|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/time.h>
|
|
|
|
|
|
|
|
#include <asm/i8253.h>
|
|
|
|
#include <asm/sni.h>
|
|
|
|
#include <asm/time.h>
|
|
|
|
#include <asm-generic/rtc.h>
|
|
|
|
|
|
|
|
#define SNI_CLOCK_TICK_RATE 3686400
|
|
|
|
#define SNI_COUNTER2_DIV 64
|
|
|
|
#define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
|
|
|
|
|
|
|
|
static void sni_a20r_timer_ack(void)
|
|
|
|
{
|
|
|
|
*(volatile u8 *)A20R_PT_TIM0_ACK = 0x0; wmb();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* a20r platform uses 2 counters to divide the input frequency.
|
|
|
|
* Counter 2 output is connected to Counter 0 & 1 input.
|
|
|
|
*/
|
|
|
|
static void __init sni_a20r_timer_setup(struct irqaction *irq)
|
|
|
|
{
|
|
|
|
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34; wmb();
|
|
|
|
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV) & 0xff; wmb();
|
|
|
|
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = (SNI_COUNTER0_DIV >> 8) & 0xff; wmb();
|
|
|
|
|
|
|
|
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4; wmb();
|
|
|
|
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV) & 0xff; wmb();
|
|
|
|
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = (SNI_COUNTER2_DIV >> 8) & 0xff; wmb();
|
|
|
|
|
|
|
|
setup_irq(SNI_A20R_IRQ_TIMER, irq);
|
|
|
|
mips_timer_ack = sni_a20r_timer_ack;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define SNI_8254_TICK_RATE 1193182UL
|
|
|
|
|
|
|
|
#define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
|
|
|
|
|
|
|
|
static __init unsigned long dosample(void)
|
|
|
|
{
|
|
|
|
u32 ct0, ct1;
|
|
|
|
volatile u8 msb, lsb;
|
|
|
|
|
|
|
|
/* Start the counter. */
|
|
|
|
outb_p(0x34, 0x43);
|
|
|
|
outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
|
|
|
|
outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
|
|
|
|
|
|
|
|
/* Get initial counter invariant */
|
|
|
|
ct0 = read_c0_count();
|
|
|
|
|
|
|
|
/* Latch and spin until top byte of counter0 is zero */
|
|
|
|
do {
|
|
|
|
outb(0x00, 0x43);
|
|
|
|
lsb = inb(0x40);
|
|
|
|
msb = inb(0x40);
|
|
|
|
ct1 = read_c0_count();
|
|
|
|
} while (msb);
|
|
|
|
|
|
|
|
/* Stop the counter. */
|
|
|
|
outb(0x38, 0x43);
|
|
|
|
/*
|
|
|
|
* Return the difference, this is how far the r4k counter increments
|
|
|
|
* for every 1/HZ seconds. We round off the nearest 1 MHz of master
|
|
|
|
* clock (= 1000000 / HZ / 2).
|
|
|
|
*/
|
|
|
|
/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
|
|
|
|
return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Here we need to calibrate the cycle counter to at least be close.
|
|
|
|
*/
|
|
|
|
void __init plat_time_init(void)
|
|
|
|
{
|
|
|
|
unsigned long r4k_ticks[3];
|
|
|
|
unsigned long r4k_tick;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Figure out the r4k offset, the algorithm is very simple and works in
|
|
|
|
* _all_ cases as long as the 8254 counter register itself works ok (as
|
|
|
|
* an interrupt driving timer it does not because of bug, this is why
|
|
|
|
* we are using the onchip r4k counter/compare register to serve this
|
|
|
|
* purpose, but for r4k_offset calculation it will work ok for us).
|
|
|
|
* There are other very complicated ways of performing this calculation
|
|
|
|
* but this one works just fine so I am not going to futz around. ;-)
|
|
|
|
*/
|
|
|
|
printk(KERN_INFO "Calibrating system timer... ");
|
|
|
|
dosample(); /* Prime cache. */
|
|
|
|
dosample(); /* Prime cache. */
|
|
|
|
/* Zero is NOT an option. */
|
|
|
|
do {
|
|
|
|
r4k_ticks[0] = dosample();
|
|
|
|
} while (!r4k_ticks[0]);
|
|
|
|
do {
|
|
|
|
r4k_ticks[1] = dosample();
|
|
|
|
} while (!r4k_ticks[1]);
|
|
|
|
|
|
|
|
if (r4k_ticks[0] != r4k_ticks[1]) {
|
|
|
|
printk("warning: timer counts differ, retrying... ");
|
|
|
|
r4k_ticks[2] = dosample();
|
|
|
|
if (r4k_ticks[2] == r4k_ticks[0]
|
|
|
|
|| r4k_ticks[2] == r4k_ticks[1])
|
|
|
|
r4k_tick = r4k_ticks[2];
|
|
|
|
else {
|
|
|
|
printk("disagreement, using average... ");
|
|
|
|
r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
|
|
|
|
+ r4k_ticks[2]) / 3;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
r4k_tick = r4k_ticks[0];
|
|
|
|
|
|
|
|
printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
|
|
|
|
(int) (r4k_tick / (500000 / HZ)),
|
|
|
|
(int) (r4k_tick % (500000 / HZ)));
|
|
|
|
|
|
|
|
mips_hpt_frequency = r4k_tick * HZ;
|
|
|
|
|
|
|
|
setup_pit_timer();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* R4k counter based timer interrupt. Works on RM200-225 and possibly
|
|
|
|
* others but not on RM400
|
|
|
|
*/
|
|
|
|
static void __init sni_cpu_timer_setup(struct irqaction *irq)
|
|
|
|
{
|
|
|
|
setup_irq(SNI_MIPS_IRQ_CPU_TIMER, irq);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init plat_timer_setup(struct irqaction *irq)
|
|
|
|
{
|
|
|
|
switch (sni_brd_type) {
|
|
|
|
case SNI_BRD_10:
|
|
|
|
case SNI_BRD_10NEW:
|
|
|
|
case SNI_BRD_TOWER_OASIC:
|
|
|
|
case SNI_BRD_MINITOWER:
|
|
|
|
sni_a20r_timer_setup(irq);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SNI_BRD_PCI_TOWER:
|
|
|
|
case SNI_BRD_RM200:
|
|
|
|
case SNI_BRD_PCI_MTOWER:
|
|
|
|
case SNI_BRD_PCI_DESKTOP:
|
|
|
|
case SNI_BRD_PCI_TOWER_CPLUS:
|
|
|
|
case SNI_BRD_PCI_MTOWER_CPLUS:
|
|
|
|
sni_cpu_timer_setup(irq);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long read_persistent_clock(void)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|