|
|
|
/*
|
|
|
|
* Copyright (C) 2004 PathScale, Inc
|
|
|
|
* Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
|
|
|
|
* Licensed under the GPL
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <signal.h>
|
|
|
|
#include <strings.h>
|
|
|
|
#include "os.h"
|
|
|
|
#include "sysdep/barrier.h"
|
|
|
|
#include "sysdep/sigcontext.h"
|
|
|
|
#include "user.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These are the asynchronous signals. SIGPROF is excluded because we want to
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
* be able to profile all of UML, not just the non-critical sections. If
|
|
|
|
* profiling is not thread-safe, then that is not my problem. We can disable
|
|
|
|
* profiling when SMP is enabled in that case.
|
|
|
|
*/
|
|
|
|
#define SIGIO_BIT 0
|
|
|
|
#define SIGIO_MASK (1 << SIGIO_BIT)
|
|
|
|
|
|
|
|
#define SIGVTALRM_BIT 1
|
|
|
|
#define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These are used by both the signal handlers and
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
18 years ago
|
|
|
* block/unblock_signals. I don't want modifications cached in a
|
|
|
|
* register - they must go straight to memory.
|
|
|
|
*/
|
|
|
|
static volatile int signals_enabled = 1;
|
|
|
|
static volatile int pending = 0;
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
|
|
|
void sig_handler(int sig, struct sigcontext *sc)
|
|
|
|
{
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
int enabled;
|
|
|
|
|
|
|
|
enabled = signals_enabled;
|
|
|
|
if (!enabled && (sig == SIGIO)) {
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
pending |= SIGIO_MASK;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
block_signals();
|
|
|
|
|
|
|
|
sig_handler_common_skas(sig, sc);
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
|
|
|
set_signals(enabled);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void real_alarm_handler(struct sigcontext *sc)
|
|
|
|
{
|
|
|
|
struct uml_pt_regs regs;
|
|
|
|
|
|
|
|
if (sc != NULL)
|
|
|
|
copy_sc(®s, sc);
|
|
|
|
regs.is_user = 0;
|
|
|
|
unblock_signals();
|
|
|
|
timer_handler(SIGVTALRM, ®s);
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
}
|
|
|
|
|
|
|
|
void alarm_handler(int sig, struct sigcontext *sc)
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
{
|
|
|
|
int enabled;
|
|
|
|
|
|
|
|
enabled = signals_enabled;
|
|
|
|
if (!signals_enabled) {
|
|
|
|
pending |= SIGVTALRM_MASK;
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
block_signals();
|
|
|
|
|
|
|
|
real_alarm_handler(sc);
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
set_signals(enabled);
|
|
|
|
}
|
|
|
|
|
|
|
|
void timer_init(void)
|
|
|
|
{
|
|
|
|
set_handler(SIGVTALRM, (__sighandler_t) alarm_handler,
|
|
|
|
SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGWINCH, -1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_sigstack(void *sig_stack, int size)
|
|
|
|
{
|
|
|
|
stack_t stack = ((stack_t) { .ss_flags = 0,
|
|
|
|
.ss_sp = (__ptr_t) sig_stack,
|
|
|
|
.ss_size = size - sizeof(void *) });
|
|
|
|
|
|
|
|
if (sigaltstack(&stack, NULL) != 0)
|
|
|
|
panic("enabling signal stack failed, errno = %d\n", errno);
|
|
|
|
}
|
|
|
|
|
|
|
|
void remove_sigstack(void)
|
|
|
|
{
|
|
|
|
stack_t stack = ((stack_t) { .ss_flags = SS_DISABLE,
|
|
|
|
.ss_sp = NULL,
|
|
|
|
.ss_size = 0 });
|
|
|
|
|
|
|
|
if (sigaltstack(&stack, NULL) != 0)
|
|
|
|
panic("disabling signal stack failed, errno = %d\n", errno);
|
|
|
|
}
|
|
|
|
|
|
|
|
void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
|
|
|
|
|
uml: iRQ stacks
Add a separate IRQ stack. This differs from i386 in having the entire
interrupt run on a separate stack rather than starting on the normal kernel
stack and switching over once some preparation has been done. The underlying
mechanism, is of course, sigaltstack.
Another difference is that interrupts that happen in userspace are handled on
the normal kernel stack. These cause a wait wakeup instead of a signal
delivery so there is no point in trying to switch stacks for these. There's
no other stuff on the stack, so there is no extra stack consumption.
This quirk makes it possible to have the entire interrupt run on a separate
stack - process preemption (and calls to schedule()) happens on a normal
kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought.
The IRQ stack for CPU 0 is declared in the same way as the initial kernel
stack. IRQ stacks for other CPUs will be allocated dynamically.
An extra field was added to the thread_info structure. When the active
thread_info is copied to the IRQ stack, the real_thread field points back to
the original stack. This makes it easy to tell where to copy the thread_info
struct back to when the interrupt is finished. It also serves as a marker of
a nested interrupt. It is NULL for the first interrupt on the stack, and
non-NULL for any nested interrupts.
Care is taken to behave correctly if a second interrupt comes in when the
thread_info structure is being set up or taken down. I could just disable
interrupts here, but I don't feel like giving up any of the performance gained
by not flipping signals on and off.
If an interrupt comes in during these critical periods, the handler can't run
because it has no idea what shape the stack is in. So, it sets a bit for its
signal in a global mask and returns. The outer handler will deal with this
signal itself.
Atomicity is had with xchg. A nested interrupt that needs to bail out will
xchg its signal mask into pending_mask and repeat in case yet another
interrupt hit at the same time, until the mask stabilizes.
The outermost interrupt will set up the thread_info and xchg a zero into
pending_mask when it is done. At this point, nested interrupts will look at
->real_thread and see that no setup needs to be done. They can just continue
normally.
Similar care needs to be taken when exiting the outer handler. If another
interrupt comes in while it is copying the thread_info, it will drop a bit
into pending_mask. The outer handler will check this and if it is non-zero,
will loop, set up the stack again, and handle the interrupt.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
void handle_signal(int sig, struct sigcontext *sc)
|
|
|
|
{
|
uml: fix irqstack crash
This patch fixes a crash caused by an interrupt coming in when an IRQ stack
is being torn down. When this happens, handle_signal will loop, setting up
the IRQ stack again because the tearing down had finished, and handling
whatever signals had come in.
However, to_irq_stack returns a mask of pending signals to be handled, plus
bit zero is set if the IRQ stack was already active, and thus shouldn't be
torn down. This causes a problem because when handle_signal goes around
the loop, sig will be zero, and to_irq_stack will duly set bit zero in the
returned mask, faking handle_signal into believing that it shouldn't tear
down the IRQ stack and return thread_info pointers back to their original
values.
This will eventually cause a crash, as the IRQ stack thread_info will
continue pointing to the original task_struct and an interrupt will look
into it after it has been freed.
The fix is to stop passing a signal number into to_irq_stack. Rather, the
pending signals mask is initialized beforehand with the bit for sig already
set. References to sig in to_irq_stack can be replaced with references to
the mask.
[akpm@linux-foundation.org: use UL]
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
unsigned long pending = 1UL << sig;
|
uml: iRQ stacks
Add a separate IRQ stack. This differs from i386 in having the entire
interrupt run on a separate stack rather than starting on the normal kernel
stack and switching over once some preparation has been done. The underlying
mechanism, is of course, sigaltstack.
Another difference is that interrupts that happen in userspace are handled on
the normal kernel stack. These cause a wait wakeup instead of a signal
delivery so there is no point in trying to switch stacks for these. There's
no other stuff on the stack, so there is no extra stack consumption.
This quirk makes it possible to have the entire interrupt run on a separate
stack - process preemption (and calls to schedule()) happens on a normal
kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought.
The IRQ stack for CPU 0 is declared in the same way as the initial kernel
stack. IRQ stacks for other CPUs will be allocated dynamically.
An extra field was added to the thread_info structure. When the active
thread_info is copied to the IRQ stack, the real_thread field points back to
the original stack. This makes it easy to tell where to copy the thread_info
struct back to when the interrupt is finished. It also serves as a marker of
a nested interrupt. It is NULL for the first interrupt on the stack, and
non-NULL for any nested interrupts.
Care is taken to behave correctly if a second interrupt comes in when the
thread_info structure is being set up or taken down. I could just disable
interrupts here, but I don't feel like giving up any of the performance gained
by not flipping signals on and off.
If an interrupt comes in during these critical periods, the handler can't run
because it has no idea what shape the stack is in. So, it sets a bit for its
signal in a global mask and returns. The outer handler will deal with this
signal itself.
Atomicity is had with xchg. A nested interrupt that needs to bail out will
xchg its signal mask into pending_mask and repeat in case yet another
interrupt hit at the same time, until the mask stabilizes.
The outermost interrupt will set up the thread_info and xchg a zero into
pending_mask when it is done. At this point, nested interrupts will look at
->real_thread and see that no setup needs to be done. They can just continue
normally.
Similar care needs to be taken when exiting the outer handler. If another
interrupt comes in while it is copying the thread_info, it will drop a bit
into pending_mask. The outer handler will check this and if it is non-zero,
will loop, set up the stack again, and handle the interrupt.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
|
|
|
|
do {
|
|
|
|
int nested, bail;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* pending comes back with one bit set for each
|
|
|
|
* interrupt that arrived while setting up the stack,
|
|
|
|
* plus a bit for this interrupt, plus the zero bit is
|
|
|
|
* set if this is a nested interrupt.
|
|
|
|
* If bail is true, then we interrupted another
|
|
|
|
* handler setting up the stack. In this case, we
|
|
|
|
* have to return, and the upper handler will deal
|
|
|
|
* with this interrupt.
|
|
|
|
*/
|
uml: fix irqstack crash
This patch fixes a crash caused by an interrupt coming in when an IRQ stack
is being torn down. When this happens, handle_signal will loop, setting up
the IRQ stack again because the tearing down had finished, and handling
whatever signals had come in.
However, to_irq_stack returns a mask of pending signals to be handled, plus
bit zero is set if the IRQ stack was already active, and thus shouldn't be
torn down. This causes a problem because when handle_signal goes around
the loop, sig will be zero, and to_irq_stack will duly set bit zero in the
returned mask, faking handle_signal into believing that it shouldn't tear
down the IRQ stack and return thread_info pointers back to their original
values.
This will eventually cause a crash, as the IRQ stack thread_info will
continue pointing to the original task_struct and an interrupt will look
into it after it has been freed.
The fix is to stop passing a signal number into to_irq_stack. Rather, the
pending signals mask is initialized beforehand with the bit for sig already
set. References to sig in to_irq_stack can be replaced with references to
the mask.
[akpm@linux-foundation.org: use UL]
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
bail = to_irq_stack(&pending);
|
|
|
|
if (bail)
|
uml: iRQ stacks
Add a separate IRQ stack. This differs from i386 in having the entire
interrupt run on a separate stack rather than starting on the normal kernel
stack and switching over once some preparation has been done. The underlying
mechanism, is of course, sigaltstack.
Another difference is that interrupts that happen in userspace are handled on
the normal kernel stack. These cause a wait wakeup instead of a signal
delivery so there is no point in trying to switch stacks for these. There's
no other stuff on the stack, so there is no extra stack consumption.
This quirk makes it possible to have the entire interrupt run on a separate
stack - process preemption (and calls to schedule()) happens on a normal
kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought.
The IRQ stack for CPU 0 is declared in the same way as the initial kernel
stack. IRQ stacks for other CPUs will be allocated dynamically.
An extra field was added to the thread_info structure. When the active
thread_info is copied to the IRQ stack, the real_thread field points back to
the original stack. This makes it easy to tell where to copy the thread_info
struct back to when the interrupt is finished. It also serves as a marker of
a nested interrupt. It is NULL for the first interrupt on the stack, and
non-NULL for any nested interrupts.
Care is taken to behave correctly if a second interrupt comes in when the
thread_info structure is being set up or taken down. I could just disable
interrupts here, but I don't feel like giving up any of the performance gained
by not flipping signals on and off.
If an interrupt comes in during these critical periods, the handler can't run
because it has no idea what shape the stack is in. So, it sets a bit for its
signal in a global mask and returns. The outer handler will deal with this
signal itself.
Atomicity is had with xchg. A nested interrupt that needs to bail out will
xchg its signal mask into pending_mask and repeat in case yet another
interrupt hit at the same time, until the mask stabilizes.
The outermost interrupt will set up the thread_info and xchg a zero into
pending_mask when it is done. At this point, nested interrupts will look at
->real_thread and see that no setup needs to be done. They can just continue
normally.
Similar care needs to be taken when exiting the outer handler. If another
interrupt comes in while it is copying the thread_info, it will drop a bit
into pending_mask. The outer handler will check this and if it is non-zero,
will loop, set up the stack again, and handle the interrupt.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
return;
|
|
|
|
|
|
|
|
nested = pending & 1;
|
|
|
|
pending &= ~1;
|
|
|
|
|
|
|
|
while ((sig = ffs(pending)) != 0){
|
uml: iRQ stacks
Add a separate IRQ stack. This differs from i386 in having the entire
interrupt run on a separate stack rather than starting on the normal kernel
stack and switching over once some preparation has been done. The underlying
mechanism, is of course, sigaltstack.
Another difference is that interrupts that happen in userspace are handled on
the normal kernel stack. These cause a wait wakeup instead of a signal
delivery so there is no point in trying to switch stacks for these. There's
no other stuff on the stack, so there is no extra stack consumption.
This quirk makes it possible to have the entire interrupt run on a separate
stack - process preemption (and calls to schedule()) happens on a normal
kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought.
The IRQ stack for CPU 0 is declared in the same way as the initial kernel
stack. IRQ stacks for other CPUs will be allocated dynamically.
An extra field was added to the thread_info structure. When the active
thread_info is copied to the IRQ stack, the real_thread field points back to
the original stack. This makes it easy to tell where to copy the thread_info
struct back to when the interrupt is finished. It also serves as a marker of
a nested interrupt. It is NULL for the first interrupt on the stack, and
non-NULL for any nested interrupts.
Care is taken to behave correctly if a second interrupt comes in when the
thread_info structure is being set up or taken down. I could just disable
interrupts here, but I don't feel like giving up any of the performance gained
by not flipping signals on and off.
If an interrupt comes in during these critical periods, the handler can't run
because it has no idea what shape the stack is in. So, it sets a bit for its
signal in a global mask and returns. The outer handler will deal with this
signal itself.
Atomicity is had with xchg. A nested interrupt that needs to bail out will
xchg its signal mask into pending_mask and repeat in case yet another
interrupt hit at the same time, until the mask stabilizes.
The outermost interrupt will set up the thread_info and xchg a zero into
pending_mask when it is done. At this point, nested interrupts will look at
->real_thread and see that no setup needs to be done. They can just continue
normally.
Similar care needs to be taken when exiting the outer handler. If another
interrupt comes in while it is copying the thread_info, it will drop a bit
into pending_mask. The outer handler will check this and if it is non-zero,
will loop, set up the stack again, and handle the interrupt.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
sig--;
|
|
|
|
pending &= ~(1 << sig);
|
|
|
|
(*handlers[sig])(sig, sc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Again, pending comes back with a mask of signals
|
uml: iRQ stacks
Add a separate IRQ stack. This differs from i386 in having the entire
interrupt run on a separate stack rather than starting on the normal kernel
stack and switching over once some preparation has been done. The underlying
mechanism, is of course, sigaltstack.
Another difference is that interrupts that happen in userspace are handled on
the normal kernel stack. These cause a wait wakeup instead of a signal
delivery so there is no point in trying to switch stacks for these. There's
no other stuff on the stack, so there is no extra stack consumption.
This quirk makes it possible to have the entire interrupt run on a separate
stack - process preemption (and calls to schedule()) happens on a normal
kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought.
The IRQ stack for CPU 0 is declared in the same way as the initial kernel
stack. IRQ stacks for other CPUs will be allocated dynamically.
An extra field was added to the thread_info structure. When the active
thread_info is copied to the IRQ stack, the real_thread field points back to
the original stack. This makes it easy to tell where to copy the thread_info
struct back to when the interrupt is finished. It also serves as a marker of
a nested interrupt. It is NULL for the first interrupt on the stack, and
non-NULL for any nested interrupts.
Care is taken to behave correctly if a second interrupt comes in when the
thread_info structure is being set up or taken down. I could just disable
interrupts here, but I don't feel like giving up any of the performance gained
by not flipping signals on and off.
If an interrupt comes in during these critical periods, the handler can't run
because it has no idea what shape the stack is in. So, it sets a bit for its
signal in a global mask and returns. The outer handler will deal with this
signal itself.
Atomicity is had with xchg. A nested interrupt that needs to bail out will
xchg its signal mask into pending_mask and repeat in case yet another
interrupt hit at the same time, until the mask stabilizes.
The outermost interrupt will set up the thread_info and xchg a zero into
pending_mask when it is done. At this point, nested interrupts will look at
->real_thread and see that no setup needs to be done. They can just continue
normally.
Similar care needs to be taken when exiting the outer handler. If another
interrupt comes in while it is copying the thread_info, it will drop a bit
into pending_mask. The outer handler will check this and if it is non-zero,
will loop, set up the stack again, and handle the interrupt.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
* that arrived while tearing down the stack. If this
|
|
|
|
* is non-zero, we just go back, set up the stack
|
|
|
|
* again, and handle the new interrupts.
|
|
|
|
*/
|
|
|
|
if (!nested)
|
uml: iRQ stacks
Add a separate IRQ stack. This differs from i386 in having the entire
interrupt run on a separate stack rather than starting on the normal kernel
stack and switching over once some preparation has been done. The underlying
mechanism, is of course, sigaltstack.
Another difference is that interrupts that happen in userspace are handled on
the normal kernel stack. These cause a wait wakeup instead of a signal
delivery so there is no point in trying to switch stacks for these. There's
no other stuff on the stack, so there is no extra stack consumption.
This quirk makes it possible to have the entire interrupt run on a separate
stack - process preemption (and calls to schedule()) happens on a normal
kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought.
The IRQ stack for CPU 0 is declared in the same way as the initial kernel
stack. IRQ stacks for other CPUs will be allocated dynamically.
An extra field was added to the thread_info structure. When the active
thread_info is copied to the IRQ stack, the real_thread field points back to
the original stack. This makes it easy to tell where to copy the thread_info
struct back to when the interrupt is finished. It also serves as a marker of
a nested interrupt. It is NULL for the first interrupt on the stack, and
non-NULL for any nested interrupts.
Care is taken to behave correctly if a second interrupt comes in when the
thread_info structure is being set up or taken down. I could just disable
interrupts here, but I don't feel like giving up any of the performance gained
by not flipping signals on and off.
If an interrupt comes in during these critical periods, the handler can't run
because it has no idea what shape the stack is in. So, it sets a bit for its
signal in a global mask and returns. The outer handler will deal with this
signal itself.
Atomicity is had with xchg. A nested interrupt that needs to bail out will
xchg its signal mask into pending_mask and repeat in case yet another
interrupt hit at the same time, until the mask stabilizes.
The outermost interrupt will set up the thread_info and xchg a zero into
pending_mask when it is done. At this point, nested interrupts will look at
->real_thread and see that no setup needs to be done. They can just continue
normally.
Similar care needs to be taken when exiting the outer handler. If another
interrupt comes in while it is copying the thread_info, it will drop a bit
into pending_mask. The outer handler will check this and if it is non-zero,
will loop, set up the stack again, and handle the interrupt.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
pending = from_irq_stack(nested);
|
|
|
|
} while (pending);
|
uml: iRQ stacks
Add a separate IRQ stack. This differs from i386 in having the entire
interrupt run on a separate stack rather than starting on the normal kernel
stack and switching over once some preparation has been done. The underlying
mechanism, is of course, sigaltstack.
Another difference is that interrupts that happen in userspace are handled on
the normal kernel stack. These cause a wait wakeup instead of a signal
delivery so there is no point in trying to switch stacks for these. There's
no other stuff on the stack, so there is no extra stack consumption.
This quirk makes it possible to have the entire interrupt run on a separate
stack - process preemption (and calls to schedule()) happens on a normal
kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought.
The IRQ stack for CPU 0 is declared in the same way as the initial kernel
stack. IRQ stacks for other CPUs will be allocated dynamically.
An extra field was added to the thread_info structure. When the active
thread_info is copied to the IRQ stack, the real_thread field points back to
the original stack. This makes it easy to tell where to copy the thread_info
struct back to when the interrupt is finished. It also serves as a marker of
a nested interrupt. It is NULL for the first interrupt on the stack, and
non-NULL for any nested interrupts.
Care is taken to behave correctly if a second interrupt comes in when the
thread_info structure is being set up or taken down. I could just disable
interrupts here, but I don't feel like giving up any of the performance gained
by not flipping signals on and off.
If an interrupt comes in during these critical periods, the handler can't run
because it has no idea what shape the stack is in. So, it sets a bit for its
signal in a global mask and returns. The outer handler will deal with this
signal itself.
Atomicity is had with xchg. A nested interrupt that needs to bail out will
xchg its signal mask into pending_mask and repeat in case yet another
interrupt hit at the same time, until the mask stabilizes.
The outermost interrupt will set up the thread_info and xchg a zero into
pending_mask when it is done. At this point, nested interrupts will look at
->real_thread and see that no setup needs to be done. They can just continue
normally.
Similar care needs to be taken when exiting the outer handler. If another
interrupt comes in while it is copying the thread_info, it will drop a bit
into pending_mask. The outer handler will check this and if it is non-zero,
will loop, set up the stack again, and handle the interrupt.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
18 years ago
|
|
|
}
|
|
|
|
|
|
|
|
extern void hard_handler(int sig);
|
|
|
|
|
|
|
|
void set_handler(int sig, void (*handler)(int), int flags, ...)
|
|
|
|
{
|
|
|
|
struct sigaction action;
|
|
|
|
va_list ap;
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
sigset_t sig_mask;
|
|
|
|
int mask;
|
|
|
|
|
|
|
|
handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
|
|
|
|
action.sa_handler = hard_handler;
|
|
|
|
|
|
|
|
sigemptyset(&action.sa_mask);
|
|
|
|
|
|
|
|
va_start(ap, flags);
|
|
|
|
while ((mask = va_arg(ap, int)) != -1)
|
|
|
|
sigaddset(&action.sa_mask, mask);
|
|
|
|
va_end(ap);
|
|
|
|
|
|
|
|
action.sa_flags = flags;
|
|
|
|
action.sa_restorer = NULL;
|
|
|
|
if (sigaction(sig, &action, NULL) < 0)
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
panic("sigaction failed - errno = %d\n", errno);
|
|
|
|
|
|
|
|
sigemptyset(&sig_mask);
|
|
|
|
sigaddset(&sig_mask, sig);
|
|
|
|
if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
panic("sigprocmask failed - errno = %d\n", errno);
|
|
|
|
}
|
|
|
|
|
|
|
|
int change_sig(int signal, int on)
|
|
|
|
{
|
|
|
|
sigset_t sigset, old;
|
|
|
|
|
|
|
|
sigemptyset(&sigset);
|
|
|
|
sigaddset(&sigset, signal);
|
|
|
|
sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, &old);
|
|
|
|
return !sigismember(&old, signal);
|
|
|
|
}
|
|
|
|
|
|
|
|
void block_signals(void)
|
|
|
|
{
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
signals_enabled = 0;
|
|
|
|
/*
|
|
|
|
* This must return with signals disabled, so this barrier
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
18 years ago
|
|
|
* ensures that writes are flushed out before the return.
|
|
|
|
* This might matter if gcc figures out how to inline this and
|
|
|
|
* decides to shuffle this code into the caller.
|
|
|
|
*/
|
|
|
|
mb();
|
|
|
|
}
|
|
|
|
|
|
|
|
void unblock_signals(void)
|
|
|
|
{
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
int save_pending;
|
|
|
|
|
|
|
|
if (signals_enabled == 1)
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We loop because the IRQ handler returns with interrupts off. So,
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
* interrupts may have arrived and we need to re-enable them and
|
|
|
|
* recheck pending.
|
|
|
|
*/
|
|
|
|
while(1) {
|
|
|
|
/*
|
|
|
|
* Save and reset save_pending after enabling signals. This
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
* way, pending won't be changed while we're reading it.
|
|
|
|
*/
|
|
|
|
signals_enabled = 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setting signals_enabled and reading pending must
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
18 years ago
|
|
|
* happen in this order.
|
|
|
|
*/
|
|
|
|
mb();
|
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
save_pending = pending;
|
|
|
|
if (save_pending == 0) {
|
|
|
|
/*
|
|
|
|
* This must return with signals enabled, so
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
18 years ago
|
|
|
* this barrier ensures that writes are
|
|
|
|
* flushed out before the return. This might
|
|
|
|
* matter if gcc figures out how to inline
|
|
|
|
* this (unlikely, given its size) and decides
|
|
|
|
* to shuffle this code into the caller.
|
|
|
|
*/
|
|
|
|
mb();
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
return;
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
18 years ago
|
|
|
}
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
|
|
|
pending = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have pending interrupts, so disable signals, as the
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
* handlers expect them off when they are called. They will
|
|
|
|
* be enabled again above.
|
|
|
|
*/
|
|
|
|
|
|
|
|
signals_enabled = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deal with SIGIO first because the alarm handler might
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
* schedule, leaving the pending SIGIO stranded until we come
|
|
|
|
* back here.
|
|
|
|
*/
|
|
|
|
if (save_pending & SIGIO_MASK)
|
|
|
|
sig_handler_common_skas(SIGIO, NULL);
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
|
|
|
if (save_pending & SIGVTALRM_MASK)
|
|
|
|
real_alarm_handler(NULL);
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int get_signals(void)
|
|
|
|
{
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
return signals_enabled;
|
|
|
|
}
|
|
|
|
|
|
|
|
int set_signals(int enable)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
if (signals_enabled == enable)
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
return enable;
|
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
ret = signals_enabled;
|
|
|
|
if (enable)
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
unblock_signals();
|
|
|
|
else block_signals();
|
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
return ret;
|
|
|
|
}
|