You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/devfreq/msmcci-hwmon.c

620 lines
14 KiB

/*
* Copyright (c) 2014-2015, 2019, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "msmcci-hwmon: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/spinlock.h>
#include <linux/cpu_pm.h>
#include <soc/qcom/scm.h>
#include "governor_cache_hwmon.h"
#define EVNT_SEL 0x0
#define EVNT_CNT_MATCH_VAL 0x18
#define MATCH_FLG 0x30
#define MATCH_FLG_CLR 0x48
#define OVR_FLG 0x60
#define OVR_FLG_CLR 0x78
#define CNT_CTRL 0x94
#define CNT_VALUE 0xAC
#define ENABLE_OVR_FLG BIT(4)
#define ENABLE_MATCH_FLG BIT(5)
#define ENABLE_EVNT_CNT BIT(0)
#define RESET_EVNT_CNT BIT(1)
#define CNT_DISABLE (ENABLE_OVR_FLG | ENABLE_MATCH_FLG)
#define CNT_RESET_CLR (ENABLE_OVR_FLG | ENABLE_MATCH_FLG)
#define CNT_ENABLE (ENABLE_OVR_FLG | ENABLE_MATCH_FLG | ENABLE_EVNT_CNT)
#define CNT_RESET (ENABLE_OVR_FLG | ENABLE_MATCH_FLG | RESET_EVNT_CNT)
struct msmcci_hwmon {
struct list_head list;
union {
phys_addr_t phys_base[MAX_NUM_GROUPS];
void __iomem *virt_base[MAX_NUM_GROUPS];
};
int irq[MAX_NUM_GROUPS];
u32 event_sel[MAX_NUM_GROUPS];
int num_counters;
/*
* Multiple interrupts might fire together for one device.
* In that case, only one re-evaluation needs to be done.
*/
struct mutex update_lock;
/* For counter state save and restore */
unsigned long cur_limit[MAX_NUM_GROUPS];
unsigned long cur_count[MAX_NUM_GROUPS];
bool mon_enabled;
struct cache_hwmon hw;
struct device *dev;
bool secure_io;
bool irq_shared;
};
#define to_mon(ptr) container_of(ptr, struct msmcci_hwmon, hw)
static LIST_HEAD(msmcci_hwmon_list);
static DEFINE_MUTEX(list_lock);
static int use_cnt;
static DEFINE_MUTEX(notifier_reg_lock);
static inline int write_mon_reg(struct msmcci_hwmon *m, int idx,
unsigned long offset, u32 value)
{
int ret = 0;
if (m->secure_io)
ret = scm_io_write(m->phys_base[idx] + offset, value);
else
writel_relaxed(value, m->virt_base[idx] + offset);
return ret;
}
static inline u32 read_mon_reg(struct msmcci_hwmon *m, int idx,
unsigned long offset)
{
if (m->secure_io)
return scm_io_read(m->phys_base[idx] + offset);
else
return readl_relaxed(m->virt_base[idx] + offset);
}
static int mon_init(struct msmcci_hwmon *m)
{
int ret, i;
for (i = 0; i < m->num_counters; i++) {
ret = write_mon_reg(m, i, EVNT_SEL, m->event_sel[i]);
if (ret)
return ret;
}
return 0;
}
static void mon_enable(struct msmcci_hwmon *m)
{
int i;
for (i = 0; i < m->num_counters; i++)
write_mon_reg(m, i, CNT_CTRL, CNT_ENABLE);
}
static void mon_disable(struct msmcci_hwmon *m)
{
int i;
for (i = 0; i < m->num_counters; i++)
write_mon_reg(m, i, CNT_CTRL, CNT_DISABLE);
}
static bool mon_is_match_flag_set(struct msmcci_hwmon *m, int idx)
{
return (bool)read_mon_reg(m, idx, MATCH_FLG);
}
/* mon_clear_single() can only be called when monitor is disabled */
static void mon_clear_single(struct msmcci_hwmon *m, int idx)
{
write_mon_reg(m, idx, CNT_CTRL, CNT_RESET);
write_mon_reg(m, idx, CNT_CTRL, CNT_RESET_CLR);
/* reset counter before match/overflow flags are cleared */
mb();
write_mon_reg(m, idx, MATCH_FLG_CLR, 1);
write_mon_reg(m, idx, MATCH_FLG_CLR, 0);
write_mon_reg(m, idx, OVR_FLG_CLR, 1);
write_mon_reg(m, idx, OVR_FLG_CLR, 0);
}
static void mon_set_limit_single(struct msmcci_hwmon *m, int idx, u32 limit)
{
write_mon_reg(m, idx, EVNT_CNT_MATCH_VAL, limit);
}
static irqreturn_t msmcci_hwmon_shared_intr_handler(int irq, void *dev)
{
struct msmcci_hwmon *m = dev;
int idx = -1, i;
for (i = 0; i < m->num_counters; i++) {
if (mon_is_match_flag_set(m, i)) {
idx = i;
break;
}
}
if (idx == -1)
return IRQ_NONE;
update_cache_hwmon(&m->hw);
return IRQ_HANDLED;
}
static irqreturn_t msmcci_hwmon_intr_handler(int irq, void *dev)
{
struct msmcci_hwmon *m = dev;
int idx = -1, i;
for (i = 0; i < m->num_counters; i++) {
if (m->irq[i] == irq) {
idx = i;
break;
}
}
if (idx == -1) {
WARN(true, "idx == -1!\n");
return IRQ_NONE;
}
/*
* Multiple independent interrupts could fire together and trigger
* update_cache_hwmon() for same device. If we don't lock, we
* could end up calling devfreq_monitor_start/stop()
* concurrently, which would cause timer/workqueue object
* corruption. However, we can't re-evaluate a few times back to
* back either because the very short window won't be
* representative. Since update_cache_hwmon() will clear match
* flags for all counters, interrupts for other counters can
* simply return if their match flags have already been cleared.
*/
mutex_lock(&m->update_lock);
if (mon_is_match_flag_set(m, idx))
update_cache_hwmon(&m->hw);
mutex_unlock(&m->update_lock);
return IRQ_HANDLED;
}
static unsigned long mon_read_count_single(struct msmcci_hwmon *m, int idx)
{
unsigned long count, ovr;
count = read_mon_reg(m, idx, CNT_VALUE);
ovr = read_mon_reg(m, idx, OVR_FLG);
if (ovr == 1) {
count += 0xFFFFFFFFUL;
dev_warn(m->dev, "Counter[%d]: overflowed\n", idx);
}
return count;
}
static int count_to_mrps(uint64_t count, unsigned int us)
{
do_div(count, us);
count++;
return count;
}
static unsigned int mrps_to_count(unsigned int mrps, unsigned int ms,
unsigned int tolerance)
{
mrps += tolerance;
mrps *= ms * USEC_PER_MSEC;
return mrps;
}
static unsigned long meas_mrps_and_set_irq(struct cache_hwmon *hw,
unsigned int tol, unsigned int us, struct mrps_stats *mrps)
{
struct msmcci_hwmon *m = to_mon(hw);
unsigned long count;
unsigned int sample_ms = hw->df->profile->polling_ms;
int i;
u32 limit;
mon_disable(m);
/* calculate mrps and set limit */
for (i = 0; i < m->num_counters; i++) {
count = mon_read_count_single(m, i);
/*
* When CCI is power collapsed, counters are cleared. Add
* saved count to the current reading and clear saved count
* to ensure we won't apply it more than once.
*/
count += m->cur_count[i];
m->cur_count[i] = 0;
mrps->mrps[i] = count_to_mrps(count, us);
limit = mrps_to_count(mrps->mrps[i], sample_ms, tol);
mon_clear_single(m, i);
mon_set_limit_single(m, i, limit);
/* save current limit for restoring after power collapse */
m->cur_limit[i] = limit;
dev_dbg(m->dev, "Counter[%d] count 0x%lx, limit 0x%x\n",
i, count, limit);
}
/*
* There is no cycle counter for this device.
* Treat all cycles as busy.
*/
mrps->busy_percent = 100;
/* re-enable monitor */
mon_enable(m);
return 0;
}
static void msmcci_hwmon_save_state(void)
{
int i;
struct msmcci_hwmon *m;
list_for_each_entry(m, &msmcci_hwmon_list, list) {
if (!m->mon_enabled)
continue;
mon_disable(m);
/*
* Power collapse might happen multiple times before
* re-evaluation is done. Accumulate the saved count.
* Clear counter after read in case power collapse is
* aborted and register values are not wiped.
*/
for (i = 0; i < m->num_counters; i++) {
m->cur_count[i] += mon_read_count_single(m, i);
mon_clear_single(m, i);
}
}
}
static void msmcci_hwmon_restore_limit(struct msmcci_hwmon *m, int i)
{
u32 new_limit;
if (m->cur_count[i] < m->cur_limit[i]) {
new_limit = m->cur_limit[i] - m->cur_count[i];
} else {
/*
* If counter is larger than limit, interrupt should have
* fired and prevented power collapse from happening. Just
* in case the interrupt does not come, restore previous
* limit so that interrupt will be triggered at some point.
*/
new_limit = m->cur_limit[i];
}
mon_set_limit_single(m, i, new_limit);
dev_dbg(m->dev, "Counter[%d] restore limit to 0x%x, saved count 0x%lx\n",
i, new_limit, m->cur_count[i]);
}
static void msmcci_hwmon_restore_state(void)
{
int i;
struct msmcci_hwmon *m;
list_for_each_entry(m, &msmcci_hwmon_list, list) {
if (!m->mon_enabled)
continue;
mon_init(m);
for (i = 0; i < m->num_counters; i++)
msmcci_hwmon_restore_limit(m, i);
mon_enable(m);
}
}
#define CCI_LEVEL 2
static int msmcci_hwmon_pm_callback(struct notifier_block *nb,
unsigned long val, void *data)
{
unsigned int level = (unsigned long) data;
if (level != CCI_LEVEL)
return NOTIFY_DONE;
/*
* When CCI power collapse callback happens, only current CPU
* would be executing code. Thus there is no need to hold
* mutex or spinlock.
*/
switch (val) {
case CPU_CLUSTER_PM_ENTER:
msmcci_hwmon_save_state();
break;
case CPU_CLUSTER_PM_ENTER_FAILED:
case CPU_CLUSTER_PM_EXIT:
msmcci_hwmon_restore_state();
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static struct notifier_block pm_notifier_block = {
.notifier_call = msmcci_hwmon_pm_callback,
};
static int register_pm_notifier(struct msmcci_hwmon *m)
{
int ret;
mutex_lock(&notifier_reg_lock);
if (!use_cnt) {
ret = cpu_pm_register_notifier(&pm_notifier_block);
if (ret) {
dev_err(m->dev, "Failed to register for PM notification\n");
mutex_unlock(&notifier_reg_lock);
return ret;
}
}
use_cnt++;
mutex_unlock(&notifier_reg_lock);
return 0;
}
static void unregister_pm_nofitifier(void)
{
mutex_lock(&notifier_reg_lock);
use_cnt--;
if (!use_cnt)
cpu_pm_unregister_notifier(&pm_notifier_block);
mutex_unlock(&notifier_reg_lock);
}
static int request_shared_interrupt(struct msmcci_hwmon *m)
{
int ret;
ret = request_threaded_irq(m->irq[HIGH], NULL,
msmcci_hwmon_shared_intr_handler,
IRQF_ONESHOT | IRQF_SHARED,
dev_name(m->dev), m);
if (ret)
dev_err(m->dev, "Unable to register shared interrupt handler for irq %d\n",
m->irq[HIGH]);
return ret;
}
static int request_interrupts(struct msmcci_hwmon *m)
{
int i, ret;
for (i = 0; i < m->num_counters; i++) {
ret = request_threaded_irq(m->irq[i], NULL,
msmcci_hwmon_intr_handler, IRQF_ONESHOT,
dev_name(m->dev), m);
if (ret) {
dev_err(m->dev, "Unable to register interrupt handler for irq %d\n",
m->irq[i]);
goto irq_failure;
}
}
return 0;
irq_failure:
for (i--; i > 0; i--) {
disable_irq(m->irq[i]);
free_irq(m->irq[i], m);
}
return ret;
}
static int start_hwmon(struct cache_hwmon *hw, struct mrps_stats *mrps)
{
struct msmcci_hwmon *m = to_mon(hw);
unsigned int sample_ms = hw->df->profile->polling_ms;
int ret, i;
u32 limit;
ret = register_pm_notifier(m);
if (ret)
return ret;
if (m->irq_shared)
ret = request_shared_interrupt(m);
else
ret = request_interrupts(m);
if (ret) {
unregister_pm_nofitifier();
return ret;
}
mon_init(m);
mon_disable(m);
for (i = 0; i < m->num_counters; i++) {
mon_clear_single(m, i);
limit = mrps_to_count(mrps->mrps[i], sample_ms, 0);
mon_set_limit_single(m, i, limit);
}
mon_enable(m);
m->mon_enabled = true;
return 0;
}
static void stop_hwmon(struct cache_hwmon *hw)
{
struct msmcci_hwmon *m = to_mon(hw);
int i;
m->mon_enabled = false;
mon_disable(m);
for (i = 0; i < m->num_counters; i++) {
if (!m->irq_shared || i == HIGH) {
disable_irq(m->irq[i]);
free_irq(m->irq[i], m);
}
mon_clear_single(m, i);
}
unregister_pm_nofitifier();
}
static int msmcci_hwmon_parse_dt(struct platform_device *pdev,
struct msmcci_hwmon *m, int idx)
{
struct device *dev = &pdev->dev;
struct resource *res;
u32 sel;
int ret;
if (idx >= MAX_NUM_GROUPS)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, idx);
if (!res)
return (idx == HIGH) ? -EINVAL : 0;
if (m->secure_io)
m->phys_base[idx] = res->start;
else {
m->virt_base[idx] = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!m->virt_base[idx]) {
dev_err(dev, "failed to ioremap\n");
return -ENOMEM;
}
}
ret = of_property_read_u32_index(pdev->dev.of_node,
"qcom,counter-event-sel", idx, &sel);
if (ret) {
dev_err(dev, "Counter[%d] failed to read event sel\n", idx);
return ret;
}
m->event_sel[idx] = sel;
if (!m->irq_shared || idx == HIGH) {
m->irq[idx] = platform_get_irq(pdev, idx);
if (m->irq[idx] < 0) {
dev_err(dev, "Counter[%d] failed to get IRQ number\n",
idx);
return m->irq[idx];
}
}
m->num_counters++;
return 0;
}
static int msmcci_hwmon_driver_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct msmcci_hwmon *m;
int ret;
m = devm_kzalloc(dev, sizeof(*m), GFP_KERNEL);
if (!m)
return -ENOMEM;
m->dev = &pdev->dev;
m->secure_io = of_property_read_bool(pdev->dev.of_node,
"qcom,secure-io");
m->irq_shared = of_property_read_bool(pdev->dev.of_node,
"qcom,shared-irq");
ret = msmcci_hwmon_parse_dt(pdev, m, HIGH);
if (ret)
return ret;
ret = msmcci_hwmon_parse_dt(pdev, m, MED);
if (ret)
return ret;
ret = msmcci_hwmon_parse_dt(pdev, m, LOW);
if (ret)
return ret;
m->hw.of_node = of_parse_phandle(dev->of_node, "qcom,target-dev", 0);
if (!m->hw.of_node) {
dev_err(dev, "No target device specified\n");
return -EINVAL;
}
m->hw.start_hwmon = &start_hwmon;
m->hw.stop_hwmon = &stop_hwmon;
m->hw.meas_mrps_and_set_irq = &meas_mrps_and_set_irq;
mutex_init(&m->update_lock);
/*
* This tests whether secure IO for monitor registers
* is supported.
*/
ret = mon_init(m);
if (ret) {
dev_err(dev, "Failed to config monitor. Cache hwmon not registered\n");
return ret;
}
ret = register_cache_hwmon(dev, &m->hw);
if (ret) {
dev_err(dev, "MSMCCI cache hwmon registration failed\n");
return ret;
}
mutex_lock(&list_lock);
list_add_tail(&m->list, &msmcci_hwmon_list);
mutex_unlock(&list_lock);
dev_info(dev, "MSMCCI cache hwmon registered\n");
return 0;
}
static const struct of_device_id cci_match_table[] = {
{ .compatible = "qcom,msmcci-hwmon" },
{}
};
static struct platform_driver msmcci_hwmon_driver = {
.probe = msmcci_hwmon_driver_probe,
.driver = {
.name = "msmcci-hwmon",
.of_match_table = cci_match_table,
},
};
module_platform_driver(msmcci_hwmon_driver);
MODULE_DESCRIPTION("QTI CCI performance monitor driver");
MODULE_LICENSE("GPL v2");