[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
/*
|
|
|
|
* Copyright (C) 2004-2006 Atmel Corporation
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/user.h>
|
|
|
|
#include <linux/security.h>
|
|
|
|
#include <linux/unistd.h>
|
|
|
|
#include <linux/notifier.h>
|
|
|
|
|
|
|
|
#include <asm/traps.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/ocd.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
|
|
#include <linux/kdebug.h>
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
|
|
|
static struct pt_regs *get_user_regs(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
return (struct pt_regs *)((unsigned long)task_stack_page(tsk) +
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
THREAD_SIZE - sizeof(struct pt_regs));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ptrace_single_step(struct task_struct *tsk)
|
|
|
|
{
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
pr_debug("ptrace_single_step: pid=%u, PC=0x%08lx, SR=0x%08lx\n",
|
|
|
|
tsk->pid, task_pt_regs(tsk)->pc, task_pt_regs(tsk)->sr);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
/*
|
|
|
|
* We can't schedule in Debug mode, so when TIF_BREAKPOINT is
|
|
|
|
* set, the system call or exception handler will do a
|
|
|
|
* breakpoint to enter monitor mode before returning to
|
|
|
|
* userspace.
|
|
|
|
*
|
|
|
|
* The monitor code will then notice that TIF_SINGLE_STEP is
|
|
|
|
* set and return to userspace with single stepping enabled.
|
|
|
|
* The CPU will then enter monitor mode again after exactly
|
|
|
|
* one instruction has been executed, and the monitor code
|
|
|
|
* will then send a SIGTRAP to the process.
|
|
|
|
*/
|
|
|
|
set_tsk_thread_flag(tsk, TIF_BREAKPOINT);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
set_tsk_thread_flag(tsk, TIF_SINGLE_STEP);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called by kernel/ptrace.c when detaching
|
|
|
|
*
|
|
|
|
* Make sure any single step bits, etc. are not set
|
|
|
|
*/
|
|
|
|
void ptrace_disable(struct task_struct *child)
|
|
|
|
{
|
|
|
|
clear_tsk_thread_flag(child, TIF_SINGLE_STEP);
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
clear_tsk_thread_flag(child, TIF_BREAKPOINT);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read the word at offset "offset" into the task's "struct user". We
|
|
|
|
* actually access the pt_regs struct stored on the kernel stack.
|
|
|
|
*/
|
|
|
|
static int ptrace_read_user(struct task_struct *tsk, unsigned long offset,
|
|
|
|
unsigned long __user *data)
|
|
|
|
{
|
|
|
|
unsigned long *regs;
|
|
|
|
unsigned long value;
|
|
|
|
|
|
|
|
if (offset & 3 || offset >= sizeof(struct user)) {
|
|
|
|
printk("ptrace_read_user: invalid offset 0x%08lx\n", offset);
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
regs = (unsigned long *)get_user_regs(tsk);
|
|
|
|
|
|
|
|
value = 0;
|
|
|
|
if (offset < sizeof(struct pt_regs))
|
|
|
|
value = regs[offset / sizeof(regs[0])];
|
|
|
|
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
pr_debug("ptrace_read_user(%s[%u], %#lx, %p) -> %#lx\n",
|
|
|
|
tsk->comm, tsk->pid, offset, data, value);
|
|
|
|
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
return put_user(value, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write the word "value" to offset "offset" into the task's "struct
|
|
|
|
* user". We actually access the pt_regs struct stored on the kernel
|
|
|
|
* stack.
|
|
|
|
*/
|
|
|
|
static int ptrace_write_user(struct task_struct *tsk, unsigned long offset,
|
|
|
|
unsigned long value)
|
|
|
|
{
|
|
|
|
unsigned long *regs;
|
|
|
|
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
pr_debug("ptrace_write_user(%s[%u], %#lx, %#lx)\n",
|
|
|
|
tsk->comm, tsk->pid, offset, value);
|
|
|
|
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
if (offset & 3 || offset >= sizeof(struct user)) {
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
pr_debug(" invalid offset 0x%08lx\n", offset);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (offset >= sizeof(struct pt_regs))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
regs = (unsigned long *)get_user_regs(tsk);
|
|
|
|
regs[offset / sizeof(regs[0])] = value;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
|
|
|
|
{
|
|
|
|
struct pt_regs *regs = get_user_regs(tsk);
|
|
|
|
|
|
|
|
return copy_to_user(uregs, regs, sizeof(*regs)) ? -EFAULT : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ptrace_setregs(struct task_struct *tsk, const void __user *uregs)
|
|
|
|
{
|
|
|
|
struct pt_regs newregs;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = -EFAULT;
|
|
|
|
if (copy_from_user(&newregs, uregs, sizeof(newregs)) == 0) {
|
|
|
|
struct pt_regs *regs = get_user_regs(tsk);
|
|
|
|
|
|
|
|
ret = -EINVAL;
|
|
|
|
if (valid_user_regs(&newregs)) {
|
|
|
|
*regs = newregs;
|
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
long arch_ptrace(struct task_struct *child, long request, long addr, long data)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
pr_debug("ptrace: Enabling monitor mode...\n");
|
|
|
|
ocd_write(DC, ocd_read(DC) | (1 << OCD_DC_MM_BIT)
|
|
|
|
| (1 << OCD_DC_DBE_BIT));
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
|
|
|
switch (request) {
|
|
|
|
/* Read the word at location addr in the child process */
|
|
|
|
case PTRACE_PEEKTEXT:
|
|
|
|
case PTRACE_PEEKDATA:
|
|
|
|
ret = generic_ptrace_peekdata(child, addr, data);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
break;
|
|
|
|
|
|
|
|
case PTRACE_PEEKUSR:
|
|
|
|
ret = ptrace_read_user(child, addr,
|
|
|
|
(unsigned long __user *)data);
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Write the word in data at location addr */
|
|
|
|
case PTRACE_POKETEXT:
|
|
|
|
case PTRACE_POKEDATA:
|
|
|
|
ret = generic_ptrace_pokedata(child, addr, data);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
break;
|
|
|
|
|
|
|
|
case PTRACE_POKEUSR:
|
|
|
|
ret = ptrace_write_user(child, addr, data);
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* continue and stop at next (return from) syscall */
|
|
|
|
case PTRACE_SYSCALL:
|
|
|
|
/* restart after signal */
|
|
|
|
case PTRACE_CONT:
|
|
|
|
ret = -EIO;
|
|
|
|
if (!valid_signal(data))
|
|
|
|
break;
|
|
|
|
if (request == PTRACE_SYSCALL)
|
|
|
|
set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
|
|
else
|
|
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
|
|
child->exit_code = data;
|
|
|
|
/* XXX: Are we sure no breakpoints are active here? */
|
|
|
|
wake_up_process(child);
|
|
|
|
ret = 0;
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make the child exit. Best I can do is send it a
|
|
|
|
* SIGKILL. Perhaps it should be put in the status that it
|
|
|
|
* wants to exit.
|
|
|
|
*/
|
|
|
|
case PTRACE_KILL:
|
|
|
|
ret = 0;
|
|
|
|
if (child->exit_state == EXIT_ZOMBIE)
|
|
|
|
break;
|
|
|
|
child->exit_code = SIGKILL;
|
|
|
|
wake_up_process(child);
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* execute single instruction.
|
|
|
|
*/
|
|
|
|
case PTRACE_SINGLESTEP:
|
|
|
|
ret = -EIO;
|
|
|
|
if (!valid_signal(data))
|
|
|
|
break;
|
|
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
|
|
ptrace_single_step(child);
|
|
|
|
child->exit_code = data;
|
|
|
|
wake_up_process(child);
|
|
|
|
ret = 0;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case PTRACE_GETREGS:
|
|
|
|
ret = ptrace_getregs(child, (void __user *)data);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case PTRACE_SETREGS:
|
|
|
|
ret = ptrace_setregs(child, (const void __user *)data);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
ret = ptrace_request(child, request, addr, data);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
asmlinkage void syscall_trace(void)
|
|
|
|
{
|
|
|
|
if (!test_thread_flag(TIF_SYSCALL_TRACE))
|
|
|
|
return;
|
|
|
|
if (!(current->ptrace & PT_PTRACED))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* The 0x80 provides a way for the tracing parent to
|
|
|
|
* distinguish between a syscall stop and SIGTRAP delivery */
|
|
|
|
ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
|
|
|
|
? 0x80 : 0));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* this isn't the same as continuing with a signal, but it
|
|
|
|
* will do for normal use. strace only continues with a
|
|
|
|
* signal if the stopping signal is not SIGTRAP. -brl
|
|
|
|
*/
|
|
|
|
if (current->exit_code) {
|
|
|
|
pr_debug("syscall_trace: sending signal %d to PID %u\n",
|
|
|
|
current->exit_code, current->pid);
|
|
|
|
send_sig(current->exit_code, current, 1);
|
|
|
|
current->exit_code = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
* debug_trampoline() is an assembly stub which will store all user
|
|
|
|
* registers on the stack and execute a breakpoint instruction.
|
|
|
|
*
|
|
|
|
* If we single-step into an exception handler which runs with
|
|
|
|
* interrupts disabled the whole time so it doesn't have to check for
|
|
|
|
* pending work, its return address will be modified so that it ends
|
|
|
|
* up returning to debug_trampoline.
|
|
|
|
*
|
|
|
|
* If the exception handler decides to store the user context and
|
|
|
|
* enable interrupts after all, it will restore the original return
|
|
|
|
* address and status register value. Before it returns, it will
|
|
|
|
* notice that TIF_BREAKPOINT is set and execute a breakpoint
|
|
|
|
* instruction.
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
*/
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
extern void debug_trampoline(void);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
asmlinkage struct pt_regs *do_debug(struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
struct thread_info *ti;
|
|
|
|
unsigned long trampoline_addr;
|
|
|
|
u32 status;
|
|
|
|
u32 ctrl;
|
|
|
|
int code;
|
|
|
|
|
|
|
|
status = ocd_read(DS);
|
|
|
|
ti = current_thread_info();
|
|
|
|
code = TRAP_BRKPT;
|
|
|
|
|
|
|
|
pr_debug("do_debug: status=0x%08x PC=0x%08lx SR=0x%08lx tif=0x%08lx\n",
|
|
|
|
status, regs->pc, regs->sr, ti->flags);
|
|
|
|
|
|
|
|
if (!user_mode(regs)) {
|
|
|
|
unsigned long die_val = DIE_BREAKPOINT;
|
|
|
|
|
|
|
|
if (status & (1 << OCD_DS_SSS_BIT))
|
|
|
|
die_val = DIE_SSTEP;
|
|
|
|
|
|
|
|
if (notify_die(die_val, "ptrace", regs, 0, 0, SIGTRAP)
|
|
|
|
== NOTIFY_STOP)
|
|
|
|
return regs;
|
|
|
|
|
|
|
|
if ((status & (1 << OCD_DS_SWB_BIT))
|
|
|
|
&& test_and_clear_ti_thread_flag(
|
|
|
|
ti, TIF_BREAKPOINT)) {
|
|
|
|
/*
|
|
|
|
* Explicit breakpoint from trampoline or
|
|
|
|
* exception/syscall/interrupt handler.
|
|
|
|
*
|
|
|
|
* The real saved regs are on the stack right
|
|
|
|
* after the ones we saved on entry.
|
|
|
|
*/
|
|
|
|
regs++;
|
|
|
|
pr_debug(" -> TIF_BREAKPOINT done, adjusted regs:"
|
|
|
|
"PC=0x%08lx SR=0x%08lx\n",
|
|
|
|
regs->pc, regs->sr);
|
|
|
|
BUG_ON(!user_mode(regs));
|
|
|
|
|
|
|
|
if (test_thread_flag(TIF_SINGLE_STEP)) {
|
|
|
|
pr_debug("Going to do single step...\n");
|
|
|
|
return regs;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No TIF_SINGLE_STEP means we're done
|
|
|
|
* stepping over a syscall. Do the trap now.
|
|
|
|
*/
|
|
|
|
code = TRAP_TRACE;
|
|
|
|
} else if ((status & (1 << OCD_DS_SSS_BIT))
|
|
|
|
&& test_ti_thread_flag(ti, TIF_SINGLE_STEP)) {
|
|
|
|
|
|
|
|
pr_debug("Stepped into something, "
|
|
|
|
"setting TIF_BREAKPOINT...\n");
|
|
|
|
set_ti_thread_flag(ti, TIF_BREAKPOINT);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We stepped into an exception, interrupt or
|
|
|
|
* syscall handler. Some exception handlers
|
|
|
|
* don't check for pending work, so we need to
|
|
|
|
* set up a trampoline just in case.
|
|
|
|
*
|
|
|
|
* The exception entry code will undo the
|
|
|
|
* trampoline stuff if it does a full context
|
|
|
|
* save (which also means that it'll check for
|
|
|
|
* pending work later.)
|
|
|
|
*/
|
|
|
|
if ((regs->sr & MODE_MASK) == MODE_EXCEPTION) {
|
|
|
|
trampoline_addr
|
|
|
|
= (unsigned long)&debug_trampoline;
|
|
|
|
|
|
|
|
pr_debug("Setting up trampoline...\n");
|
|
|
|
ti->rar_saved = sysreg_read(RAR_EX);
|
|
|
|
ti->rsr_saved = sysreg_read(RSR_EX);
|
|
|
|
sysreg_write(RAR_EX, trampoline_addr);
|
|
|
|
sysreg_write(RSR_EX, (MODE_EXCEPTION
|
|
|
|
| SR_EM | SR_GM));
|
|
|
|
BUG_ON(ti->rsr_saved & MODE_MASK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we stepped into a system call, we
|
|
|
|
* shouldn't do a single step after we return
|
|
|
|
* since the return address is right after the
|
|
|
|
* "scall" instruction we were told to step
|
|
|
|
* over.
|
|
|
|
*/
|
|
|
|
if ((regs->sr & MODE_MASK) == MODE_SUPERVISOR) {
|
|
|
|
pr_debug("Supervisor; no single step\n");
|
|
|
|
clear_ti_thread_flag(ti, TIF_SINGLE_STEP);
|
|
|
|
}
|
|
|
|
|
|
|
|
ctrl = ocd_read(DC);
|
|
|
|
ctrl &= ~(1 << OCD_DC_SS_BIT);
|
|
|
|
ocd_write(DC, ctrl);
|
|
|
|
|
|
|
|
return regs;
|
|
|
|
} else {
|
|
|
|
printk(KERN_ERR "Unexpected OCD_DS value: 0x%08x\n",
|
|
|
|
status);
|
|
|
|
printk(KERN_ERR "Thread flags: 0x%08lx\n", ti->flags);
|
|
|
|
die("Unhandled debug trap in kernel mode",
|
|
|
|
regs, SIGTRAP);
|
|
|
|
}
|
|
|
|
} else if (status & (1 << OCD_DS_SSS_BIT)) {
|
|
|
|
/* Single step in user mode */
|
|
|
|
code = TRAP_TRACE;
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
ctrl = ocd_read(DC);
|
|
|
|
ctrl &= ~(1 << OCD_DC_SS_BIT);
|
|
|
|
ocd_write(DC, ctrl);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
}
|
|
|
|
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
pr_debug("Sending SIGTRAP: code=%d PC=0x%08lx SR=0x%08lx\n",
|
|
|
|
code, regs->pc, regs->sr);
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
|
[AVR32] Follow the rules when dealing with the OCD system
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
17 years ago
|
|
|
clear_thread_flag(TIF_SINGLE_STEP);
|
|
|
|
_exception(SIGTRAP, regs, code, instruction_pointer(regs));
|
|
|
|
|
|
|
|
return regs;
|
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
}
|