|
|
|
#ifndef _RAID10_H
|
|
|
|
#define _RAID10_H
|
|
|
|
|
|
|
|
#include <linux/raid/md.h>
|
|
|
|
|
|
|
|
typedef struct mirror_info mirror_info_t;
|
|
|
|
|
|
|
|
struct mirror_info {
|
|
|
|
mdk_rdev_t *rdev;
|
|
|
|
sector_t head_position;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef struct r10bio_s r10bio_t;
|
|
|
|
|
|
|
|
struct r10_private_data_s {
|
|
|
|
mddev_t *mddev;
|
|
|
|
mirror_info_t *mirrors;
|
|
|
|
int raid_disks;
|
|
|
|
int working_disks;
|
|
|
|
spinlock_t device_lock;
|
|
|
|
|
|
|
|
/* geometry */
|
|
|
|
int near_copies; /* number of copies layed out raid0 style */
|
|
|
|
int far_copies; /* number of copies layed out
|
|
|
|
* at large strides across drives
|
|
|
|
*/
|
|
|
|
int copies; /* near_copies * far_copies.
|
|
|
|
* must be <= raid_disks
|
|
|
|
*/
|
|
|
|
sector_t stride; /* distance between far copies.
|
|
|
|
* This is size / far_copies
|
|
|
|
*/
|
|
|
|
|
|
|
|
int chunk_shift; /* shift from chunks to sectors */
|
|
|
|
sector_t chunk_mask;
|
|
|
|
|
|
|
|
struct list_head retry_list;
|
|
|
|
/* queue pending writes and submit them on unplug */
|
|
|
|
struct bio_list pending_bio_list;
|
|
|
|
|
|
|
|
|
|
|
|
spinlock_t resync_lock;
|
|
|
|
int nr_pending;
|
|
|
|
int nr_waiting;
|
|
|
|
int barrier;
|
|
|
|
sector_t next_resync;
|
|
|
|
int fullsync; /* set to 1 if a full sync is needed,
|
|
|
|
* (fresh device added).
|
|
|
|
* Cleared when a sync completes.
|
|
|
|
*/
|
|
|
|
|
|
|
|
wait_queue_head_t wait_barrier;
|
|
|
|
|
|
|
|
mempool_t *r10bio_pool;
|
|
|
|
mempool_t *r10buf_pool;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef struct r10_private_data_s conf_t;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* this is the only point in the RAID code where we violate
|
|
|
|
* C type safety. mddev->private is an 'opaque' pointer.
|
|
|
|
*/
|
|
|
|
#define mddev_to_conf(mddev) ((conf_t *) mddev->private)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* this is our 'private' RAID10 bio.
|
|
|
|
*
|
|
|
|
* it contains information about what kind of IO operations were started
|
|
|
|
* for this RAID10 operation, and about their status:
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct r10bio_s {
|
|
|
|
atomic_t remaining; /* 'have we finished' count,
|
|
|
|
* used from IRQ handlers
|
|
|
|
*/
|
|
|
|
sector_t sector; /* virtual sector number */
|
|
|
|
int sectors;
|
|
|
|
unsigned long state;
|
|
|
|
mddev_t *mddev;
|
|
|
|
/*
|
|
|
|
* original bio going to /dev/mdx
|
|
|
|
*/
|
|
|
|
struct bio *master_bio;
|
|
|
|
/*
|
|
|
|
* if the IO is in READ direction, then this is where we read
|
|
|
|
*/
|
|
|
|
int read_slot;
|
|
|
|
|
|
|
|
struct list_head retry_list;
|
|
|
|
/*
|
|
|
|
* if the IO is in WRITE direction, then multiple bios are used,
|
|
|
|
* one for each copy.
|
|
|
|
* When resyncing we also use one for each copy.
|
|
|
|
* When reconstructing, we use 2 bios, one for read, one for write.
|
|
|
|
* We choose the number when they are allocated.
|
|
|
|
*/
|
|
|
|
struct {
|
|
|
|
struct bio *bio;
|
|
|
|
sector_t addr;
|
|
|
|
int devnum;
|
|
|
|
} devs[0];
|
|
|
|
};
|
|
|
|
|
|
|
|
/* bits for r10bio.state */
|
|
|
|
#define R10BIO_Uptodate 0
|
|
|
|
#define R10BIO_IsSync 1
|
|
|
|
#define R10BIO_IsRecover 2
|
|
|
|
#define R10BIO_Degraded 3
|
|
|
|
#endif
|