan,
|
||
|
.commit_phy = NULL,
|
||
|
.force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
|
||
|
.get_cfg_done = e1000e_get_cfg_done,
|
||
|
.get_cable_length = e1000e_get_cable_length_igp_2,
|
||
|
.get_phy_info = e1000_get_phy_info_ich8lan,
|
||
|
.read_phy_reg = e1000e_read_phy_reg_igp,
|
||
|
.release_phy = e1000_release_swflag_ich8lan,
|
||
|
.reset_phy = e1000_phy_hw_reset_ich8lan,
|
||
|
.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
|
||
|
.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
|
||
|
.write_phy_reg = e1000e_write_phy_reg_igp,
|
||
|
};
|
||
|
|
||
|
static struct e1000_nvm_operations ich8_nvm_ops = {
|
||
|
.acquire_nvm = e1000_acquire_swflag_ich8lan,
|
||
|
.read_nvm = e1000_read_nvm_ich8lan,
|
||
|
.release_nvm = e1000_release_swflag_ich8lan,
|
||
|
.update_nvm = e1000_update_nvm_checksum_ich8lan,
|
||
|
.valid_led_default = e1000_valid_led_default_ich8lan,
|
||
|
.validate_nvm = e1000_validate_nvm_checksum_ich8lan,
|
||
|
.write_nvm = e1000_write_nvm_ich8lan,
|
||
|
};
|
||
|
|
||
|
struct e1000_info e1000_ich8_info = {
|
||
|
.mac = e1000_ich8lan,
|
||
|
.flags = FLAG_HAS_WOL
|
||
|
| FLAG_RX_CSUM_ENABLED
|
||
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
||
|
| FLAG_HAS_AMT
|
||
|
| FLAG_HAS_FLASH
|
||
|
| FLAG_APME_IN_WUC,
|
||
|
.pba = 8,
|
||
|
.get_invariants = e1000_get_invariants_ich8lan,
|
||
|
.mac_ops = &ich8_mac_ops,
|
||
|
.phy_ops = &ich8_phy_ops,
|
||
|
.nvm_ops = &ich8_nvm_ops,
|
||
|
};
|
||
|
|
||
|
struct e1000_info e1000_ich9_info = {
|
||
|
.mac = e1000_ich9lan,
|
||
|
.flags = FLAG_HAS_JUMBO_FRAMES
|
||
|
| FLAG_HAS_WOL
|
||
|
| FLAG_RX_CSUM_ENABLED
|
||
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
||
|
| FLAG_HAS_AMT
|
||
|
| FLAG_HAS_ERT
|
||
|
| FLAG_HAS_FLASH
|
||
|
| FLAG_APME_IN_WUC,
|
||
|
.pba = 10,
|
||
|
.get_invariants = e1000_get_invariants_ich8lan,
|
||
|
.mac_ops = &ich8_mac_ops,
|
||
|
.phy_ops = &ich8_phy_ops,
|
||
|
.nvm_ops = &ich8_nvm_ops,
|
||
|
};
|
||
|
|