|
|
|
/*******************************************************************************
|
|
|
|
|
|
|
|
|
|
|
|
Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
|
|
under the terms of the GNU General Public License as published by the Free
|
|
|
|
Software Foundation; either version 2 of the License, or (at your option)
|
|
|
|
any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
|
|
more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
|
|
this program; if not, write to the Free Software Foundation, Inc., 59
|
|
|
|
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
|
|
|
|
The full GNU General Public License is included in this distribution in the
|
|
|
|
file called LICENSE.
|
|
|
|
|
|
|
|
Contact Information:
|
|
|
|
Linux NICS <linux.nics@intel.com>
|
|
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
|
|
|
|
*******************************************************************************/
|
|
|
|
|
|
|
|
/* ethtool support for e1000 */
|
|
|
|
|
|
|
|
#include "e1000.h"
|
|
|
|
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
|
|
|
|
extern char e1000_driver_name[];
|
|
|
|
extern char e1000_driver_version[];
|
|
|
|
|
|
|
|
extern int e1000_up(struct e1000_adapter *adapter);
|
|
|
|
extern void e1000_down(struct e1000_adapter *adapter);
|
|
|
|
extern void e1000_reset(struct e1000_adapter *adapter);
|
|
|
|
extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
|
|
|
|
extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
|
|
|
|
extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
|
|
|
|
extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
|
|
|
|
extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
|
|
|
|
extern void e1000_update_stats(struct e1000_adapter *adapter);
|
|
|
|
|
|
|
|
struct e1000_stats {
|
|
|
|
char stat_string[ETH_GSTRING_LEN];
|
|
|
|
int sizeof_stat;
|
|
|
|
int stat_offset;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
|
|
|
|
offsetof(struct e1000_adapter, m)
|
|
|
|
static const struct e1000_stats e1000_gstrings_stats[] = {
|
|
|
|
{ "rx_packets", E1000_STAT(net_stats.rx_packets) },
|
|
|
|
{ "tx_packets", E1000_STAT(net_stats.tx_packets) },
|
|
|
|
{ "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
|
|
|
|
{ "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
|
|
|
|
{ "rx_errors", E1000_STAT(net_stats.rx_errors) },
|
|
|
|
{ "tx_errors", E1000_STAT(net_stats.tx_errors) },
|
|
|
|
{ "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
|
|
|
|
{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
|
|
|
|
{ "multicast", E1000_STAT(net_stats.multicast) },
|
|
|
|
{ "collisions", E1000_STAT(net_stats.collisions) },
|
|
|
|
{ "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
|
|
|
|
{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
|
|
|
|
{ "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
|
|
|
|
{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
|
|
|
|
{ "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
|
|
|
|
{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
|
|
|
|
{ "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
|
|
|
|
{ "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
|
|
|
|
{ "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
|
|
|
|
{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
|
|
|
|
{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
|
|
|
|
{ "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
|
|
|
|
{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
|
|
|
|
{ "tx_deferred_ok", E1000_STAT(stats.dc) },
|
|
|
|
{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
|
|
|
|
{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
|
|
|
|
{ "rx_long_length_errors", E1000_STAT(stats.roc) },
|
|
|
|
{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
|
|
|
|
{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
|
|
|
|
{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
|
|
|
|
{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
|
|
|
|
{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
|
|
|
|
{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
|
|
|
|
{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
|
|
|
|
{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
|
|
|
|
{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
|
|
|
|
{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
|
|
|
|
{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
|
|
|
|
};
|
|
|
|
#define E1000_STATS_LEN \
|
|
|
|
sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
|
|
|
|
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
|
|
|
|
"Register test (offline)", "Eeprom test (offline)",
|
|
|
|
"Interrupt test (offline)", "Loopback test (offline)",
|
|
|
|
"Link test (on/offline)"
|
|
|
|
};
|
|
|
|
#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
|
|
|
|
if(hw->media_type == e1000_media_type_copper) {
|
|
|
|
|
|
|
|
ecmd->supported = (SUPPORTED_10baseT_Half |
|
|
|
|
SUPPORTED_10baseT_Full |
|
|
|
|
SUPPORTED_100baseT_Half |
|
|
|
|
SUPPORTED_100baseT_Full |
|
|
|
|
SUPPORTED_1000baseT_Full|
|
|
|
|
SUPPORTED_Autoneg |
|
|
|
|
SUPPORTED_TP);
|
|
|
|
|
|
|
|
ecmd->advertising = ADVERTISED_TP;
|
|
|
|
|
|
|
|
if(hw->autoneg == 1) {
|
|
|
|
ecmd->advertising |= ADVERTISED_Autoneg;
|
|
|
|
|
|
|
|
/* the e1000 autoneg seems to match ethtool nicely */
|
|
|
|
|
|
|
|
ecmd->advertising |= hw->autoneg_advertised;
|
|
|
|
}
|
|
|
|
|
|
|
|
ecmd->port = PORT_TP;
|
|
|
|
ecmd->phy_address = hw->phy_addr;
|
|
|
|
|
|
|
|
if(hw->mac_type == e1000_82543)
|
|
|
|
ecmd->transceiver = XCVR_EXTERNAL;
|
|
|
|
else
|
|
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
ecmd->supported = (SUPPORTED_1000baseT_Full |
|
|
|
|
SUPPORTED_FIBRE |
|
|
|
|
SUPPORTED_Autoneg);
|
|
|
|
|
|
|
|
ecmd->advertising = (SUPPORTED_1000baseT_Full |
|
|
|
|
SUPPORTED_FIBRE |
|
|
|
|
SUPPORTED_Autoneg);
|
|
|
|
|
|
|
|
ecmd->port = PORT_FIBRE;
|
|
|
|
|
|
|
|
if(hw->mac_type >= e1000_82545)
|
|
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
|
|
else
|
|
|
|
ecmd->transceiver = XCVR_EXTERNAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(netif_carrier_ok(adapter->netdev)) {
|
|
|
|
|
|
|
|
e1000_get_speed_and_duplex(hw, &adapter->link_speed,
|
|
|
|
&adapter->link_duplex);
|
|
|
|
ecmd->speed = adapter->link_speed;
|
|
|
|
|
|
|
|
/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
|
|
|
|
* and HALF_DUPLEX != DUPLEX_HALF */
|
|
|
|
|
|
|
|
if(adapter->link_duplex == FULL_DUPLEX)
|
|
|
|
ecmd->duplex = DUPLEX_FULL;
|
|
|
|
else
|
|
|
|
ecmd->duplex = DUPLEX_HALF;
|
|
|
|
} else {
|
|
|
|
ecmd->speed = -1;
|
|
|
|
ecmd->duplex = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
|
|
|
|
hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
|
|
|
|
if(ecmd->autoneg == AUTONEG_ENABLE) {
|
|
|
|
hw->autoneg = 1;
|
|
|
|
hw->autoneg_advertised = 0x002F;
|
|
|
|
ecmd->advertising = 0x002F;
|
|
|
|
} else
|
|
|
|
if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* reset the link */
|
|
|
|
|
|
|
|
if(netif_running(adapter->netdev)) {
|
|
|
|
e1000_down(adapter);
|
|
|
|
e1000_reset(adapter);
|
|
|
|
e1000_up(adapter);
|
|
|
|
} else
|
|
|
|
e1000_reset(adapter);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_get_pauseparam(struct net_device *netdev,
|
|
|
|
struct ethtool_pauseparam *pause)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
|
|
|
|
pause->autoneg =
|
|
|
|
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
|
|
|
|
|
|
|
|
if(hw->fc == e1000_fc_rx_pause)
|
|
|
|
pause->rx_pause = 1;
|
|
|
|
else if(hw->fc == e1000_fc_tx_pause)
|
|
|
|
pause->tx_pause = 1;
|
|
|
|
else if(hw->fc == e1000_fc_full) {
|
|
|
|
pause->rx_pause = 1;
|
|
|
|
pause->tx_pause = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_set_pauseparam(struct net_device *netdev,
|
|
|
|
struct ethtool_pauseparam *pause)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
|
|
|
|
adapter->fc_autoneg = pause->autoneg;
|
|
|
|
|
|
|
|
if(pause->rx_pause && pause->tx_pause)
|
|
|
|
hw->fc = e1000_fc_full;
|
|
|
|
else if(pause->rx_pause && !pause->tx_pause)
|
|
|
|
hw->fc = e1000_fc_rx_pause;
|
|
|
|
else if(!pause->rx_pause && pause->tx_pause)
|
|
|
|
hw->fc = e1000_fc_tx_pause;
|
|
|
|
else if(!pause->rx_pause && !pause->tx_pause)
|
|
|
|
hw->fc = e1000_fc_none;
|
|
|
|
|
|
|
|
hw->original_fc = hw->fc;
|
|
|
|
|
|
|
|
if(adapter->fc_autoneg == AUTONEG_ENABLE) {
|
|
|
|
if(netif_running(adapter->netdev)) {
|
|
|
|
e1000_down(adapter);
|
|
|
|
e1000_up(adapter);
|
|
|
|
} else
|
|
|
|
e1000_reset(adapter);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return ((hw->media_type == e1000_media_type_fiber) ?
|
|
|
|
e1000_setup_link(hw) : e1000_force_mac_fc(hw));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t
|
|
|
|
e1000_get_rx_csum(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
return adapter->rx_csum;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
adapter->rx_csum = data;
|
|
|
|
|
|
|
|
if(netif_running(netdev)) {
|
|
|
|
e1000_down(adapter);
|
|
|
|
e1000_up(adapter);
|
|
|
|
} else
|
|
|
|
e1000_reset(adapter);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t
|
|
|
|
e1000_get_tx_csum(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
return (netdev->features & NETIF_F_HW_CSUM) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
|
|
|
|
if(adapter->hw.mac_type < e1000_82543) {
|
|
|
|
if (!data)
|
|
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (data)
|
|
|
|
netdev->features |= NETIF_F_HW_CSUM;
|
|
|
|
else
|
|
|
|
netdev->features &= ~NETIF_F_HW_CSUM;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef NETIF_F_TSO
|
|
|
|
static int
|
|
|
|
e1000_set_tso(struct net_device *netdev, uint32_t data)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
if ((adapter->hw.mac_type < e1000_82544) ||
|
|
|
|
(adapter->hw.mac_type == e1000_82547))
|
|
|
|
return data ? -EINVAL : 0;
|
|
|
|
|
|
|
|
if (data)
|
|
|
|
netdev->features |= NETIF_F_TSO;
|
|
|
|
else
|
|
|
|
netdev->features &= ~NETIF_F_TSO;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* NETIF_F_TSO */
|
|
|
|
|
|
|
|
static uint32_t
|
|
|
|
e1000_get_msglevel(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
return adapter->msg_enable;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_set_msglevel(struct net_device *netdev, uint32_t data)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
adapter->msg_enable = data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_get_regs_len(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
#define E1000_REGS_LEN 32
|
|
|
|
return E1000_REGS_LEN * sizeof(uint32_t);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_get_regs(struct net_device *netdev,
|
|
|
|
struct ethtool_regs *regs, void *p)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
uint32_t *regs_buff = p;
|
|
|
|
uint16_t phy_data;
|
|
|
|
|
|
|
|
memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
|
|
|
|
|
|
|
|
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
|
|
|
|
|
|
|
|
regs_buff[0] = E1000_READ_REG(hw, CTRL);
|
|
|
|
regs_buff[1] = E1000_READ_REG(hw, STATUS);
|
|
|
|
|
|
|
|
regs_buff[2] = E1000_READ_REG(hw, RCTL);
|
|
|
|
regs_buff[3] = E1000_READ_REG(hw, RDLEN);
|
|
|
|
regs_buff[4] = E1000_READ_REG(hw, RDH);
|
|
|
|
regs_buff[5] = E1000_READ_REG(hw, RDT);
|
|
|
|
regs_buff[6] = E1000_READ_REG(hw, RDTR);
|
|
|
|
|
|
|
|
regs_buff[7] = E1000_READ_REG(hw, TCTL);
|
|
|
|
regs_buff[8] = E1000_READ_REG(hw, TDLEN);
|
|
|
|
regs_buff[9] = E1000_READ_REG(hw, TDH);
|
|
|
|
regs_buff[10] = E1000_READ_REG(hw, TDT);
|
|
|
|
regs_buff[11] = E1000_READ_REG(hw, TIDV);
|
|
|
|
|
|
|
|
regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
|
|
|
|
if(hw->phy_type == e1000_phy_igp) {
|
|
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
|
IGP01E1000_PHY_AGC_A);
|
|
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
|
|
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
|
|
regs_buff[13] = (uint32_t)phy_data; /* cable length */
|
|
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
|
IGP01E1000_PHY_AGC_B);
|
|
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
|
|
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
|
|
regs_buff[14] = (uint32_t)phy_data; /* cable length */
|
|
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
|
IGP01E1000_PHY_AGC_C);
|
|
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
|
|
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
|
|
regs_buff[15] = (uint32_t)phy_data; /* cable length */
|
|
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
|
IGP01E1000_PHY_AGC_D);
|
|
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
|
|
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
|
|
regs_buff[16] = (uint32_t)phy_data; /* cable length */
|
|
|
|
regs_buff[17] = 0; /* extended 10bt distance (not needed) */
|
|
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
|
|
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
|
|
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
|
|
regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
|
|
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
|
IGP01E1000_PHY_PCS_INIT_REG);
|
|
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
|
|
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
|
|
regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
|
|
|
|
regs_buff[20] = 0; /* polarity correction enabled (always) */
|
|
|
|
regs_buff[22] = 0; /* phy receive errors (unavailable) */
|
|
|
|
regs_buff[23] = regs_buff[18]; /* mdix mode */
|
|
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
|
|
|
|
} else {
|
|
|
|
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
|
|
|
regs_buff[13] = (uint32_t)phy_data; /* cable length */
|
|
|
|
regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
|
|
regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
|
|
regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
|
|
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
|
regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
|
|
|
|
regs_buff[18] = regs_buff[13]; /* cable polarity */
|
|
|
|
regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
|
|
regs_buff[20] = regs_buff[17]; /* polarity correction */
|
|
|
|
/* phy receive errors */
|
|
|
|
regs_buff[22] = adapter->phy_stats.receive_errors;
|
|
|
|
regs_buff[23] = regs_buff[13]; /* mdix mode */
|
|
|
|
}
|
|
|
|
regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
|
|
|
|
e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
|
|
|
|
regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
|
|
|
|
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
|
|
|
|
if(hw->mac_type >= e1000_82540 &&
|
|
|
|
hw->media_type == e1000_media_type_copper) {
|
|
|
|
regs_buff[26] = E1000_READ_REG(hw, MANC);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_get_eeprom_len(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
return adapter->hw.eeprom.word_size * 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_get_eeprom(struct net_device *netdev,
|
|
|
|
struct ethtool_eeprom *eeprom, uint8_t *bytes)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
uint16_t *eeprom_buff;
|
|
|
|
int first_word, last_word;
|
|
|
|
int ret_val = 0;
|
|
|
|
uint16_t i;
|
|
|
|
|
|
|
|
if(eeprom->len == 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
|
|
|
|
|
|
|
|
first_word = eeprom->offset >> 1;
|
|
|
|
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
|
|
|
|
|
|
eeprom_buff = kmalloc(sizeof(uint16_t) *
|
|
|
|
(last_word - first_word + 1), GFP_KERNEL);
|
|
|
|
if(!eeprom_buff)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
if(hw->eeprom.type == e1000_eeprom_spi)
|
|
|
|
ret_val = e1000_read_eeprom(hw, first_word,
|
|
|
|
last_word - first_word + 1,
|
|
|
|
eeprom_buff);
|
|
|
|
else {
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
|
|
if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
|
|
|
|
&eeprom_buff[i])))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Device's eeprom is always little-endian, word addressable */
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
|
|
le16_to_cpus(&eeprom_buff[i]);
|
|
|
|
|
|
|
|
memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
|
|
|
|
eeprom->len);
|
|
|
|
kfree(eeprom_buff);
|
|
|
|
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_set_eeprom(struct net_device *netdev,
|
|
|
|
struct ethtool_eeprom *eeprom, uint8_t *bytes)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
uint16_t *eeprom_buff;
|
|
|
|
void *ptr;
|
|
|
|
int max_len, first_word, last_word, ret_val = 0;
|
|
|
|
uint16_t i;
|
|
|
|
|
|
|
|
if(eeprom->len == 0)
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
max_len = hw->eeprom.word_size * 2;
|
|
|
|
|
|
|
|
first_word = eeprom->offset >> 1;
|
|
|
|
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
|
|
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
|
|
|
|
if(!eeprom_buff)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ptr = (void *)eeprom_buff;
|
|
|
|
|
|
|
|
if(eeprom->offset & 1) {
|
|
|
|
/* need read/modify/write of first changed EEPROM word */
|
|
|
|
/* only the second byte of the word is being modified */
|
|
|
|
ret_val = e1000_read_eeprom(hw, first_word, 1,
|
|
|
|
&eeprom_buff[0]);
|
|
|
|
ptr++;
|
|
|
|
}
|
|
|
|
if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
|
|
|
|
/* need read/modify/write of last changed EEPROM word */
|
|
|
|
/* only the first byte of the word is being modified */
|
|
|
|
ret_val = e1000_read_eeprom(hw, last_word, 1,
|
|
|
|
&eeprom_buff[last_word - first_word]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Device's eeprom is always little-endian, word addressable */
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
|
|
le16_to_cpus(&eeprom_buff[i]);
|
|
|
|
|
|
|
|
memcpy(ptr, bytes, eeprom->len);
|
|
|
|
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
|
|
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
|
|
|
|
|
|
|
|
ret_val = e1000_write_eeprom(hw, first_word,
|
|
|
|
last_word - first_word + 1, eeprom_buff);
|
|
|
|
|
|
|
|
/* Update the checksum over the first part of the EEPROM if needed */
|
|
|
|
if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
|
|
|
|
e1000_update_eeprom_checksum(hw);
|
|
|
|
|
|
|
|
kfree(eeprom_buff);
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_get_drvinfo(struct net_device *netdev,
|
|
|
|
struct ethtool_drvinfo *drvinfo)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
|
|
|
|
strncpy(drvinfo->driver, e1000_driver_name, 32);
|
|
|
|
strncpy(drvinfo->version, e1000_driver_version, 32);
|
|
|
|
strncpy(drvinfo->fw_version, "N/A", 32);
|
|
|
|
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
|
|
|
|
drvinfo->n_stats = E1000_STATS_LEN;
|
|
|
|
drvinfo->testinfo_len = E1000_TEST_LEN;
|
|
|
|
drvinfo->regdump_len = e1000_get_regs_len(netdev);
|
|
|
|
drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_get_ringparam(struct net_device *netdev,
|
|
|
|
struct ethtool_ringparam *ring)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
e1000_mac_type mac_type = adapter->hw.mac_type;
|
|
|
|
struct e1000_desc_ring *txdr = &adapter->tx_ring;
|
|
|
|
struct e1000_desc_ring *rxdr = &adapter->rx_ring;
|
|
|
|
|
|
|
|
ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
|
|
|
|
E1000_MAX_82544_RXD;
|
|
|
|
ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
|
|
|
|
E1000_MAX_82544_TXD;
|
|
|
|
ring->rx_mini_max_pending = 0;
|
|
|
|
ring->rx_jumbo_max_pending = 0;
|
|
|
|
ring->rx_pending = rxdr->count;
|
|
|
|
ring->tx_pending = txdr->count;
|
|
|
|
ring->rx_mini_pending = 0;
|
|
|
|
ring->rx_jumbo_pending = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_set_ringparam(struct net_device *netdev,
|
|
|
|
struct ethtool_ringparam *ring)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
e1000_mac_type mac_type = adapter->hw.mac_type;
|
|
|
|
struct e1000_desc_ring *txdr = &adapter->tx_ring;
|
|
|
|
struct e1000_desc_ring *rxdr = &adapter->rx_ring;
|
|
|
|
struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
tx_old = adapter->tx_ring;
|
|
|
|
rx_old = adapter->rx_ring;
|
|
|
|
|
|
|
|
if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if(netif_running(adapter->netdev))
|
|
|
|
e1000_down(adapter);
|
|
|
|
|
|
|
|
rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
|
|
|
|
rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
|
|
|
|
E1000_MAX_RXD : E1000_MAX_82544_RXD));
|
|
|
|
E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
|
|
|
|
|
|
|
|
txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
|
|
|
|
txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
|
|
|
|
E1000_MAX_TXD : E1000_MAX_82544_TXD));
|
|
|
|
E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
|
|
|
|
|
|
|
|
if(netif_running(adapter->netdev)) {
|
|
|
|
/* Try to get new resources before deleting old */
|
|
|
|
if((err = e1000_setup_rx_resources(adapter)))
|
|
|
|
goto err_setup_rx;
|
|
|
|
if((err = e1000_setup_tx_resources(adapter)))
|
|
|
|
goto err_setup_tx;
|
|
|
|
|
|
|
|
/* save the new, restore the old in order to free it,
|
|
|
|
* then restore the new back again */
|
|
|
|
|
|
|
|
rx_new = adapter->rx_ring;
|
|
|
|
tx_new = adapter->tx_ring;
|
|
|
|
adapter->rx_ring = rx_old;
|
|
|
|
adapter->tx_ring = tx_old;
|
|
|
|
e1000_free_rx_resources(adapter);
|
|
|
|
e1000_free_tx_resources(adapter);
|
|
|
|
adapter->rx_ring = rx_new;
|
|
|
|
adapter->tx_ring = tx_new;
|
|
|
|
if((err = e1000_up(adapter)))
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
err_setup_tx:
|
|
|
|
e1000_free_rx_resources(adapter);
|
|
|
|
err_setup_rx:
|
|
|
|
adapter->rx_ring = rx_old;
|
|
|
|
adapter->tx_ring = tx_old;
|
|
|
|
e1000_up(adapter);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define REG_PATTERN_TEST(R, M, W) \
|
|
|
|
{ \
|
|
|
|
uint32_t pat, value; \
|
|
|
|
uint32_t test[] = \
|
|
|
|
{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
|
|
|
|
for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
|
|
|
|
E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
|
|
|
|
value = E1000_READ_REG(&adapter->hw, R); \
|
|
|
|
if(value != (test[pat] & W & M)) { \
|
|
|
|
*data = (adapter->hw.mac_type < e1000_82543) ? \
|
|
|
|
E1000_82542_##R : E1000_##R; \
|
|
|
|
return 1; \
|
|
|
|
} \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define REG_SET_AND_CHECK(R, M, W) \
|
|
|
|
{ \
|
|
|
|
uint32_t value; \
|
|
|
|
E1000_WRITE_REG(&adapter->hw, R, W & M); \
|
|
|
|
value = E1000_READ_REG(&adapter->hw, R); \
|
|
|
|
if ((W & M) != (value & M)) { \
|
|
|
|
*data = (adapter->hw.mac_type < e1000_82543) ? \
|
|
|
|
E1000_82542_##R : E1000_##R; \
|
|
|
|
return 1; \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
|
|
{
|
|
|
|
uint32_t value;
|
|
|
|
uint32_t i;
|
|
|
|
|
|
|
|
/* The status register is Read Only, so a write should fail.
|
|
|
|
* Some bits that get toggled are ignored.
|
|
|
|
*/
|
|
|
|
value = (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833));
|
|
|
|
E1000_WRITE_REG(&adapter->hw, STATUS, (0xFFFFFFFF));
|
|
|
|
if(value != (E1000_READ_REG(&adapter->hw, STATUS) & (0xFFFFF833))) {
|
|
|
|
*data = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
|
|
|
|
REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
|
|
|
|
REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
|
|
|
|
REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
|
|
|
|
REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
|
|
|
|
REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
|
|
|
|
REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
|
|
|
|
|
|
|
|
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
|
|
|
|
REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
|
|
|
|
REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
|
|
|
|
|
|
|
|
if(adapter->hw.mac_type >= e1000_82543) {
|
|
|
|
|
|
|
|
REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
|
|
|
|
REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
|
|
|
|
|
|
|
|
for(i = 0; i < E1000_RAR_ENTRIES; i++) {
|
|
|
|
REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
|
|
|
|
0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
|
|
|
|
0xFFFFFFFF);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
|
|
|
|
REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
|
|
|
|
REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
|
|
|
|
REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
for(i = 0; i < E1000_MC_TBL_SIZE; i++)
|
|
|
|
REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
|
|
|
|
|
|
|
|
*data = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
|
|
{
|
|
|
|
uint16_t temp;
|
|
|
|
uint16_t checksum = 0;
|
|
|
|
uint16_t i;
|
|
|
|
|
|
|
|
*data = 0;
|
|
|
|
/* Read and add up the contents of the EEPROM */
|
|
|
|
for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
|
|
|
if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
|
|
|
|
*data = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
checksum += temp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If Checksum is not Correct return error else test passed */
|
|
|
|
if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
|
|
|
|
*data = 2;
|
|
|
|
|
|
|
|
return *data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t
|
|
|
|
e1000_test_intr(int irq,
|
|
|
|
void *data,
|
|
|
|
struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
struct net_device *netdev = (struct net_device *) data;
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
|
|
|
|
adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
|
|
{
|
|
|
|
struct net_device *netdev = adapter->netdev;
|
|
|
|
uint32_t mask, i=0, shared_int = TRUE;
|
|
|
|
uint32_t irq = adapter->pdev->irq;
|
|
|
|
|
|
|
|
*data = 0;
|
|
|
|
|
|
|
|
/* Hook up test interrupt handler just for this test */
|
|
|
|
if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
|
|
|
|
shared_int = FALSE;
|
|
|
|
} else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
|
|
|
|
netdev->name, netdev)){
|
|
|
|
*data = 1;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Disable all the interrupts */
|
|
|
|
E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
|
|
|
|
msec_delay(10);
|
|
|
|
|
|
|
|
/* Test each interrupt */
|
|
|
|
for(; i < 10; i++) {
|
|
|
|
|
|
|
|
/* Interrupt to test */
|
|
|
|
mask = 1 << i;
|
|
|
|
|
|
|
|
if(!shared_int) {
|
|
|
|
/* Disable the interrupt to be reported in
|
|
|
|
* the cause register and then force the same
|
|
|
|
* interrupt and see if one gets posted. If
|
|
|
|
* an interrupt was posted to the bus, the
|
|
|
|
* test failed.
|
|
|
|
*/
|
|
|
|
adapter->test_icr = 0;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, IMC, mask);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, ICS, mask);
|
|
|
|
msec_delay(10);
|
|
|
|
|
|
|
|
if(adapter->test_icr & mask) {
|
|
|
|
*data = 3;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Enable the interrupt to be reported in
|
|
|
|
* the cause register and then force the same
|
|
|
|
* interrupt and see if one gets posted. If
|
|
|
|
* an interrupt was not posted to the bus, the
|
|
|
|
* test failed.
|
|
|
|
*/
|
|
|
|
adapter->test_icr = 0;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, IMS, mask);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, ICS, mask);
|
|
|
|
msec_delay(10);
|
|
|
|
|
|
|
|
if(!(adapter->test_icr & mask)) {
|
|
|
|
*data = 4;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(!shared_int) {
|
|
|
|
/* Disable the other interrupts to be reported in
|
|
|
|
* the cause register and then force the other
|
|
|
|
* interrupts and see if any get posted. If
|
|
|
|
* an interrupt was posted to the bus, the
|
|
|
|
* test failed.
|
|
|
|
*/
|
|
|
|
adapter->test_icr = 0;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
|
|
|
|
msec_delay(10);
|
|
|
|
|
|
|
|
if(adapter->test_icr) {
|
|
|
|
*data = 5;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Disable all the interrupts */
|
|
|
|
E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
|
|
|
|
msec_delay(10);
|
|
|
|
|
|
|
|
/* Unhook test interrupt handler */
|
|
|
|
free_irq(irq, netdev);
|
|
|
|
|
|
|
|
return *data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_free_desc_rings(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
|
|
|
|
struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
|
|
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if(txdr->desc && txdr->buffer_info) {
|
|
|
|
for(i = 0; i < txdr->count; i++) {
|
|
|
|
if(txdr->buffer_info[i].dma)
|
|
|
|
pci_unmap_single(pdev, txdr->buffer_info[i].dma,
|
|
|
|
txdr->buffer_info[i].length,
|
|
|
|
PCI_DMA_TODEVICE);
|
|
|
|
if(txdr->buffer_info[i].skb)
|
|
|
|
dev_kfree_skb(txdr->buffer_info[i].skb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(rxdr->desc && rxdr->buffer_info) {
|
|
|
|
for(i = 0; i < rxdr->count; i++) {
|
|
|
|
if(rxdr->buffer_info[i].dma)
|
|
|
|
pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
|
|
|
|
rxdr->buffer_info[i].length,
|
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if(rxdr->buffer_info[i].skb)
|
|
|
|
dev_kfree_skb(rxdr->buffer_info[i].skb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(txdr->desc)
|
|
|
|
pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
|
|
|
|
if(rxdr->desc)
|
|
|
|
pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
|
|
|
|
|
|
|
|
if(txdr->buffer_info)
|
|
|
|
kfree(txdr->buffer_info);
|
|
|
|
if(rxdr->buffer_info)
|
|
|
|
kfree(rxdr->buffer_info);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_setup_desc_rings(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
|
|
|
|
struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
|
|
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
uint32_t rctl;
|
|
|
|
int size, i, ret_val;
|
|
|
|
|
|
|
|
/* Setup Tx descriptor ring and Tx buffers */
|
|
|
|
|
|
|
|
if(!txdr->count)
|
|
|
|
txdr->count = E1000_DEFAULT_TXD;
|
|
|
|
|
|
|
|
size = txdr->count * sizeof(struct e1000_buffer);
|
|
|
|
if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
|
|
|
|
ret_val = 1;
|
|
|
|
goto err_nomem;
|
|
|
|
}
|
|
|
|
memset(txdr->buffer_info, 0, size);
|
|
|
|
|
|
|
|
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
|
|
|
|
E1000_ROUNDUP(txdr->size, 4096);
|
|
|
|
if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
|
|
|
|
ret_val = 2;
|
|
|
|
goto err_nomem;
|
|
|
|
}
|
|
|
|
memset(txdr->desc, 0, txdr->size);
|
|
|
|
txdr->next_to_use = txdr->next_to_clean = 0;
|
|
|
|
|
|
|
|
E1000_WRITE_REG(&adapter->hw, TDBAL,
|
|
|
|
((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
|
|
|
|
E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
|
|
|
|
E1000_WRITE_REG(&adapter->hw, TDLEN,
|
|
|
|
txdr->count * sizeof(struct e1000_tx_desc));
|
|
|
|
E1000_WRITE_REG(&adapter->hw, TDH, 0);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, TDT, 0);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, TCTL,
|
|
|
|
E1000_TCTL_PSP | E1000_TCTL_EN |
|
|
|
|
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
|
|
|
|
E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
|
|
|
|
|
|
|
|
for(i = 0; i < txdr->count; i++) {
|
|
|
|
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
|
|
|
|
struct sk_buff *skb;
|
|
|
|
unsigned int size = 1024;
|
|
|
|
|
|
|
|
if(!(skb = alloc_skb(size, GFP_KERNEL))) {
|
|
|
|
ret_val = 3;
|
|
|
|
goto err_nomem;
|
|
|
|
}
|
|
|
|
skb_put(skb, size);
|
|
|
|
txdr->buffer_info[i].skb = skb;
|
|
|
|
txdr->buffer_info[i].length = skb->len;
|
|
|
|
txdr->buffer_info[i].dma =
|
|
|
|
pci_map_single(pdev, skb->data, skb->len,
|
|
|
|
PCI_DMA_TODEVICE);
|
|
|
|
tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
|
|
|
|
tx_desc->lower.data = cpu_to_le32(skb->len);
|
|
|
|
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
|
|
|
|
E1000_TXD_CMD_IFCS |
|
|
|
|
E1000_TXD_CMD_RPS);
|
|
|
|
tx_desc->upper.data = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Setup Rx descriptor ring and Rx buffers */
|
|
|
|
|
|
|
|
if(!rxdr->count)
|
|
|
|
rxdr->count = E1000_DEFAULT_RXD;
|
|
|
|
|
|
|
|
size = rxdr->count * sizeof(struct e1000_buffer);
|
|
|
|
if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
|
|
|
|
ret_val = 4;
|
|
|
|
goto err_nomem;
|
|
|
|
}
|
|
|
|
memset(rxdr->buffer_info, 0, size);
|
|
|
|
|
|
|
|
rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
|
|
|
|
if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
|
|
|
|
ret_val = 5;
|
|
|
|
goto err_nomem;
|
|
|
|
}
|
|
|
|
memset(rxdr->desc, 0, rxdr->size);
|
|
|
|
rxdr->next_to_use = rxdr->next_to_clean = 0;
|
|
|
|
|
|
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RDBAL,
|
|
|
|
((uint64_t) rxdr->dma & 0xFFFFFFFF));
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RDH, 0);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RDT, 0);
|
|
|
|
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
|
|
|
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
|
|
|
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
|
|
|
|
|
|
for(i = 0; i < rxdr->count; i++) {
|
|
|
|
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
|
|
|
|
GFP_KERNEL))) {
|
|
|
|
ret_val = 6;
|
|
|
|
goto err_nomem;
|
|
|
|
}
|
|
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
|
|
rxdr->buffer_info[i].skb = skb;
|
|
|
|
rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
|
|
|
|
rxdr->buffer_info[i].dma =
|
|
|
|
pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
|
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
|
|
|
|
memset(skb->data, 0x00, skb->len);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_nomem:
|
|
|
|
e1000_free_desc_rings(adapter);
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_phy_disable_receiver(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
|
|
|
|
e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
|
|
|
|
e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
|
|
|
|
e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
|
|
|
|
e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
uint16_t phy_reg;
|
|
|
|
|
|
|
|
/* Because we reset the PHY above, we need to re-force TX_CLK in the
|
|
|
|
* Extended PHY Specific Control Register to 25MHz clock. This
|
|
|
|
* value defaults back to a 2.5MHz clock when the PHY is reset.
|
|
|
|
*/
|
|
|
|
e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
|
|
|
|
phy_reg |= M88E1000_EPSCR_TX_CLK_25;
|
|
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
|
|
M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
|
|
|
|
|
|
|
|
/* In addition, because of the s/w reset above, we need to enable
|
|
|
|
* CRS on TX. This must be set for both full and half duplex
|
|
|
|
* operation.
|
|
|
|
*/
|
|
|
|
e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
|
|
|
|
phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
|
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
|
|
M88E1000_PHY_SPEC_CTRL, phy_reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
uint32_t ctrl_reg;
|
|
|
|
uint16_t phy_reg;
|
|
|
|
|
|
|
|
/* Setup the Device Control Register for PHY loopback test. */
|
|
|
|
|
|
|
|
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
|
|
|
|
ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
|
|
|
|
E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
|
|
|
|
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
|
|
|
|
E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
|
|
|
|
E1000_CTRL_FD); /* Force Duplex to FULL */
|
|
|
|
|
|
|
|
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
|
|
|
|
|
|
|
|
/* Read the PHY Specific Control Register (0x10) */
|
|
|
|
e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
|
|
|
|
|
|
|
|
/* Clear Auto-Crossover bits in PHY Specific Control Register
|
|
|
|
* (bits 6:5).
|
|
|
|
*/
|
|
|
|
phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
|
|
|
|
e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
|
|
|
|
|
|
|
|
/* Perform software reset on the PHY */
|
|
|
|
e1000_phy_reset(&adapter->hw);
|
|
|
|
|
|
|
|
/* Have to setup TX_CLK and TX_CRS after software reset */
|
|
|
|
e1000_phy_reset_clk_and_crs(adapter);
|
|
|
|
|
|
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
|
|
|
|
|
|
|
|
/* Wait for reset to complete. */
|
|
|
|
udelay(500);
|
|
|
|
|
|
|
|
/* Have to setup TX_CLK and TX_CRS after software reset */
|
|
|
|
e1000_phy_reset_clk_and_crs(adapter);
|
|
|
|
|
|
|
|
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
|
|
|
|
e1000_phy_disable_receiver(adapter);
|
|
|
|
|
|
|
|
/* Set the loopback bit in the PHY control register. */
|
|
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
|
|
|
|
phy_reg |= MII_CR_LOOPBACK;
|
|
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
|
|
|
|
|
|
|
|
/* Setup TX_CLK and TX_CRS one more time. */
|
|
|
|
e1000_phy_reset_clk_and_crs(adapter);
|
|
|
|
|
|
|
|
/* Check Phy Configuration */
|
|
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
|
|
|
|
if(phy_reg != 0x4100)
|
|
|
|
return 9;
|
|
|
|
|
|
|
|
e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
|
|
|
|
if(phy_reg != 0x0070)
|
|
|
|
return 10;
|
|
|
|
|
|
|
|
e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
|
|
|
|
if(phy_reg != 0x001A)
|
|
|
|
return 11;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
uint32_t ctrl_reg = 0;
|
|
|
|
uint32_t stat_reg = 0;
|
|
|
|
|
|
|
|
adapter->hw.autoneg = FALSE;
|
|
|
|
|
|
|
|
if(adapter->hw.phy_type == e1000_phy_m88) {
|
|
|
|
/* Auto-MDI/MDIX Off */
|
|
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
|
|
M88E1000_PHY_SPEC_CTRL, 0x0808);
|
|
|
|
/* reset to update Auto-MDI/MDIX */
|
|
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
|
|
|
|
/* autoneg off */
|
|
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
|
|
|
|
}
|
|
|
|
/* force 1000, set loopback */
|
|
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
|
|
|
|
|
|
|
|
/* Now set up the MAC to the same speed/duplex as the PHY. */
|
|
|
|
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
|
|
|
|
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
|
|
|
|
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
|
|
|
|
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
|
|
|
|
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
|
|
|
|
E1000_CTRL_FD); /* Force Duplex to FULL */
|
|
|
|
|
|
|
|
if(adapter->hw.media_type == e1000_media_type_copper &&
|
|
|
|
adapter->hw.phy_type == e1000_phy_m88) {
|
|
|
|
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
|
|
|
|
} else {
|
|
|
|
/* Set the ILOS bit on the fiber Nic is half
|
|
|
|
* duplex link is detected. */
|
|
|
|
stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
|
|
|
|
if((stat_reg & E1000_STATUS_FD) == 0)
|
|
|
|
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
|
|
|
|
}
|
|
|
|
|
|
|
|
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
|
|
|
|
|
|
|
|
/* Disable the receiver on the PHY so when a cable is plugged in, the
|
|
|
|
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
|
|
|
|
*/
|
|
|
|
if(adapter->hw.phy_type == e1000_phy_m88)
|
|
|
|
e1000_phy_disable_receiver(adapter);
|
|
|
|
|
|
|
|
udelay(500);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_set_phy_loopback(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
uint16_t phy_reg = 0;
|
|
|
|
uint16_t count = 0;
|
|
|
|
|
|
|
|
switch (adapter->hw.mac_type) {
|
|
|
|
case e1000_82543:
|
|
|
|
if(adapter->hw.media_type == e1000_media_type_copper) {
|
|
|
|
/* Attempt to setup Loopback mode on Non-integrated PHY.
|
|
|
|
* Some PHY registers get corrupted at random, so
|
|
|
|
* attempt this 10 times.
|
|
|
|
*/
|
|
|
|
while(e1000_nonintegrated_phy_loopback(adapter) &&
|
|
|
|
count++ < 10);
|
|
|
|
if(count < 11)
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case e1000_82544:
|
|
|
|
case e1000_82540:
|
|
|
|
case e1000_82545:
|
|
|
|
case e1000_82545_rev_3:
|
|
|
|
case e1000_82546:
|
|
|
|
case e1000_82546_rev_3:
|
|
|
|
case e1000_82541:
|
|
|
|
case e1000_82541_rev_2:
|
|
|
|
case e1000_82547:
|
|
|
|
case e1000_82547_rev_2:
|
|
|
|
return e1000_integrated_phy_loopback(adapter);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
/* Default PHY loopback work is to read the MII
|
|
|
|
* control register and assert bit 14 (loopback mode).
|
|
|
|
*/
|
|
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
|
|
|
|
phy_reg |= MII_CR_LOOPBACK;
|
|
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
|
|
|
|
return 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_setup_loopback_test(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
uint32_t rctl;
|
|
|
|
|
|
|
|
if(adapter->hw.media_type == e1000_media_type_fiber ||
|
|
|
|
adapter->hw.media_type == e1000_media_type_internal_serdes) {
|
|
|
|
if(adapter->hw.mac_type == e1000_82545 ||
|
|
|
|
adapter->hw.mac_type == e1000_82546 ||
|
|
|
|
adapter->hw.mac_type == e1000_82545_rev_3 ||
|
|
|
|
adapter->hw.mac_type == e1000_82546_rev_3)
|
|
|
|
return e1000_set_phy_loopback(adapter);
|
|
|
|
else {
|
|
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
|
|
rctl |= E1000_RCTL_LBM_TCVR;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
} else if(adapter->hw.media_type == e1000_media_type_copper)
|
|
|
|
return e1000_set_phy_loopback(adapter);
|
|
|
|
|
|
|
|
return 7;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_loopback_cleanup(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
uint32_t rctl;
|
|
|
|
uint16_t phy_reg;
|
|
|
|
|
|
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
|
|
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
|
|
|
|
|
|
if(adapter->hw.media_type == e1000_media_type_copper ||
|
|
|
|
((adapter->hw.media_type == e1000_media_type_fiber ||
|
|
|
|
adapter->hw.media_type == e1000_media_type_internal_serdes) &&
|
|
|
|
(adapter->hw.mac_type == e1000_82545 ||
|
|
|
|
adapter->hw.mac_type == e1000_82546 ||
|
|
|
|
adapter->hw.mac_type == e1000_82545_rev_3 ||
|
|
|
|
adapter->hw.mac_type == e1000_82546_rev_3))) {
|
|
|
|
adapter->hw.autoneg = TRUE;
|
|
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
|
|
|
|
if(phy_reg & MII_CR_LOOPBACK) {
|
|
|
|
phy_reg &= ~MII_CR_LOOPBACK;
|
|
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
|
|
|
|
e1000_phy_reset(&adapter->hw);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
|
|
|
|
{
|
|
|
|
memset(skb->data, 0xFF, frame_size);
|
|
|
|
frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
|
|
|
|
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
|
|
|
|
memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
|
|
|
|
memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
|
|
|
|
{
|
|
|
|
frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
|
|
|
|
if(*(skb->data + 3) == 0xFF) {
|
|
|
|
if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
|
|
|
|
(*(skb->data + frame_size / 2 + 12) == 0xAF)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 13;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_run_loopback_test(struct e1000_adapter *adapter)
|
|
|
|
{
|
|
|
|
struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
|
|
|
|
struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
|
|
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
int i, j, k, l, lc, good_cnt, ret_val=0;
|
|
|
|
unsigned long time;
|
|
|
|
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
|
|
|
|
|
|
|
|
/* Calculate the loop count based on the largest descriptor ring
|
|
|
|
* The idea is to wrap the largest ring a number of times using 64
|
|
|
|
* send/receive pairs during each loop
|
|
|
|
*/
|
|
|
|
|
|
|
|
if(rxdr->count <= txdr->count)
|
|
|
|
lc = ((txdr->count / 64) * 2) + 1;
|
|
|
|
else
|
|
|
|
lc = ((rxdr->count / 64) * 2) + 1;
|
|
|
|
|
|
|
|
k = l = 0;
|
|
|
|
for(j = 0; j <= lc; j++) { /* loop count loop */
|
|
|
|
for(i = 0; i < 64; i++) { /* send the packets */
|
|
|
|
e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
|
|
|
|
1024);
|
|
|
|
pci_dma_sync_single_for_device(pdev,
|
|
|
|
txdr->buffer_info[k].dma,
|
|
|
|
txdr->buffer_info[k].length,
|
|
|
|
PCI_DMA_TODEVICE);
|
|
|
|
if(unlikely(++k == txdr->count)) k = 0;
|
|
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, TDT, k);
|
|
|
|
msec_delay(200);
|
|
|
|
time = jiffies; /* set the start time for the receive */
|
|
|
|
good_cnt = 0;
|
|
|
|
do { /* receive the sent packets */
|
|
|
|
pci_dma_sync_single_for_cpu(pdev,
|
|
|
|
rxdr->buffer_info[l].dma,
|
|
|
|
rxdr->buffer_info[l].length,
|
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
|
|
|
|
ret_val = e1000_check_lbtest_frame(
|
|
|
|
rxdr->buffer_info[l].skb,
|
|
|
|
1024);
|
|
|
|
if(!ret_val)
|
|
|
|
good_cnt++;
|
|
|
|
if(unlikely(++l == rxdr->count)) l = 0;
|
|
|
|
/* time + 20 msecs (200 msecs on 2.4) is more than
|
|
|
|
* enough time to complete the receives, if it's
|
|
|
|
* exceeded, break and error off
|
|
|
|
*/
|
|
|
|
} while (good_cnt < 64 && jiffies < (time + 20));
|
|
|
|
if(good_cnt != 64) {
|
|
|
|
ret_val = 13; /* ret_val is the same as mis-compare */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if(jiffies >= (time + 2)) {
|
|
|
|
ret_val = 14; /* error code for time out error */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} /* end loop count loop */
|
|
|
|
return ret_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
|
|
{
|
|
|
|
if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
|
|
|
|
if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
|
|
|
|
*data = e1000_run_loopback_test(adapter);
|
|
|
|
e1000_loopback_cleanup(adapter);
|
|
|
|
e1000_free_desc_rings(adapter);
|
|
|
|
err_loopback:
|
|
|
|
return *data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
|
|
{
|
|
|
|
*data = 0;
|
|
|
|
if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
|
|
|
|
int i = 0;
|
|
|
|
adapter->hw.serdes_link_down = TRUE;
|
|
|
|
|
|
|
|
/* On some blade server designs, link establishment
|
|
|
|
* could take as long as 2-3 minutes */
|
|
|
|
do {
|
|
|
|
e1000_check_for_link(&adapter->hw);
|
|
|
|
if (adapter->hw.serdes_link_down == FALSE)
|
|
|
|
return *data;
|
|
|
|
msec_delay(20);
|
|
|
|
} while (i++ < 3750);
|
|
|
|
|
|
|
|
*data = 1;
|
|
|
|
} else {
|
|
|
|
e1000_check_for_link(&adapter->hw);
|
|
|
|
if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
|
|
|
|
msec_delay(4000);
|
|
|
|
|
|
|
|
if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
|
|
|
|
*data = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return *data;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_diag_test_count(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
return E1000_TEST_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_diag_test(struct net_device *netdev,
|
|
|
|
struct ethtool_test *eth_test, uint64_t *data)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
boolean_t if_running = netif_running(netdev);
|
|
|
|
|
|
|
|
if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
|
|
|
|
/* Offline tests */
|
|
|
|
|
|
|
|
/* save speed, duplex, autoneg settings */
|
|
|
|
uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
|
|
|
|
uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
|
|
|
|
uint8_t autoneg = adapter->hw.autoneg;
|
|
|
|
|
|
|
|
/* Link test performed before hardware reset so autoneg doesn't
|
|
|
|
* interfere with test result */
|
|
|
|
if(e1000_link_test(adapter, &data[4]))
|
|
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
|
|
|
|
if(if_running)
|
|
|
|
e1000_down(adapter);
|
|
|
|
else
|
|
|
|
e1000_reset(adapter);
|
|
|
|
|
|
|
|
if(e1000_reg_test(adapter, &data[0]))
|
|
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
|
|
|
|
e1000_reset(adapter);
|
|
|
|
if(e1000_eeprom_test(adapter, &data[1]))
|
|
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
|
|
|
|
e1000_reset(adapter);
|
|
|
|
if(e1000_intr_test(adapter, &data[2]))
|
|
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
|
|
|
|
e1000_reset(adapter);
|
|
|
|
if(e1000_loopback_test(adapter, &data[3]))
|
|
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
|
|
|
|
/* restore speed, duplex, autoneg settings */
|
|
|
|
adapter->hw.autoneg_advertised = autoneg_advertised;
|
|
|
|
adapter->hw.forced_speed_duplex = forced_speed_duplex;
|
|
|
|
adapter->hw.autoneg = autoneg;
|
|
|
|
|
|
|
|
e1000_reset(adapter);
|
|
|
|
if(if_running)
|
|
|
|
e1000_up(adapter);
|
|
|
|
} else {
|
|
|
|
/* Online tests */
|
|
|
|
if(e1000_link_test(adapter, &data[4]))
|
|
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
|
|
|
|
/* Offline tests aren't run; pass by default */
|
|
|
|
data[0] = 0;
|
|
|
|
data[1] = 0;
|
|
|
|
data[2] = 0;
|
|
|
|
data[3] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
|
|
|
|
switch(adapter->hw.device_id) {
|
|
|
|
case E1000_DEV_ID_82542:
|
|
|
|
case E1000_DEV_ID_82543GC_FIBER:
|
|
|
|
case E1000_DEV_ID_82543GC_COPPER:
|
|
|
|
case E1000_DEV_ID_82544EI_FIBER:
|
|
|
|
case E1000_DEV_ID_82546EB_QUAD_COPPER:
|
|
|
|
case E1000_DEV_ID_82545EM_FIBER:
|
|
|
|
case E1000_DEV_ID_82545EM_COPPER:
|
|
|
|
wol->supported = 0;
|
|
|
|
wol->wolopts = 0;
|
|
|
|
return;
|
|
|
|
|
|
|
|
case E1000_DEV_ID_82546EB_FIBER:
|
|
|
|
case E1000_DEV_ID_82546GB_FIBER:
|
|
|
|
/* Wake events only supported on port A for dual fiber */
|
|
|
|
if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
|
|
|
|
wol->supported = 0;
|
|
|
|
wol->wolopts = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Fall Through */
|
|
|
|
|
|
|
|
default:
|
|
|
|
wol->supported = WAKE_UCAST | WAKE_MCAST |
|
|
|
|
WAKE_BCAST | WAKE_MAGIC;
|
|
|
|
|
|
|
|
wol->wolopts = 0;
|
|
|
|
if(adapter->wol & E1000_WUFC_EX)
|
|
|
|
wol->wolopts |= WAKE_UCAST;
|
|
|
|
if(adapter->wol & E1000_WUFC_MC)
|
|
|
|
wol->wolopts |= WAKE_MCAST;
|
|
|
|
if(adapter->wol & E1000_WUFC_BC)
|
|
|
|
wol->wolopts |= WAKE_BCAST;
|
|
|
|
if(adapter->wol & E1000_WUFC_MAG)
|
|
|
|
wol->wolopts |= WAKE_MAGIC;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
|
|
|
|
switch(adapter->hw.device_id) {
|
|
|
|
case E1000_DEV_ID_82542:
|
|
|
|
case E1000_DEV_ID_82543GC_FIBER:
|
|
|
|
case E1000_DEV_ID_82543GC_COPPER:
|
|
|
|
case E1000_DEV_ID_82544EI_FIBER:
|
|
|
|
case E1000_DEV_ID_82546EB_QUAD_COPPER:
|
|
|
|
case E1000_DEV_ID_82545EM_FIBER:
|
|
|
|
case E1000_DEV_ID_82545EM_COPPER:
|
|
|
|
return wol->wolopts ? -EOPNOTSUPP : 0;
|
|
|
|
|
|
|
|
case E1000_DEV_ID_82546EB_FIBER:
|
|
|
|
case E1000_DEV_ID_82546GB_FIBER:
|
|
|
|
/* Wake events only supported on port A for dual fiber */
|
|
|
|
if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
|
|
|
|
return wol->wolopts ? -EOPNOTSUPP : 0;
|
|
|
|
/* Fall Through */
|
|
|
|
|
|
|
|
default:
|
|
|
|
if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
adapter->wol = 0;
|
|
|
|
|
|
|
|
if(wol->wolopts & WAKE_UCAST)
|
|
|
|
adapter->wol |= E1000_WUFC_EX;
|
|
|
|
if(wol->wolopts & WAKE_MCAST)
|
|
|
|
adapter->wol |= E1000_WUFC_MC;
|
|
|
|
if(wol->wolopts & WAKE_BCAST)
|
|
|
|
adapter->wol |= E1000_WUFC_BC;
|
|
|
|
if(wol->wolopts & WAKE_MAGIC)
|
|
|
|
adapter->wol |= E1000_WUFC_MAG;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* toggle LED 4 times per second = 2 "blinks" per second */
|
|
|
|
#define E1000_ID_INTERVAL (HZ/4)
|
|
|
|
|
|
|
|
/* bit defines for adapter->led_status */
|
|
|
|
#define E1000_LED_ON 0
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_led_blink_callback(unsigned long data)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
|
|
|
|
|
|
|
if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
|
|
|
|
e1000_led_off(&adapter->hw);
|
|
|
|
else
|
|
|
|
e1000_led_on(&adapter->hw);
|
|
|
|
|
|
|
|
mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_phys_id(struct net_device *netdev, uint32_t data)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
|
|
|
|
if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
|
|
|
|
data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
|
|
|
|
|
|
|
|
if(!adapter->blink_timer.function) {
|
|
|
|
init_timer(&adapter->blink_timer);
|
|
|
|
adapter->blink_timer.function = e1000_led_blink_callback;
|
|
|
|
adapter->blink_timer.data = (unsigned long) adapter;
|
|
|
|
}
|
|
|
|
|
|
|
|
e1000_setup_led(&adapter->hw);
|
|
|
|
mod_timer(&adapter->blink_timer, jiffies);
|
|
|
|
|
|
|
|
msleep_interruptible(data * 1000);
|
|
|
|
del_timer_sync(&adapter->blink_timer);
|
|
|
|
e1000_led_off(&adapter->hw);
|
|
|
|
clear_bit(E1000_LED_ON, &adapter->led_status);
|
|
|
|
e1000_cleanup_led(&adapter->hw);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_nway_reset(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
if(netif_running(netdev)) {
|
|
|
|
e1000_down(adapter);
|
|
|
|
e1000_up(adapter);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
e1000_get_stats_count(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
return E1000_STATS_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_get_ethtool_stats(struct net_device *netdev,
|
|
|
|
struct ethtool_stats *stats, uint64_t *data)
|
|
|
|
{
|
|
|
|
struct e1000_adapter *adapter = netdev->priv;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
e1000_update_stats(adapter);
|
|
|
|
for(i = 0; i < E1000_STATS_LEN; i++) {
|
|
|
|
char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
|
|
|
|
data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
|
|
|
|
sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
switch(stringset) {
|
|
|
|
case ETH_SS_TEST:
|
|
|
|
memcpy(data, *e1000_gstrings_test,
|
|
|
|
E1000_TEST_LEN*ETH_GSTRING_LEN);
|
|
|
|
break;
|
|
|
|
case ETH_SS_STATS:
|
|
|
|
for (i=0; i < E1000_STATS_LEN; i++) {
|
|
|
|
memcpy(data + i * ETH_GSTRING_LEN,
|
|
|
|
e1000_gstrings_stats[i].stat_string,
|
|
|
|
ETH_GSTRING_LEN);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ethtool_ops e1000_ethtool_ops = {
|
|
|
|
.get_settings = e1000_get_settings,
|
|
|
|
.set_settings = e1000_set_settings,
|
|
|
|
.get_drvinfo = e1000_get_drvinfo,
|
|
|
|
.get_regs_len = e1000_get_regs_len,
|
|
|
|
.get_regs = e1000_get_regs,
|
|
|
|
.get_wol = e1000_get_wol,
|
|
|
|
.set_wol = e1000_set_wol,
|
|
|
|
.get_msglevel = e1000_get_msglevel,
|
|
|
|
.set_msglevel = e1000_set_msglevel,
|
|
|
|
.nway_reset = e1000_nway_reset,
|
|
|
|
.get_link = ethtool_op_get_link,
|
|
|
|
.get_eeprom_len = e1000_get_eeprom_len,
|
|
|
|
.get_eeprom = e1000_get_eeprom,
|
|
|
|
.set_eeprom = e1000_set_eeprom,
|
|
|
|
.get_ringparam = e1000_get_ringparam,
|
|
|
|
.set_ringparam = e1000_set_ringparam,
|
|
|
|
.get_pauseparam = e1000_get_pauseparam,
|
|
|
|
.set_pauseparam = e1000_set_pauseparam,
|
|
|
|
.get_rx_csum = e1000_get_rx_csum,
|
|
|
|
.set_rx_csum = e1000_set_rx_csum,
|
|
|
|
.get_tx_csum = e1000_get_tx_csum,
|
|
|
|
.set_tx_csum = e1000_set_tx_csum,
|
|
|
|
.get_sg = ethtool_op_get_sg,
|
|
|
|
.set_sg = ethtool_op_set_sg,
|
|
|
|
#ifdef NETIF_F_TSO
|
|
|
|
.get_tso = ethtool_op_get_tso,
|
|
|
|
.set_tso = e1000_set_tso,
|
|
|
|
#endif
|
|
|
|
.self_test_count = e1000_diag_test_count,
|
|
|
|
.self_test = e1000_diag_test,
|
|
|
|
.get_strings = e1000_get_strings,
|
|
|
|
.phys_id = e1000_phys_id,
|
|
|
|
.get_stats_count = e1000_get_stats_count,
|
|
|
|
.get_ethtool_stats = e1000_get_ethtool_stats,
|
|
|
|
};
|
|
|
|
|
|
|
|
void e1000_set_ethtool_ops(struct net_device *netdev)
|
|
|
|
{
|
|
|
|
SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
|
|
|
|
}
|