|
|
|
/*
|
|
|
|
* Copyright (C) 2012 Red Hat
|
|
|
|
* based in parts on udlfb.c:
|
|
|
|
* Copyright (C) 2009 Roberto De Ioris <roberto@unbit.it>
|
|
|
|
* Copyright (C) 2009 Jaya Kumar <jayakumar.lkml@gmail.com>
|
|
|
|
* Copyright (C) 2009 Bernie Thompson <bernie@plugable.com>
|
|
|
|
*
|
|
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
|
|
* License v2. See the file COPYING in the main directory of this archive for
|
|
|
|
* more details.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/fb.h>
|
|
|
|
#include <linux/prefetch.h>
|
|
|
|
#include <asm/unaligned.h>
|
|
|
|
|
|
|
|
#include <drm/drmP.h>
|
|
|
|
#include "udl_drv.h"
|
|
|
|
|
|
|
|
#define MAX_CMD_PIXELS 255
|
|
|
|
|
|
|
|
#define RLX_HEADER_BYTES 7
|
|
|
|
#define MIN_RLX_PIX_BYTES 4
|
|
|
|
#define MIN_RLX_CMD_BYTES (RLX_HEADER_BYTES + MIN_RLX_PIX_BYTES)
|
|
|
|
|
|
|
|
#define RLE_HEADER_BYTES 6
|
|
|
|
#define MIN_RLE_PIX_BYTES 3
|
|
|
|
#define MIN_RLE_CMD_BYTES (RLE_HEADER_BYTES + MIN_RLE_PIX_BYTES)
|
|
|
|
|
|
|
|
#define RAW_HEADER_BYTES 6
|
|
|
|
#define MIN_RAW_PIX_BYTES 2
|
|
|
|
#define MIN_RAW_CMD_BYTES (RAW_HEADER_BYTES + MIN_RAW_PIX_BYTES)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Trims identical data from front and back of line
|
|
|
|
* Sets new front buffer address and width
|
|
|
|
* And returns byte count of identical pixels
|
|
|
|
* Assumes CPU natural alignment (unsigned long)
|
|
|
|
* for back and front buffer ptrs and width
|
|
|
|
*/
|
|
|
|
#if 0
|
|
|
|
static int udl_trim_hline(const u8 *bback, const u8 **bfront, int *width_bytes)
|
|
|
|
{
|
|
|
|
int j, k;
|
|
|
|
const unsigned long *back = (const unsigned long *) bback;
|
|
|
|
const unsigned long *front = (const unsigned long *) *bfront;
|
|
|
|
const int width = *width_bytes / sizeof(unsigned long);
|
|
|
|
int identical = width;
|
|
|
|
int start = width;
|
|
|
|
int end = width;
|
|
|
|
|
|
|
|
prefetch((void *) front);
|
|
|
|
prefetch((void *) back);
|
|
|
|
|
|
|
|
for (j = 0; j < width; j++) {
|
|
|
|
if (back[j] != front[j]) {
|
|
|
|
start = j;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (k = width - 1; k > j; k--) {
|
|
|
|
if (back[k] != front[k]) {
|
|
|
|
end = k+1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
identical = start + (width - end);
|
|
|
|
*bfront = (u8 *) &front[start];
|
|
|
|
*width_bytes = (end - start) * sizeof(unsigned long);
|
|
|
|
|
|
|
|
return identical * sizeof(unsigned long);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static inline u16 pixel32_to_be16(const uint32_t pixel)
|
|
|
|
{
|
|
|
|
return (((pixel >> 3) & 0x001f) |
|
|
|
|
((pixel >> 5) & 0x07e0) |
|
|
|
|
((pixel >> 8) & 0xf800));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u16 get_pixel_val16(const uint8_t *pixel, int log_bpp)
|
|
|
|
{
|
|
|
|
u16 pixel_val16;
|
|
|
|
if (log_bpp == 1)
|
|
|
|
pixel_val16 = *(const uint16_t *)pixel;
|
|
|
|
else
|
|
|
|
pixel_val16 = pixel32_to_be16(*(const uint32_t *)pixel);
|
|
|
|
return pixel_val16;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Render a command stream for an encoded horizontal line segment of pixels.
|
|
|
|
*
|
|
|
|
* A command buffer holds several commands.
|
|
|
|
* It always begins with a fresh command header
|
|
|
|
* (the protocol doesn't require this, but we enforce it to allow
|
|
|
|
* multiple buffers to be potentially encoded and sent in parallel).
|
|
|
|
* A single command encodes one contiguous horizontal line of pixels
|
|
|
|
*
|
|
|
|
* The function relies on the client to do all allocation, so that
|
|
|
|
* rendering can be done directly to output buffers (e.g. USB URBs).
|
|
|
|
* The function fills the supplied command buffer, providing information
|
|
|
|
* on where it left off, so the client may call in again with additional
|
|
|
|
* buffers if the line will take several buffers to complete.
|
|
|
|
*
|
|
|
|
* A single command can transmit a maximum of 256 pixels,
|
|
|
|
* regardless of the compression ratio (protocol design limit).
|
|
|
|
* To the hardware, 0 for a size byte means 256
|
|
|
|
*
|
|
|
|
* Rather than 256 pixel commands which are either rl or raw encoded,
|
|
|
|
* the rlx command simply assumes alternating raw and rl spans within one cmd.
|
|
|
|
* This has a slightly larger header overhead, but produces more even results.
|
|
|
|
* It also processes all data (read and write) in a single pass.
|
|
|
|
* Performance benchmarks of common cases show it having just slightly better
|
|
|
|
* compression than 256 pixel raw or rle commands, with similar CPU consumpion.
|
|
|
|
* But for very rl friendly data, will compress not quite as well.
|
|
|
|
*/
|
|
|
|
static void udl_compress_hline16(
|
|
|
|
const u8 **pixel_start_ptr,
|
|
|
|
const u8 *const pixel_end,
|
|
|
|
uint32_t *device_address_ptr,
|
|
|
|
uint8_t **command_buffer_ptr,
|
|
|
|
const uint8_t *const cmd_buffer_end, int log_bpp)
|
|
|
|
{
|
|
|
|
const int bpp = 1 << log_bpp;
|
|
|
|
const u8 *pixel = *pixel_start_ptr;
|
|
|
|
uint32_t dev_addr = *device_address_ptr;
|
|
|
|
uint8_t *cmd = *command_buffer_ptr;
|
|
|
|
|
|
|
|
while ((pixel_end > pixel) &&
|
|
|
|
(cmd_buffer_end - MIN_RLX_CMD_BYTES > cmd)) {
|
|
|
|
uint8_t *raw_pixels_count_byte = NULL;
|
|
|
|
uint8_t *cmd_pixels_count_byte = NULL;
|
|
|
|
const u8 *raw_pixel_start = NULL;
|
|
|
|
const u8 *cmd_pixel_start, *cmd_pixel_end = NULL;
|
|
|
|
uint16_t pixel_val16;
|
|
|
|
|
|
|
|
prefetchw((void *) cmd); /* pull in one cache line at least */
|
|
|
|
|
|
|
|
*cmd++ = 0xaf;
|
|
|
|
*cmd++ = 0x6b;
|
|
|
|
*cmd++ = (uint8_t) ((dev_addr >> 16) & 0xFF);
|
|
|
|
*cmd++ = (uint8_t) ((dev_addr >> 8) & 0xFF);
|
|
|
|
*cmd++ = (uint8_t) ((dev_addr) & 0xFF);
|
|
|
|
|
|
|
|
cmd_pixels_count_byte = cmd++; /* we'll know this later */
|
|
|
|
cmd_pixel_start = pixel;
|
|
|
|
|
|
|
|
raw_pixels_count_byte = cmd++; /* we'll know this later */
|
|
|
|
raw_pixel_start = pixel;
|
|
|
|
|
|
|
|
cmd_pixel_end = pixel + (min3(MAX_CMD_PIXELS + 1UL,
|
|
|
|
(unsigned long)(pixel_end - pixel) >> log_bpp,
|
|
|
|
(unsigned long)(cmd_buffer_end - 1 - cmd) / 2) << log_bpp);
|
|
|
|
|
|
|
|
prefetch_range((void *) pixel, cmd_pixel_end - pixel);
|
|
|
|
pixel_val16 = get_pixel_val16(pixel, log_bpp);
|
|
|
|
|
|
|
|
while (pixel < cmd_pixel_end) {
|
|
|
|
const u8 *const start = pixel;
|
|
|
|
const uint16_t repeating_pixel_val16 = pixel_val16;
|
|
|
|
|
|
|
|
put_unaligned_be16(pixel_val16, cmd);
|
|
|
|
|
|
|
|
cmd += 2;
|
|
|
|
pixel += bpp;
|
|
|
|
|
|
|
|
while (pixel < cmd_pixel_end) {
|
|
|
|
pixel_val16 = get_pixel_val16(pixel, log_bpp);
|
|
|
|
if (pixel_val16 != repeating_pixel_val16)
|
|
|
|
break;
|
|
|
|
pixel += bpp;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(pixel > start + bpp)) {
|
|
|
|
/* go back and fill in raw pixel count */
|
|
|
|
*raw_pixels_count_byte = (((start -
|
|
|
|
raw_pixel_start) >> log_bpp) + 1) & 0xFF;
|
|
|
|
|
|
|
|
/* immediately after raw data is repeat byte */
|
|
|
|
*cmd++ = (((pixel - start) >> log_bpp) - 1) & 0xFF;
|
|
|
|
|
|
|
|
/* Then start another raw pixel span */
|
|
|
|
raw_pixel_start = pixel;
|
|
|
|
raw_pixels_count_byte = cmd++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pixel > raw_pixel_start) {
|
|
|
|
/* finalize last RAW span */
|
|
|
|
*raw_pixels_count_byte = ((pixel - raw_pixel_start) >> log_bpp) & 0xFF;
|
|
|
|
} else {
|
|
|
|
/* undo unused byte */
|
|
|
|
cmd--;
|
|
|
|
}
|
|
|
|
|
|
|
|
*cmd_pixels_count_byte = ((pixel - cmd_pixel_start) >> log_bpp) & 0xFF;
|
|
|
|
dev_addr += ((pixel - cmd_pixel_start) >> log_bpp) * 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cmd_buffer_end <= MIN_RLX_CMD_BYTES + cmd) {
|
|
|
|
/* Fill leftover bytes with no-ops */
|
|
|
|
if (cmd_buffer_end > cmd)
|
|
|
|
memset(cmd, 0xAF, cmd_buffer_end - cmd);
|
|
|
|
cmd = (uint8_t *) cmd_buffer_end;
|
|
|
|
}
|
|
|
|
|
|
|
|
*command_buffer_ptr = cmd;
|
|
|
|
*pixel_start_ptr = pixel;
|
|
|
|
*device_address_ptr = dev_addr;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There are 3 copies of every pixel: The front buffer that the fbdev
|
|
|
|
* client renders to, the actual framebuffer across the USB bus in hardware
|
|
|
|
* (that we can only write to, slowly, and can never read), and (optionally)
|
|
|
|
* our shadow copy that tracks what's been sent to that hardware buffer.
|
|
|
|
*/
|
|
|
|
int udl_render_hline(struct drm_device *dev, int log_bpp, struct urb **urb_ptr,
|
|
|
|
const char *front, char **urb_buf_ptr,
|
|
|
|
u32 byte_offset, u32 device_byte_offset,
|
|
|
|
u32 byte_width,
|
|
|
|
int *ident_ptr, int *sent_ptr)
|
|
|
|
{
|
|
|
|
const u8 *line_start, *line_end, *next_pixel;
|
|
|
|
u32 base16 = 0 + (device_byte_offset >> log_bpp) * 2;
|
|
|
|
struct urb *urb = *urb_ptr;
|
|
|
|
u8 *cmd = *urb_buf_ptr;
|
|
|
|
u8 *cmd_end = (u8 *) urb->transfer_buffer + urb->transfer_buffer_length;
|
|
|
|
|
|
|
|
BUG_ON(!(log_bpp == 1 || log_bpp == 2));
|
|
|
|
|
|
|
|
line_start = (u8 *) (front + byte_offset);
|
|
|
|
next_pixel = line_start;
|
|
|
|
line_end = next_pixel + byte_width;
|
|
|
|
|
|
|
|
while (next_pixel < line_end) {
|
|
|
|
|
|
|
|
udl_compress_hline16(&next_pixel,
|
|
|
|
line_end, &base16,
|
|
|
|
(u8 **) &cmd, (u8 *) cmd_end, log_bpp);
|
|
|
|
|
|
|
|
if (cmd >= cmd_end) {
|
|
|
|
int len = cmd - (u8 *) urb->transfer_buffer;
|
|
|
|
if (udl_submit_urb(dev, urb, len))
|
|
|
|
return 1; /* lost pixels is set */
|
|
|
|
*sent_ptr += len;
|
|
|
|
urb = udl_get_urb(dev);
|
|
|
|
if (!urb)
|
|
|
|
return 1; /* lost_pixels is set */
|
|
|
|
*urb_ptr = urb;
|
|
|
|
cmd = urb->transfer_buffer;
|
|
|
|
cmd_end = &cmd[urb->transfer_buffer_length];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
*urb_buf_ptr = cmd;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|