|
|
|
/*
|
|
|
|
* Generic hugetlb support.
|
|
|
|
* (C) William Irwin, April 2004
|
|
|
|
*/
|
|
|
|
#include <linux/gfp.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
#include <linux/highmem.h>
|
|
|
|
#include <linux/nodemask.h>
|
|
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <linux/mempolicy.h>
|
|
|
|
#include <linux/cpuset.h>
|
|
|
|
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
|
|
|
|
#include <linux/hugetlb.h>
|
|
|
|
|
|
|
|
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
|
|
|
|
static unsigned long nr_huge_pages, free_huge_pages;
|
|
|
|
unsigned long max_huge_pages;
|
|
|
|
static struct list_head hugepage_freelists[MAX_NUMNODES];
|
|
|
|
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
|
|
|
|
static unsigned int free_huge_pages_node[MAX_NUMNODES];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
|
|
|
|
*/
|
|
|
|
static DEFINE_SPINLOCK(hugetlb_lock);
|
|
|
|
|
|
|
|
static void enqueue_huge_page(struct page *page)
|
|
|
|
{
|
|
|
|
int nid = page_to_nid(page);
|
|
|
|
list_add(&page->lru, &hugepage_freelists[nid]);
|
|
|
|
free_huge_pages++;
|
|
|
|
free_huge_pages_node[nid]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct page *dequeue_huge_page(struct vm_area_struct *vma,
|
|
|
|
unsigned long address)
|
|
|
|
{
|
|
|
|
int nid = numa_node_id();
|
|
|
|
struct page *page = NULL;
|
|
|
|
struct zonelist *zonelist = huge_zonelist(vma, address);
|
|
|
|
struct zone **z;
|
|
|
|
|
|
|
|
for (z = zonelist->zones; *z; z++) {
|
|
|
|
nid = (*z)->zone_pgdat->node_id;
|
|
|
|
if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
|
|
|
|
!list_empty(&hugepage_freelists[nid]))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*z) {
|
|
|
|
page = list_entry(hugepage_freelists[nid].next,
|
|
|
|
struct page, lru);
|
|
|
|
list_del(&page->lru);
|
|
|
|
free_huge_pages--;
|
|
|
|
free_huge_pages_node[nid]--;
|
|
|
|
}
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct page *alloc_fresh_huge_page(void)
|
|
|
|
{
|
|
|
|
static int nid = 0;
|
|
|
|
struct page *page;
|
|
|
|
page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
|
|
|
|
HUGETLB_PAGE_ORDER);
|
|
|
|
nid = (nid + 1) % num_online_nodes();
|
|
|
|
if (page) {
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
nr_huge_pages++;
|
|
|
|
nr_huge_pages_node[page_to_nid(page)]++;
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
void free_huge_page(struct page *page)
|
|
|
|
{
|
|
|
|
BUG_ON(page_count(page));
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&page->lru);
|
|
|
|
page[1].mapping = NULL;
|
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
enqueue_huge_page(page);
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
page = dequeue_huge_page(vma, addr);
|
|
|
|
if (!page) {
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
set_page_count(page, 1);
|
|
|
|
page[1].mapping = (void *)free_huge_page;
|
|
|
|
for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
|
|
|
|
clear_highpage(&page[i]);
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init hugetlb_init(void)
|
|
|
|
{
|
|
|
|
unsigned long i;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (HPAGE_SHIFT == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for (i = 0; i < MAX_NUMNODES; ++i)
|
|
|
|
INIT_LIST_HEAD(&hugepage_freelists[i]);
|
|
|
|
|
|
|
|
for (i = 0; i < max_huge_pages; ++i) {
|
|
|
|
page = alloc_fresh_huge_page();
|
|
|
|
if (!page)
|
|
|
|
break;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
enqueue_huge_page(page);
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
|
|
|
max_huge_pages = free_huge_pages = nr_huge_pages = i;
|
|
|
|
printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
module_init(hugetlb_init);
|
|
|
|
|
|
|
|
static int __init hugetlb_setup(char *s)
|
|
|
|
{
|
|
|
|
if (sscanf(s, "%lu", &max_huge_pages) <= 0)
|
|
|
|
max_huge_pages = 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("hugepages=", hugetlb_setup);
|
|
|
|
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
static void update_and_free_page(struct page *page)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
nr_huge_pages--;
|
|
|
|
nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
|
|
|
|
for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
|
|
|
|
page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
|
|
|
|
1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
|
|
|
|
1 << PG_private | 1<< PG_writeback);
|
|
|
|
set_page_count(&page[i], 0);
|
|
|
|
}
|
|
|
|
set_page_count(page, 1);
|
|
|
|
__free_pages(page, HUGETLB_PAGE_ORDER);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
|
|
static void try_to_free_low(unsigned long count)
|
|
|
|
{
|
|
|
|
int i, nid;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; ++i) {
|
|
|
|
struct page *page, *next;
|
|
|
|
list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
|
|
|
|
if (PageHighMem(page))
|
|
|
|
continue;
|
|
|
|
list_del(&page->lru);
|
|
|
|
update_and_free_page(page);
|
|
|
|
nid = page_zone(page)->zone_pgdat->node_id;
|
|
|
|
free_huge_pages--;
|
|
|
|
free_huge_pages_node[nid]--;
|
|
|
|
if (count >= nr_huge_pages)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void try_to_free_low(unsigned long count)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static unsigned long set_max_huge_pages(unsigned long count)
|
|
|
|
{
|
|
|
|
while (count > nr_huge_pages) {
|
|
|
|
struct page *page = alloc_fresh_huge_page();
|
|
|
|
if (!page)
|
|
|
|
return nr_huge_pages;
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
enqueue_huge_page(page);
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
}
|
|
|
|
if (count >= nr_huge_pages)
|
|
|
|
return nr_huge_pages;
|
|
|
|
|
|
|
|
spin_lock(&hugetlb_lock);
|
|
|
|
try_to_free_low(count);
|
|
|
|
while (count < nr_huge_pages) {
|
|
|
|
struct page *page = dequeue_huge_page(NULL, 0);
|
|
|
|
if (!page)
|
|
|
|
break;
|
|
|
|
update_and_free_page(page);
|
|
|
|
}
|
|
|
|
spin_unlock(&hugetlb_lock);
|
|
|
|
return nr_huge_pages;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
|
|
|
|
struct file *file, void __user *buffer,
|
|
|
|
size_t *length, loff_t *ppos)
|
|
|
|
{
|
|
|
|
proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
|
|
|
|
max_huge_pages = set_max_huge_pages(max_huge_pages);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
|
|
|
|
int hugetlb_report_meminfo(char *buf)
|
|
|
|
{
|
|
|
|
return sprintf(buf,
|
|
|
|
"HugePages_Total: %5lu\n"
|
|
|
|
"HugePages_Free: %5lu\n"
|
|
|
|
"Hugepagesize: %5lu kB\n",
|
|
|
|
nr_huge_pages,
|
|
|
|
free_huge_pages,
|
|
|
|
HPAGE_SIZE/1024);
|
|
|
|
}
|
|
|
|
|
|
|
|
int hugetlb_report_node_meminfo(int nid, char *buf)
|
|
|
|
{
|
|
|
|
return sprintf(buf,
|
|
|
|
"Node %d HugePages_Total: %5u\n"
|
|
|
|
"Node %d HugePages_Free: %5u\n",
|
|
|
|
nid, nr_huge_pages_node[nid],
|
|
|
|
nid, free_huge_pages_node[nid]);
|
|
|
|
}
|
|
|
|
|
|
|
|
int is_hugepage_mem_enough(size_t size)
|
|
|
|
{
|
|
|
|
return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
|
|
|
|
unsigned long hugetlb_total_pages(void)
|
|
|
|
{
|
|
|
|
return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We cannot handle pagefaults against hugetlb pages at all. They cause
|
|
|
|
* handle_mm_fault() to try to instantiate regular-sized pages in the
|
|
|
|
* hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
|
|
|
|
* this far.
|
|
|
|
*/
|
|
|
|
static struct page *hugetlb_nopage(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, int *unused)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct vm_operations_struct hugetlb_vm_ops = {
|
|
|
|
.nopage = hugetlb_nopage,
|
|
|
|
};
|
|
|
|
|
|
|
|
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
|
|
|
|
int writable)
|
|
|
|
{
|
|
|
|
pte_t entry;
|
|
|
|
|
|
|
|
if (writable) {
|
|
|
|
entry =
|
|
|
|
pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
|
|
|
|
} else {
|
|
|
|
entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
|
|
|
|
}
|
|
|
|
entry = pte_mkyoung(entry);
|
|
|
|
entry = pte_mkhuge(entry);
|
|
|
|
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_huge_ptep_writable(struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pte_t *ptep)
|
|
|
|
{
|
|
|
|
pte_t entry;
|
|
|
|
|
|
|
|
entry = pte_mkwrite(pte_mkdirty(*ptep));
|
|
|
|
ptep_set_access_flags(vma, address, ptep, entry, 1);
|
|
|
|
update_mmu_cache(vma, address, entry);
|
|
|
|
lazy_mmu_prot_update(entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|
|
|
struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
pte_t *src_pte, *dst_pte, entry;
|
|
|
|
struct page *ptepage;
|
|
|
|
unsigned long addr;
|
|
|
|
int cow;
|
|
|
|
|
|
|
|
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
|
|
|
|
|
|
|
|
for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
|
|
|
|
src_pte = huge_pte_offset(src, addr);
|
|
|
|
if (!src_pte)
|
|
|
|
continue;
|
|
|
|
dst_pte = huge_pte_alloc(dst, addr);
|
|
|
|
if (!dst_pte)
|
|
|
|
goto nomem;
|
|
|
|
spin_lock(&dst->page_table_lock);
|
|
|
|
spin_lock(&src->page_table_lock);
|
|
|
|
if (!pte_none(*src_pte)) {
|
|
|
|
if (cow)
|
|
|
|
ptep_set_wrprotect(src, addr, src_pte);
|
|
|
|
entry = *src_pte;
|
|
|
|
ptepage = pte_page(entry);
|
|
|
|
get_page(ptepage);
|
|
|
|
add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
|
|
|
|
set_huge_pte_at(dst, addr, dst_pte, entry);
|
|
|
|
}
|
|
|
|
spin_unlock(&src->page_table_lock);
|
|
|
|
spin_unlock(&dst->page_table_lock);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
|
|
|
|
unsigned long end)
|
|
|
|
{
|
|
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
unsigned long address;
|
|
|
|
pte_t *ptep;
|
|
|
|
pte_t pte;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
WARN_ON(!is_vm_hugetlb_page(vma));
|
|
|
|
BUG_ON(start & ~HPAGE_MASK);
|
|
|
|
BUG_ON(end & ~HPAGE_MASK);
|
|
|
|
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
|
[PATCH] mm: update_hiwaters just in time
update_mem_hiwater has attracted various criticisms, in particular from those
concerned with mm scalability. Originally it was called whenever rss or
total_vm got raised. Then many of those callsites were replaced by a timer
tick call from account_system_time. Now Frank van Maarseveen reports that to
be found inadequate. How about this? Works for Frank.
Replace update_mem_hiwater, a poor combination of two unrelated ops, by macros
update_hiwater_rss and update_hiwater_vm. Don't attempt to keep
mm->hiwater_rss up to date at timer tick, nor every time we raise rss (usually
by 1): those are hot paths. Do the opposite, update only when about to lower
rss (usually by many), or just before final accounting in do_exit. Handle
mm->hiwater_vm in the same way, though it's much less of an issue. Demand
that whoever collects these hiwater statistics do the work of taking the
maximum with rss or total_vm.
And there has been no collector of these hiwater statistics in the tree. The
new convention needs an example, so match Frank's usage by adding a VmPeak
line above VmSize to /proc/<pid>/status, and also a VmHWM line above VmRSS
(High-Water-Mark or High-Water-Memory).
There was a particular anomaly during mremap move, that hiwater_vm might be
captured too high. A fleeting such anomaly remains, but it's quickly
corrected now, whereas before it would stick.
What locking? None: if the app is racy then these statistics will be racy,
it's not worth any overhead to make them exact. But whenever it suits,
hiwater_vm is updated under exclusive mmap_sem, and hiwater_rss under
page_table_lock (for now) or with preemption disabled (later on): without
going to any trouble, minimize the time between reading current values and
updating, to minimize those occasions when a racing thread bumps a count up
and back down in between.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
|
|
|
/* Update high watermark before we lower rss */
|
|
|
|
update_hiwater_rss(mm);
|
|
|
|
|
|
|
|
for (address = start; address < end; address += HPAGE_SIZE) {
|
|
|
|
ptep = huge_pte_offset(mm, address);
|
|
|
|
if (!ptep)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
pte = huge_ptep_get_and_clear(mm, address, ptep);
|
|
|
|
if (pte_none(pte))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
page = pte_page(pte);
|
|
|
|
put_page(page);
|
|
|
|
add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
flush_tlb_range(vma, start, end);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pte_t *ptep, pte_t pte)
|
|
|
|
{
|
|
|
|
struct page *old_page, *new_page;
|
|
|
|
int i, avoidcopy;
|
|
|
|
|
|
|
|
old_page = pte_page(pte);
|
|
|
|
|
|
|
|
/* If no-one else is actually using this page, avoid the copy
|
|
|
|
* and just make the page writable */
|
|
|
|
avoidcopy = (page_count(old_page) == 1);
|
|
|
|
if (avoidcopy) {
|
|
|
|
set_huge_ptep_writable(vma, address, ptep);
|
|
|
|
return VM_FAULT_MINOR;
|
|
|
|
}
|
|
|
|
|
|
|
|
page_cache_get(old_page);
|
|
|
|
new_page = alloc_huge_page(vma, address);
|
|
|
|
|
|
|
|
if (!new_page) {
|
|
|
|
page_cache_release(old_page);
|
|
|
|
|
|
|
|
/* Logically this is OOM, not a SIGBUS, but an OOM
|
|
|
|
* could cause the kernel to go killing other
|
|
|
|
* processes which won't help the hugepage situation
|
|
|
|
* at all (?) */
|
|
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
|
|
|
|
copy_user_highpage(new_page + i, old_page + i,
|
|
|
|
address + i*PAGE_SIZE);
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
|
|
|
|
ptep = huge_pte_offset(mm, address & HPAGE_MASK);
|
|
|
|
if (likely(pte_same(*ptep, pte))) {
|
|
|
|
/* Break COW */
|
|
|
|
set_huge_pte_at(mm, address, ptep,
|
|
|
|
make_huge_pte(vma, new_page, 1));
|
|
|
|
/* Make the old page be freed below */
|
|
|
|
new_page = old_page;
|
|
|
|
}
|
|
|
|
page_cache_release(new_page);
|
|
|
|
page_cache_release(old_page);
|
|
|
|
return VM_FAULT_MINOR;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
|
|
unsigned long address, pte_t *ptep, int write_access)
|
|
|
|
{
|
|
|
|
int ret = VM_FAULT_SIGBUS;
|
|
|
|
unsigned long idx;
|
|
|
|
unsigned long size;
|
|
|
|
struct page *page;
|
|
|
|
struct address_space *mapping;
|
|
|
|
pte_t new_pte;
|
|
|
|
|
|
|
|
mapping = vma->vm_file->f_mapping;
|
|
|
|
idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
|
|
|
|
+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Use page lock to guard against racing truncation
|
|
|
|
* before we get page_table_lock.
|
|
|
|
*/
|
|
|
|
retry:
|
|
|
|
page = find_lock_page(mapping, idx);
|
|
|
|
if (!page) {
|
|
|
|
if (hugetlb_get_quota(mapping))
|
|
|
|
goto out;
|
|
|
|
page = alloc_huge_page(vma, address);
|
|
|
|
if (!page) {
|
|
|
|
hugetlb_put_quota(mapping);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vma->vm_flags & VM_SHARED) {
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
|
|
|
|
if (err) {
|
|
|
|
put_page(page);
|
|
|
|
hugetlb_put_quota(mapping);
|
|
|
|
if (err == -EEXIST)
|
|
|
|
goto retry;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
lock_page(page);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
size = i_size_read(mapping->host) >> HPAGE_SHIFT;
|
|
|
|
if (idx >= size)
|
|
|
|
goto backout;
|
|
|
|
|
|
|
|
ret = VM_FAULT_MINOR;
|
|
|
|
if (!pte_none(*ptep))
|
|
|
|
goto backout;
|
|
|
|
|
|
|
|
add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
|
|
|
|
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
|
|
|
|
&& (vma->vm_flags & VM_SHARED)));
|
|
|
|
set_huge_pte_at(mm, address, ptep, new_pte);
|
|
|
|
|
|
|
|
if (write_access && !(vma->vm_flags & VM_SHARED)) {
|
|
|
|
/* Optimization, do the COW without a second fault */
|
|
|
|
ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
unlock_page(page);
|
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
backout:
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
hugetlb_put_quota(mapping);
|
|
|
|
unlock_page(page);
|
|
|
|
put_page(page);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
|
|
unsigned long address, int write_access)
|
|
|
|
{
|
|
|
|
pte_t *ptep;
|
|
|
|
pte_t entry;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ptep = huge_pte_alloc(mm, address);
|
|
|
|
if (!ptep)
|
|
|
|
return VM_FAULT_OOM;
|
|
|
|
|
|
|
|
entry = *ptep;
|
|
|
|
if (pte_none(entry))
|
|
|
|
return hugetlb_no_page(mm, vma, address, ptep, write_access);
|
|
|
|
|
|
|
|
ret = VM_FAULT_MINOR;
|
|
|
|
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
/* Check for a racing update before calling hugetlb_cow */
|
|
|
|
if (likely(pte_same(entry, *ptep)))
|
|
|
|
if (write_access && !pte_write(entry))
|
|
|
|
ret = hugetlb_cow(mm, vma, address, ptep, entry);
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
|
|
struct page **pages, struct vm_area_struct **vmas,
|
|
|
|
unsigned long *position, int *length, int i)
|
|
|
|
{
|
|
|
|
unsigned long vpfn, vaddr = *position;
|
|
|
|
int remainder = *length;
|
|
|
|
|
|
|
|
vpfn = vaddr/PAGE_SIZE;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
while (vaddr < vma->vm_end && remainder) {
|
|
|
|
pte_t *pte;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some archs (sparc64, sh*) have multiple pte_ts to
|
|
|
|
* each hugepage. We have to make * sure we get the
|
|
|
|
* first, for the page indexing below to work.
|
|
|
|
*/
|
|
|
|
pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
|
|
|
|
|
|
|
|
if (!pte || pte_none(*pte)) {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
ret = hugetlb_fault(mm, vma, vaddr, 0);
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
|
if (ret == VM_FAULT_MINOR)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
remainder = 0;
|
|
|
|
if (!i)
|
|
|
|
i = -EFAULT;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pages) {
|
|
|
|
page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
|
|
|
|
get_page(page);
|
|
|
|
pages[i] = page;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vmas)
|
|
|
|
vmas[i] = vma;
|
|
|
|
|
|
|
|
vaddr += PAGE_SIZE;
|
|
|
|
++vpfn;
|
|
|
|
--remainder;
|
|
|
|
++i;
|
|
|
|
}
|
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
*length = remainder;
|
|
|
|
*position = vaddr;
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|