|
|
|
/*
|
|
|
|
* linux/fs/file.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
|
|
|
|
*
|
|
|
|
* Manage the dynamic fd arrays in the process files_struct.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/time.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/file.h>
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <linux/workqueue.h>
|
|
|
|
|
|
|
|
struct fdtable_defer {
|
|
|
|
spinlock_t lock;
|
|
|
|
struct work_struct wq;
|
|
|
|
struct timer_list timer;
|
|
|
|
struct fdtable *next;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We use this list to defer free fdtables that have vmalloced
|
|
|
|
* sets/arrays. By keeping a per-cpu list, we avoid having to embed
|
|
|
|
* the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
|
|
|
|
* this per-task structure.
|
|
|
|
*/
|
|
|
|
static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate an fd array, using kmalloc or vmalloc.
|
|
|
|
* Note: the array isn't cleared at allocation time.
|
|
|
|
*/
|
|
|
|
struct file ** alloc_fd_array(int num)
|
|
|
|
{
|
|
|
|
struct file **new_fds;
|
|
|
|
int size = num * sizeof(struct file *);
|
|
|
|
|
|
|
|
if (size <= PAGE_SIZE)
|
|
|
|
new_fds = (struct file **) kmalloc(size, GFP_KERNEL);
|
|
|
|
else
|
|
|
|
new_fds = (struct file **) vmalloc(size);
|
|
|
|
return new_fds;
|
|
|
|
}
|
|
|
|
|
|
|
|
void free_fd_array(struct file **array, int num)
|
|
|
|
{
|
|
|
|
int size = num * sizeof(struct file *);
|
|
|
|
|
|
|
|
if (!array) {
|
|
|
|
printk (KERN_ERR "free_fd_array: array = 0 (num = %d)\n", num);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (num <= NR_OPEN_DEFAULT) /* Don't free the embedded fd array! */
|
|
|
|
return;
|
|
|
|
else if (size <= PAGE_SIZE)
|
|
|
|
kfree(array);
|
|
|
|
else
|
|
|
|
vfree(array);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __free_fdtable(struct fdtable *fdt)
|
|
|
|
{
|
|
|
|
free_fdset(fdt->open_fds, fdt->max_fdset);
|
|
|
|
free_fdset(fdt->close_on_exec, fdt->max_fdset);
|
|
|
|
free_fd_array(fdt->fd, fdt->max_fds);
|
|
|
|
kfree(fdt);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fdtable_timer(unsigned long data)
|
|
|
|
{
|
|
|
|
struct fdtable_defer *fddef = (struct fdtable_defer *)data;
|
|
|
|
|
|
|
|
spin_lock(&fddef->lock);
|
|
|
|
/*
|
|
|
|
* If someone already emptied the queue return.
|
|
|
|
*/
|
|
|
|
if (!fddef->next)
|
|
|
|
goto out;
|
|
|
|
if (!schedule_work(&fddef->wq))
|
|
|
|
mod_timer(&fddef->timer, 5);
|
|
|
|
out:
|
|
|
|
spin_unlock(&fddef->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void free_fdtable_work(struct fdtable_defer *f)
|
|
|
|
{
|
|
|
|
struct fdtable *fdt;
|
|
|
|
|
|
|
|
spin_lock_bh(&f->lock);
|
|
|
|
fdt = f->next;
|
|
|
|
f->next = NULL;
|
|
|
|
spin_unlock_bh(&f->lock);
|
|
|
|
while(fdt) {
|
|
|
|
struct fdtable *next = fdt->next;
|
|
|
|
__free_fdtable(fdt);
|
|
|
|
fdt = next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void free_fdtable_rcu(struct rcu_head *rcu)
|
|
|
|
{
|
|
|
|
struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
|
|
|
|
int fdset_size, fdarray_size;
|
|
|
|
struct fdtable_defer *fddef;
|
|
|
|
|
|
|
|
BUG_ON(!fdt);
|
|
|
|
fdset_size = fdt->max_fdset / 8;
|
|
|
|
fdarray_size = fdt->max_fds * sizeof(struct file *);
|
|
|
|
|
|
|
|
if (fdt->free_files) {
|
|
|
|
/*
|
|
|
|
* The this fdtable was embedded in the files structure
|
|
|
|
* and the files structure itself was getting destroyed.
|
|
|
|
* It is now safe to free the files structure.
|
|
|
|
*/
|
|
|
|
kmem_cache_free(files_cachep, fdt->free_files);
|
|
|
|
return;
|
|
|
|
}
|
[PATCH] Shrinks sizeof(files_struct) and better layout
1) Reduce the size of (struct fdtable) to exactly 64 bytes on 32bits
platforms, lowering kmalloc() allocated space by 50%.
2) Reduce the size of (files_struct), using a special 32 bits (or
64bits) embedded_fd_set, instead of a 1024 bits fd_set for the
close_on_exec_init and open_fds_init fields. This save some ram (248
bytes per task) as most tasks dont open more than 32 files. D-Cache
footprint for such tasks is also reduced to the minimum.
3) Reduce size of allocated fdset. Currently two full pages are
allocated, that is 32768 bits on x86 for example, and way too much. The
minimum is now L1_CACHE_BYTES.
UP and SMP should benefit from this patch, because most tasks will touch
only one cache line when open()/close() stdin/stdout/stderr (0/1/2),
(next_fd, close_on_exec_init, open_fds_init, fd_array[0 .. 2] being in the
same cache line)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
if (fdt->max_fdset <= EMBEDDED_FD_SET_SIZE &&
|
|
|
|
fdt->max_fds <= NR_OPEN_DEFAULT) {
|
|
|
|
/*
|
|
|
|
* The fdtable was embedded
|
|
|
|
*/
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (fdset_size <= PAGE_SIZE && fdarray_size <= PAGE_SIZE) {
|
|
|
|
kfree(fdt->open_fds);
|
|
|
|
kfree(fdt->close_on_exec);
|
|
|
|
kfree(fdt->fd);
|
|
|
|
kfree(fdt);
|
|
|
|
} else {
|
|
|
|
fddef = &get_cpu_var(fdtable_defer_list);
|
|
|
|
spin_lock(&fddef->lock);
|
|
|
|
fdt->next = fddef->next;
|
|
|
|
fddef->next = fdt;
|
|
|
|
/*
|
|
|
|
* vmallocs are handled from the workqueue context.
|
|
|
|
* If the per-cpu workqueue is running, then we
|
|
|
|
* defer work scheduling through a timer.
|
|
|
|
*/
|
|
|
|
if (!schedule_work(&fddef->wq))
|
|
|
|
mod_timer(&fddef->timer, 5);
|
|
|
|
spin_unlock(&fddef->lock);
|
|
|
|
put_cpu_var(fdtable_defer_list);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void free_fdtable(struct fdtable *fdt)
|
|
|
|
{
|
[PATCH] Shrinks sizeof(files_struct) and better layout
1) Reduce the size of (struct fdtable) to exactly 64 bytes on 32bits
platforms, lowering kmalloc() allocated space by 50%.
2) Reduce the size of (files_struct), using a special 32 bits (or
64bits) embedded_fd_set, instead of a 1024 bits fd_set for the
close_on_exec_init and open_fds_init fields. This save some ram (248
bytes per task) as most tasks dont open more than 32 files. D-Cache
footprint for such tasks is also reduced to the minimum.
3) Reduce size of allocated fdset. Currently two full pages are
allocated, that is 32768 bits on x86 for example, and way too much. The
minimum is now L1_CACHE_BYTES.
UP and SMP should benefit from this patch, because most tasks will touch
only one cache line when open()/close() stdin/stdout/stderr (0/1/2),
(next_fd, close_on_exec_init, open_fds_init, fd_array[0 .. 2] being in the
same cache line)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
if (fdt->free_files ||
|
|
|
|
fdt->max_fdset > EMBEDDED_FD_SET_SIZE ||
|
|
|
|
fdt->max_fds > NR_OPEN_DEFAULT)
|
|
|
|
call_rcu(&fdt->rcu, free_fdtable_rcu);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Expand the fdset in the files_struct. Called with the files spinlock
|
|
|
|
* held for write.
|
|
|
|
*/
|
|
|
|
static void copy_fdtable(struct fdtable *nfdt, struct fdtable *fdt)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int count;
|
|
|
|
|
|
|
|
BUG_ON(nfdt->max_fdset < fdt->max_fdset);
|
|
|
|
BUG_ON(nfdt->max_fds < fdt->max_fds);
|
|
|
|
/* Copy the existing tables and install the new pointers */
|
|
|
|
|
|
|
|
i = fdt->max_fdset / (sizeof(unsigned long) * 8);
|
|
|
|
count = (nfdt->max_fdset - fdt->max_fdset) / 8;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Don't copy the entire array if the current fdset is
|
|
|
|
* not yet initialised.
|
|
|
|
*/
|
|
|
|
if (i) {
|
|
|
|
memcpy (nfdt->open_fds, fdt->open_fds,
|
|
|
|
fdt->max_fdset/8);
|
|
|
|
memcpy (nfdt->close_on_exec, fdt->close_on_exec,
|
|
|
|
fdt->max_fdset/8);
|
|
|
|
memset (&nfdt->open_fds->fds_bits[i], 0, count);
|
|
|
|
memset (&nfdt->close_on_exec->fds_bits[i], 0, count);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Don't copy/clear the array if we are creating a new
|
|
|
|
fd array for fork() */
|
|
|
|
if (fdt->max_fds) {
|
|
|
|
memcpy(nfdt->fd, fdt->fd,
|
|
|
|
fdt->max_fds * sizeof(struct file *));
|
|
|
|
/* clear the remainder of the array */
|
|
|
|
memset(&nfdt->fd[fdt->max_fds], 0,
|
|
|
|
(nfdt->max_fds - fdt->max_fds) *
|
|
|
|
sizeof(struct file *));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allocate an fdset array, using kmalloc or vmalloc.
|
|
|
|
* Note: the array isn't cleared at allocation time.
|
|
|
|
*/
|
|
|
|
fd_set * alloc_fdset(int num)
|
|
|
|
{
|
|
|
|
fd_set *new_fdset;
|
|
|
|
int size = num / 8;
|
|
|
|
|
|
|
|
if (size <= PAGE_SIZE)
|
|
|
|
new_fdset = (fd_set *) kmalloc(size, GFP_KERNEL);
|
|
|
|
else
|
|
|
|
new_fdset = (fd_set *) vmalloc(size);
|
|
|
|
return new_fdset;
|
|
|
|
}
|
|
|
|
|
|
|
|
void free_fdset(fd_set *array, int num)
|
|
|
|
{
|
[PATCH] Shrinks sizeof(files_struct) and better layout
1) Reduce the size of (struct fdtable) to exactly 64 bytes on 32bits
platforms, lowering kmalloc() allocated space by 50%.
2) Reduce the size of (files_struct), using a special 32 bits (or
64bits) embedded_fd_set, instead of a 1024 bits fd_set for the
close_on_exec_init and open_fds_init fields. This save some ram (248
bytes per task) as most tasks dont open more than 32 files. D-Cache
footprint for such tasks is also reduced to the minimum.
3) Reduce size of allocated fdset. Currently two full pages are
allocated, that is 32768 bits on x86 for example, and way too much. The
minimum is now L1_CACHE_BYTES.
UP and SMP should benefit from this patch, because most tasks will touch
only one cache line when open()/close() stdin/stdout/stderr (0/1/2),
(next_fd, close_on_exec_init, open_fds_init, fd_array[0 .. 2] being in the
same cache line)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
if (num <= EMBEDDED_FD_SET_SIZE) /* Don't free an embedded fdset */
|
|
|
|
return;
|
[PATCH] Shrinks sizeof(files_struct) and better layout
1) Reduce the size of (struct fdtable) to exactly 64 bytes on 32bits
platforms, lowering kmalloc() allocated space by 50%.
2) Reduce the size of (files_struct), using a special 32 bits (or
64bits) embedded_fd_set, instead of a 1024 bits fd_set for the
close_on_exec_init and open_fds_init fields. This save some ram (248
bytes per task) as most tasks dont open more than 32 files. D-Cache
footprint for such tasks is also reduced to the minimum.
3) Reduce size of allocated fdset. Currently two full pages are
allocated, that is 32768 bits on x86 for example, and way too much. The
minimum is now L1_CACHE_BYTES.
UP and SMP should benefit from this patch, because most tasks will touch
only one cache line when open()/close() stdin/stdout/stderr (0/1/2),
(next_fd, close_on_exec_init, open_fds_init, fd_array[0 .. 2] being in the
same cache line)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
else if (num <= 8 * PAGE_SIZE)
|
|
|
|
kfree(array);
|
|
|
|
else
|
|
|
|
vfree(array);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct fdtable *alloc_fdtable(int nr)
|
|
|
|
{
|
|
|
|
struct fdtable *fdt = NULL;
|
|
|
|
int nfds = 0;
|
|
|
|
fd_set *new_openset = NULL, *new_execset = NULL;
|
|
|
|
struct file **new_fds;
|
|
|
|
|
[PATCH] Shrinks sizeof(files_struct) and better layout
1) Reduce the size of (struct fdtable) to exactly 64 bytes on 32bits
platforms, lowering kmalloc() allocated space by 50%.
2) Reduce the size of (files_struct), using a special 32 bits (or
64bits) embedded_fd_set, instead of a 1024 bits fd_set for the
close_on_exec_init and open_fds_init fields. This save some ram (248
bytes per task) as most tasks dont open more than 32 files. D-Cache
footprint for such tasks is also reduced to the minimum.
3) Reduce size of allocated fdset. Currently two full pages are
allocated, that is 32768 bits on x86 for example, and way too much. The
minimum is now L1_CACHE_BYTES.
UP and SMP should benefit from this patch, because most tasks will touch
only one cache line when open()/close() stdin/stdout/stderr (0/1/2),
(next_fd, close_on_exec_init, open_fds_init, fd_array[0 .. 2] being in the
same cache line)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
fdt = kzalloc(sizeof(*fdt), GFP_KERNEL);
|
|
|
|
if (!fdt)
|
|
|
|
goto out;
|
|
|
|
|
[PATCH] Shrinks sizeof(files_struct) and better layout
1) Reduce the size of (struct fdtable) to exactly 64 bytes on 32bits
platforms, lowering kmalloc() allocated space by 50%.
2) Reduce the size of (files_struct), using a special 32 bits (or
64bits) embedded_fd_set, instead of a 1024 bits fd_set for the
close_on_exec_init and open_fds_init fields. This save some ram (248
bytes per task) as most tasks dont open more than 32 files. D-Cache
footprint for such tasks is also reduced to the minimum.
3) Reduce size of allocated fdset. Currently two full pages are
allocated, that is 32768 bits on x86 for example, and way too much. The
minimum is now L1_CACHE_BYTES.
UP and SMP should benefit from this patch, because most tasks will touch
only one cache line when open()/close() stdin/stdout/stderr (0/1/2),
(next_fd, close_on_exec_init, open_fds_init, fd_array[0 .. 2] being in the
same cache line)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
nfds = 8 * L1_CACHE_BYTES;
|
|
|
|
/* Expand to the max in easy steps */
|
[PATCH] Shrinks sizeof(files_struct) and better layout
1) Reduce the size of (struct fdtable) to exactly 64 bytes on 32bits
platforms, lowering kmalloc() allocated space by 50%.
2) Reduce the size of (files_struct), using a special 32 bits (or
64bits) embedded_fd_set, instead of a 1024 bits fd_set for the
close_on_exec_init and open_fds_init fields. This save some ram (248
bytes per task) as most tasks dont open more than 32 files. D-Cache
footprint for such tasks is also reduced to the minimum.
3) Reduce size of allocated fdset. Currently two full pages are
allocated, that is 32768 bits on x86 for example, and way too much. The
minimum is now L1_CACHE_BYTES.
UP and SMP should benefit from this patch, because most tasks will touch
only one cache line when open()/close() stdin/stdout/stderr (0/1/2),
(next_fd, close_on_exec_init, open_fds_init, fd_array[0 .. 2] being in the
same cache line)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
19 years ago
|
|
|
while (nfds <= nr) {
|
|
|
|
nfds = nfds * 2;
|
|
|
|
if (nfds > NR_OPEN)
|
|
|
|
nfds = NR_OPEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
new_openset = alloc_fdset(nfds);
|
|
|
|
new_execset = alloc_fdset(nfds);
|
|
|
|
if (!new_openset || !new_execset)
|
|
|
|
goto out;
|
|
|
|
fdt->open_fds = new_openset;
|
|
|
|
fdt->close_on_exec = new_execset;
|
|
|
|
fdt->max_fdset = nfds;
|
|
|
|
|
|
|
|
nfds = NR_OPEN_DEFAULT;
|
|
|
|
/*
|
|
|
|
* Expand to the max in easy steps, and keep expanding it until
|
|
|
|
* we have enough for the requested fd array size.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
#if NR_OPEN_DEFAULT < 256
|
|
|
|
if (nfds < 256)
|
|
|
|
nfds = 256;
|
|
|
|
else
|
|
|
|
#endif
|
|
|
|
if (nfds < (PAGE_SIZE / sizeof(struct file *)))
|
|
|
|
nfds = PAGE_SIZE / sizeof(struct file *);
|
|
|
|
else {
|
|
|
|
nfds = nfds * 2;
|
|
|
|
if (nfds > NR_OPEN)
|
|
|
|
nfds = NR_OPEN;
|
|
|
|
}
|
|
|
|
} while (nfds <= nr);
|
|
|
|
new_fds = alloc_fd_array(nfds);
|
|
|
|
if (!new_fds)
|
|
|
|
goto out;
|
|
|
|
fdt->fd = new_fds;
|
|
|
|
fdt->max_fds = nfds;
|
|
|
|
fdt->free_files = NULL;
|
|
|
|
return fdt;
|
|
|
|
out:
|
|
|
|
if (new_openset)
|
|
|
|
free_fdset(new_openset, nfds);
|
|
|
|
if (new_execset)
|
|
|
|
free_fdset(new_execset, nfds);
|
|
|
|
kfree(fdt);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Expands the file descriptor table - it will allocate a new fdtable and
|
|
|
|
* both fd array and fdset. It is expected to be called with the
|
|
|
|
* files_lock held.
|
|
|
|
*/
|
|
|
|
static int expand_fdtable(struct files_struct *files, int nr)
|
|
|
|
__releases(files->file_lock)
|
|
|
|
__acquires(files->file_lock)
|
|
|
|
{
|
|
|
|
int error = 0;
|
|
|
|
struct fdtable *fdt;
|
|
|
|
struct fdtable *nfdt = NULL;
|
|
|
|
|
|
|
|
spin_unlock(&files->file_lock);
|
|
|
|
nfdt = alloc_fdtable(nr);
|
|
|
|
if (!nfdt) {
|
|
|
|
error = -ENOMEM;
|
|
|
|
spin_lock(&files->file_lock);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&files->file_lock);
|
|
|
|
fdt = files_fdtable(files);
|
|
|
|
/*
|
|
|
|
* Check again since another task may have expanded the
|
|
|
|
* fd table while we dropped the lock
|
|
|
|
*/
|
|
|
|
if (nr >= fdt->max_fds || nr >= fdt->max_fdset) {
|
|
|
|
copy_fdtable(nfdt, fdt);
|
|
|
|
} else {
|
|
|
|
/* Somebody expanded while we dropped file_lock */
|
|
|
|
spin_unlock(&files->file_lock);
|
|
|
|
__free_fdtable(nfdt);
|
|
|
|
spin_lock(&files->file_lock);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
rcu_assign_pointer(files->fdt, nfdt);
|
|
|
|
free_fdtable(fdt);
|
|
|
|
out:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Expand files.
|
|
|
|
* Return <0 on error; 0 nothing done; 1 files expanded, we may have blocked.
|
|
|
|
* Should be called with the files->file_lock spinlock held for write.
|
|
|
|
*/
|
|
|
|
int expand_files(struct files_struct *files, int nr)
|
|
|
|
{
|
|
|
|
int err, expand = 0;
|
|
|
|
struct fdtable *fdt;
|
|
|
|
|
|
|
|
fdt = files_fdtable(files);
|
|
|
|
if (nr >= fdt->max_fdset || nr >= fdt->max_fds) {
|
|
|
|
if (fdt->max_fdset >= NR_OPEN ||
|
|
|
|
fdt->max_fds >= NR_OPEN || nr >= NR_OPEN) {
|
|
|
|
err = -EMFILE;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
expand = 1;
|
|
|
|
if ((err = expand_fdtable(files, nr)))
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
err = expand;
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __devinit fdtable_defer_list_init(int cpu)
|
|
|
|
{
|
|
|
|
struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
|
|
|
|
spin_lock_init(&fddef->lock);
|
|
|
|
INIT_WORK(&fddef->wq, (void (*)(void *))free_fdtable_work, fddef);
|
|
|
|
init_timer(&fddef->timer);
|
|
|
|
fddef->timer.data = (unsigned long)fddef;
|
|
|
|
fddef->timer.function = fdtable_timer;
|
|
|
|
fddef->next = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init files_defer_init(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for_each_possible_cpu(i)
|
|
|
|
fdtable_defer_list_init(i);
|
|
|
|
}
|