You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/drivers/isdn/mISDN/dsp_tones.c

558 lines
17 KiB

/*
* Audio support data for ISDN4Linux.
*
* Copyright Andreas Eversberg (jolly@eversberg.eu)
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
15 years ago
#include <linux/gfp.h>
#include <linux/mISDNif.h>
#include <linux/mISDNdsp.h>
#include "core.h"
#include "dsp.h"
#define DATA_S sample_silence
#define SIZE_S (&sizeof_silence)
#define DATA_GA sample_german_all
#define SIZE_GA (&sizeof_german_all)
#define DATA_GO sample_german_old
#define SIZE_GO (&sizeof_german_old)
#define DATA_DT sample_american_dialtone
#define SIZE_DT (&sizeof_american_dialtone)
#define DATA_RI sample_american_ringing
#define SIZE_RI (&sizeof_american_ringing)
#define DATA_BU sample_american_busy
#define SIZE_BU (&sizeof_american_busy)
#define DATA_S1 sample_special1
#define SIZE_S1 (&sizeof_special1)
#define DATA_S2 sample_special2
#define SIZE_S2 (&sizeof_special2)
#define DATA_S3 sample_special3
#define SIZE_S3 (&sizeof_special3)
/***************/
/* tones loops */
/***************/
/* all tones are alaw encoded */
/* the last sample+1 is in phase with the first sample. the error is low */
static u8 sample_german_all[] = {
0x80, 0xab, 0x81, 0x6d, 0xfd, 0xdd, 0x5d, 0x9d,
0x4d, 0xd1, 0x89, 0x88, 0xd0, 0x4c, 0x9c, 0x5c,
0xdc, 0xfc, 0x6c,
0x80, 0xab, 0x81, 0x6d, 0xfd, 0xdd, 0x5d, 0x9d,
0x4d, 0xd1, 0x89, 0x88, 0xd0, 0x4c, 0x9c, 0x5c,
0xdc, 0xfc, 0x6c,
0x80, 0xab, 0x81, 0x6d, 0xfd, 0xdd, 0x5d, 0x9d,
0x4d, 0xd1, 0x89, 0x88, 0xd0, 0x4c, 0x9c, 0x5c,
0xdc, 0xfc, 0x6c,
0x80, 0xab, 0x81, 0x6d, 0xfd, 0xdd, 0x5d, 0x9d,
0x4d, 0xd1, 0x89, 0x88, 0xd0, 0x4c, 0x9c, 0x5c,
0xdc, 0xfc, 0x6c,
};
static u32 sizeof_german_all = sizeof(sample_german_all);
static u8 sample_german_old[] = {
0xec, 0x68, 0xe1, 0x6d, 0x6d, 0x91, 0x51, 0xed,
0x6d, 0x01, 0x1e, 0x10, 0x0c, 0x90, 0x60, 0x70,
0x8c,
0xec, 0x68, 0xe1, 0x6d, 0x6d, 0x91, 0x51, 0xed,
0x6d, 0x01, 0x1e, 0x10, 0x0c, 0x90, 0x60, 0x70,
0x8c,
0xec, 0x68, 0xe1, 0x6d, 0x6d, 0x91, 0x51, 0xed,
0x6d, 0x01, 0x1e, 0x10, 0x0c, 0x90, 0x60, 0x70,
0x8c,
0xec, 0x68, 0xe1, 0x6d, 0x6d, 0x91, 0x51, 0xed,
0x6d, 0x01, 0x1e, 0x10, 0x0c, 0x90, 0x60, 0x70,
0x8c,
};
static u32 sizeof_german_old = sizeof(sample_german_old);
static u8 sample_american_dialtone[] = {
0x2a, 0x18, 0x90, 0x6c, 0x4c, 0xbc, 0x4c, 0x6c,
0x10, 0x58, 0x32, 0xb9, 0x31, 0x2d, 0x8d, 0x0d,
0x8d, 0x2d, 0x31, 0x99, 0x0f, 0x28, 0x60, 0xf0,
0xd0, 0x50, 0xd0, 0x30, 0x60, 0x08, 0x8e, 0x67,
0x09, 0x19, 0x21, 0xe1, 0xd9, 0xb9, 0x29, 0x67,
0x83, 0x02, 0xce, 0xbe, 0xee, 0x1a, 0x1b, 0xef,
0xbf, 0xcf, 0x03, 0x82, 0x66, 0x28, 0xb8, 0xd8,
0xe0, 0x20, 0x18, 0x08, 0x66, 0x8f, 0x09, 0x61,
0x31, 0xd1, 0x51, 0xd1, 0xf1, 0x61, 0x29, 0x0e,
0x98, 0x30, 0x2c, 0x8c, 0x0c, 0x8c, 0x2c, 0x30,
0xb8, 0x33, 0x59, 0x11, 0x6d, 0x4d, 0xbd, 0x4d,
0x6d, 0x91, 0x19,
};
static u32 sizeof_american_dialtone = sizeof(sample_american_dialtone);
static u8 sample_american_ringing[] = {
0x2a, 0xe0, 0xac, 0x0c, 0xbc, 0x4c, 0x8c, 0x90,
0x48, 0xc7, 0xc1, 0xed, 0xcd, 0x4d, 0xcd, 0xed,
0xc1, 0xb7, 0x08, 0x30, 0xec, 0xcc, 0xcc, 0x8c,
0x10, 0x58, 0x1a, 0x99, 0x71, 0xed, 0x8d, 0x8d,
0x2d, 0x41, 0x89, 0x9e, 0x20, 0x70, 0x2c, 0xec,
0x2c, 0x70, 0x20, 0x86, 0x77, 0xe1, 0x31, 0x11,
0xd1, 0xf1, 0x81, 0x09, 0xa3, 0x56, 0x58, 0x00,
0x40, 0xc0, 0x60, 0x38, 0x46, 0x43, 0x57, 0x39,
0xd9, 0x59, 0x99, 0xc9, 0x77, 0x2f, 0x2e, 0xc6,
0xd6, 0x28, 0xd6, 0x36, 0x26, 0x2e, 0x8a, 0xa3,
0x43, 0x63, 0x4b, 0x4a, 0x62, 0x42, 0xa2, 0x8b,
0x2f, 0x27, 0x37, 0xd7, 0x29, 0xd7, 0xc7, 0x2f,
0x2e, 0x76, 0xc8, 0x98, 0x58, 0xd8, 0x38, 0x56,
0x42, 0x47, 0x39, 0x61, 0xc1, 0x41, 0x01, 0x59,
0x57, 0xa2, 0x08, 0x80, 0xf0, 0xd0, 0x10, 0x30,
0xe0, 0x76, 0x87, 0x21, 0x71, 0x2d, 0xed, 0x2d,
0x71, 0x21, 0x9f, 0x88, 0x40, 0x2c, 0x8c, 0x8c,
0xec, 0x70, 0x98, 0x1b, 0x59, 0x11, 0x8d, 0xcd,
0xcd, 0xed, 0x31, 0x09, 0xb6, 0xc0, 0xec, 0xcc,
0x4c, 0xcc, 0xec, 0xc0, 0xc6, 0x49, 0x91, 0x8d,
0x4d, 0xbd, 0x0d, 0xad, 0xe1,
};
static u32 sizeof_american_ringing = sizeof(sample_american_ringing);
static u8 sample_american_busy[] = {
0x2a, 0x00, 0x6c, 0x4c, 0x4c, 0x6c, 0xb0, 0x66,
0x99, 0x11, 0x6d, 0x8d, 0x2d, 0x41, 0xd7, 0x96,
0x60, 0xf0, 0x70, 0x40, 0x58, 0xf6, 0x53, 0x57,
0x09, 0x89, 0xd7, 0x5f, 0xe3, 0x2a, 0xe3, 0x5f,
0xd7, 0x89, 0x09, 0x57, 0x53, 0xf6, 0x58, 0x40,
0x70, 0xf0, 0x60, 0x96, 0xd7, 0x41, 0x2d, 0x8d,
0x6d, 0x11, 0x99, 0x66, 0xb0, 0x6c, 0x4c, 0x4c,
0x6c, 0x00, 0x2a, 0x01, 0x6d, 0x4d, 0x4d, 0x6d,
0xb1, 0x67, 0x98, 0x10, 0x6c, 0x8c, 0x2c, 0x40,
0xd6, 0x97, 0x61, 0xf1, 0x71, 0x41, 0x59, 0xf7,
0x52, 0x56, 0x08, 0x88, 0xd6, 0x5e, 0xe2, 0x2a,
0xe2, 0x5e, 0xd6, 0x88, 0x08, 0x56, 0x52, 0xf7,
0x59, 0x41, 0x71, 0xf1, 0x61, 0x97, 0xd6, 0x40,
0x2c, 0x8c, 0x6c, 0x10, 0x98, 0x67, 0xb1, 0x6d,
0x4d, 0x4d, 0x6d, 0x01,
};
static u32 sizeof_american_busy = sizeof(sample_american_busy);
static u8 sample_special1[] = {
0x2a, 0x2c, 0xbc, 0x6c, 0xd6, 0x71, 0xbd, 0x0d,
0xd9, 0x80, 0xcc, 0x4c, 0x40, 0x39, 0x0d, 0xbd,
0x11, 0x86, 0xec, 0xbc, 0xec, 0x0e, 0x51, 0xbd,
0x8d, 0x89, 0x30, 0x4c, 0xcc, 0xe0, 0xe1, 0xcd,
0x4d, 0x31, 0x88, 0x8c, 0xbc, 0x50, 0x0f, 0xed,
0xbd, 0xed, 0x87, 0x10, 0xbc, 0x0c, 0x38, 0x41,
0x4d, 0xcd, 0x81, 0xd8, 0x0c, 0xbc, 0x70, 0xd7,
0x6d, 0xbd, 0x2d,
};
static u32 sizeof_special1 = sizeof(sample_special1);
static u8 sample_special2[] = {
0x2a, 0xcc, 0x8c, 0xd7, 0x4d, 0x2d, 0x18, 0xbc,
0x10, 0xc1, 0xbd, 0xc1, 0x10, 0xbc, 0x18, 0x2d,
0x4d, 0xd7, 0x8c, 0xcc, 0x2a, 0xcd, 0x8d, 0xd6,
0x4c, 0x2c, 0x19, 0xbd, 0x11, 0xc0, 0xbc, 0xc0,
0x11, 0xbd, 0x19, 0x2c, 0x4c, 0xd6, 0x8d, 0xcd,
0x2a, 0xcc, 0x8c, 0xd7, 0x4d, 0x2d, 0x18, 0xbc,
0x10, 0xc1, 0xbd, 0xc1, 0x10, 0xbc, 0x18, 0x2d,
0x4d, 0xd7, 0x8c, 0xcc, 0x2a, 0xcd, 0x8d, 0xd6,
0x4c, 0x2c, 0x19, 0xbd, 0x11, 0xc0, 0xbc, 0xc0,
0x11, 0xbd, 0x19, 0x2c, 0x4c, 0xd6, 0x8d, 0xcd,
};
static u32 sizeof_special2 = sizeof(sample_special2);
static u8 sample_special3[] = {
0x2a, 0xbc, 0x18, 0xcd, 0x11, 0x2c, 0x8c, 0xc1,
0x4d, 0xd6, 0xbc, 0xd6, 0x4d, 0xc1, 0x8c, 0x2c,
0x11, 0xcd, 0x18, 0xbc, 0x2a, 0xbd, 0x19, 0xcc,
0x10, 0x2d, 0x8d, 0xc0, 0x4c, 0xd7, 0xbd, 0xd7,
0x4c, 0xc0, 0x8d, 0x2d, 0x10, 0xcc, 0x19, 0xbd,
0x2a, 0xbc, 0x18, 0xcd, 0x11, 0x2c, 0x8c, 0xc1,
0x4d, 0xd6, 0xbc, 0xd6, 0x4d, 0xc1, 0x8c, 0x2c,
0x11, 0xcd, 0x18, 0xbc, 0x2a, 0xbd, 0x19, 0xcc,
0x10, 0x2d, 0x8d, 0xc0, 0x4c, 0xd7, 0xbd, 0xd7,
0x4c, 0xc0, 0x8d, 0x2d, 0x10, 0xcc, 0x19, 0xbd,
};
static u32 sizeof_special3 = sizeof(sample_special3);
static u8 sample_silence[] = {
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a,
};
static u32 sizeof_silence = sizeof(sample_silence);
struct tones_samples {
u32 *len;
u8 *data;
};
static struct
tones_samples samples[] = {
{&sizeof_german_all, sample_german_all},
{&sizeof_german_old, sample_german_old},
{&sizeof_american_dialtone, sample_american_dialtone},
{&sizeof_american_ringing, sample_american_ringing},
{&sizeof_american_busy, sample_american_busy},
{&sizeof_special1, sample_special1},
{&sizeof_special2, sample_special2},
{&sizeof_special3, sample_special3},
{NULL, NULL},
};
/***********************************
* generate ulaw from alaw samples *
***********************************/
void
dsp_audio_generate_ulaw_samples(void)
{
int i, j;
i = 0;
while (samples[i].len) {
j = 0;
while (j < (*samples[i].len)) {
samples[i].data[j] =
dsp_audio_alaw_to_ulaw[samples[i].data[j]];
j++;
}
i++;
}
}
/****************************
* tone sequence definition *
****************************/
mISDN: make global symbols static or include header files The warnings fixed by including an header file for the appropriate prototype are marked with "*", for all others the corresonponding symbol has been made static. This patch fixes all such issues in mISDN. Fix this sparse warnings: drivers/isdn/hardware/mISDN/hfcmulti.c:174:5: warning: symbol 'plxsd_master' was not declared. Should it be static? drivers/isdn/hardware/mISDN/hfcmulti.c:426:1: warning: symbol 'write_fifo_regio' was not declared. Should it be static? drivers/isdn/hardware/mISDN/hfcmulti.c:447:1: warning: symbol 'write_fifo_pcimem' was not declared. Should it be static? drivers/isdn/hardware/mISDN/hfcmulti.c:469:1: warning: symbol 'read_fifo_regio' was not declared. Should it be static? drivers/isdn/hardware/mISDN/hfcmulti.c:491:1: warning: symbol 'read_fifo_pcimem' was not declared. Should it be static? drivers/isdn/hardware/mISDN/hfcmulti.c:710:1: warning: symbol 'vpm_init' was not declared. Should it be static? drivers/isdn/hardware/mISDN/hfcmulti.c:793:1: warning: symbol 'vpm_check' was not declared. Should it be static? drivers/isdn/hardware/mISDN/hfcmulti.c:816:1: warning: symbol 'vpm_echocan_on' was not declared. Should it be static? drivers/isdn/hardware/mISDN/hfcmulti.c:848:1: warning: symbol 'vpm_echocan_off' was not declared. Should it be static? * drivers/isdn/mISDN/l1oip_codec.c:224:1: warning: symbol 'l1oip_law_to_4bit' was not declared. Should it be static? * drivers/isdn/mISDN/l1oip_codec.c:261:1: warning: symbol 'l1oip_4bit_to_law' was not declared. Should it be static? * drivers/isdn/mISDN/l1oip_codec.c:281:1: warning: symbol 'l1oip_alaw_to_ulaw' was not declared. Should it be static? * drivers/isdn/mISDN/l1oip_codec.c:294:1: warning: symbol 'l1oip_ulaw_to_alaw' was not declared. Should it be static? * drivers/isdn/mISDN/l1oip_codec.c:311:1: warning: symbol 'l1oip_4bit_free' was not declared. Should it be static? * drivers/isdn/mISDN/l1oip_codec.c:322:1: warning: symbol 'l1oip_4bit_alloc' was not declared. Should it be static? drivers/isdn/mISDN/core.c:29:1: warning: symbol 'device_lock' was not declared. Should it be static? drivers/isdn/mISDN/core.c:34:1: warning: symbol 'bp_lock' was not declared. Should it be static? drivers/isdn/mISDN/core.c:196:1: warning: symbol 'mISDNInit' was not declared. Should it be static? drivers/isdn/mISDN/core.c:227:6: warning: symbol 'mISDN_cleanup' was not declared. Should it be static? drivers/isdn/mISDN/stack.c:40:1: warning: symbol 'mISDN_queue_message' was not declared. Should it be static? * drivers/isdn/mISDN/layer1.c:388:1: warning: symbol 'l1_init' was not declared. Should it be static? * drivers/isdn/mISDN/layer1.c:400:1: warning: symbol 'l1_cleanup' was not declared. Should it be static? drivers/isdn/mISDN/layer2.c:469:1: warning: symbol 'iframe_error' was not declared. Should it be static? drivers/isdn/mISDN/layer2.c:487:1: warning: symbol 'super_error' was not declared. Should it be static? drivers/isdn/mISDN/layer2.c:496:1: warning: symbol 'unnum_error' was not declared. Should it be static? drivers/isdn/mISDN/layer2.c:509:1: warning: symbol 'UI_error' was not declared. Should it be static? drivers/isdn/mISDN/layer2.c:522:1: warning: symbol 'FRMR_error' was not declared. Should it be static? drivers/isdn/mISDN/layer2.c:1069:1: warning: symbol 'enquiry_cr' was not declared. Should it be static? * drivers/isdn/mISDN/layer2.c:2196:1: warning: symbol 'Isdnl2_Init' was not declared. Should it be static? * drivers/isdn/mISDN/layer2.c:2210:1: warning: symbol 'Isdnl2_cleanup' was not declared. Should it be static? drivers/isdn/mISDN/tei.c:397:1: warning: symbol 'random_ri' was not declared. Should it be static? * drivers/isdn/mISDN/timerdev.c:277:1: warning: symbol 'mISDN_inittimer' was not declared. Should it be static? * drivers/isdn/mISDN/timerdev.c:288:6: warning: symbol 'mISDN_timer_cleanup' was not declared. Should it be static? drivers/isdn/mISDN/dsp_core.c:164:12: warning: symbol 'mISDN_dsp_revision' was not declared. Should it be static? drivers/isdn/mISDN/dsp_cmx.c:1543:5: warning: symbol 'samplecount' was not declared. Should it be static? drivers/isdn/mISDN/dsp_cmx.c:1546:5: warning: symbol 'dsp_start_jiffies' was not declared. Should it be static? drivers/isdn/mISDN/dsp_cmx.c:1547:16: warning: symbol 'dsp_start_tv' was not declared. Should it be static? drivers/isdn/mISDN/dsp_tones.c:239:3: warning: symbol 'pattern' was not declared. Should it be static? drivers/isdn/mISDN/dsp_audio.c:33:4: warning: symbol 'dsp_audio_ulaw_to_alaw' was not declared. Should it be static? Signed-off-by: Hannes Eder <hannes@hanneseder.net> Acked-by: Karsten Keil <kkeil@suse.de> Signed-off-by: David S. Miller <davem@davemloft.net>
16 years ago
static struct pattern {
int tone;
u8 *data[10];
u32 *siz[10];
u32 seq[10];
} pattern[] = {
{TONE_GERMAN_DIALTONE,
{DATA_GA, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GA, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{1900, 0, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_OLDDIALTONE,
{DATA_GO, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GO, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{1998, 0, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_AMERICAN_DIALTONE,
{DATA_DT, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_DT, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{8000, 0, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_DIALPBX,
{DATA_GA, DATA_S, DATA_GA, DATA_S, DATA_GA, DATA_S, NULL, NULL, NULL,
NULL},
{SIZE_GA, SIZE_S, SIZE_GA, SIZE_S, SIZE_GA, SIZE_S, NULL, NULL, NULL,
NULL},
{2000, 2000, 2000, 2000, 2000, 12000, 0, 0, 0, 0} },
{TONE_GERMAN_OLDDIALPBX,
{DATA_GO, DATA_S, DATA_GO, DATA_S, DATA_GO, DATA_S, NULL, NULL, NULL,
NULL},
{SIZE_GO, SIZE_S, SIZE_GO, SIZE_S, SIZE_GO, SIZE_S, NULL, NULL, NULL,
NULL},
{2000, 2000, 2000, 2000, 2000, 12000, 0, 0, 0, 0} },
{TONE_AMERICAN_DIALPBX,
{DATA_DT, DATA_S, DATA_DT, DATA_S, DATA_DT, DATA_S, NULL, NULL, NULL,
NULL},
{SIZE_DT, SIZE_S, SIZE_DT, SIZE_S, SIZE_DT, SIZE_S, NULL, NULL, NULL,
NULL},
{2000, 2000, 2000, 2000, 2000, 12000, 0, 0, 0, 0} },
{TONE_GERMAN_RINGING,
{DATA_GA, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GA, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{8000, 32000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_OLDRINGING,
{DATA_GO, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GO, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{8000, 40000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_AMERICAN_RINGING,
{DATA_RI, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_RI, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{8000, 32000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_RINGPBX,
{DATA_GA, DATA_S, DATA_GA, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GA, SIZE_S, SIZE_GA, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL},
{4000, 4000, 4000, 28000, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_OLDRINGPBX,
{DATA_GO, DATA_S, DATA_GO, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GO, SIZE_S, SIZE_GO, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL},
{4000, 4000, 4000, 28000, 0, 0, 0, 0, 0, 0} },
{TONE_AMERICAN_RINGPBX,
{DATA_RI, DATA_S, DATA_RI, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_RI, SIZE_S, SIZE_RI, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL},
{4000, 4000, 4000, 28000, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_BUSY,
{DATA_GA, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GA, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{4000, 4000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_OLDBUSY,
{DATA_GO, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GO, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{1000, 5000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_AMERICAN_BUSY,
{DATA_BU, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_BU, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{4000, 4000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_HANGUP,
{DATA_GA, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GA, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{4000, 4000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_OLDHANGUP,
{DATA_GO, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GO, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{1000, 5000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_AMERICAN_HANGUP,
{DATA_DT, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_DT, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{8000, 0, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_SPECIAL_INFO,
{DATA_S1, DATA_S2, DATA_S3, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_S1, SIZE_S2, SIZE_S3, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL},
{2666, 2666, 2666, 8002, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_GASSENBESETZT,
{DATA_GA, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GA, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{2000, 2000, 0, 0, 0, 0, 0, 0, 0, 0} },
{TONE_GERMAN_AUFSCHALTTON,
{DATA_GO, DATA_S, DATA_GO, DATA_S, NULL, NULL, NULL, NULL, NULL, NULL},
{SIZE_GO, SIZE_S, SIZE_GO, SIZE_S, NULL, NULL, NULL, NULL, NULL, NULL},
{1000, 5000, 1000, 17000, 0, 0, 0, 0, 0, 0} },
{0,
{NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0} },
};
/******************
* copy tone data *
******************/
/* an sk_buff is generated from the number of samples needed.
* the count will be changed and may begin from 0 each pattern period.
* the clue is to precalculate the pointers and legths to use only one
* memcpy per function call, or two memcpy if the tone sequence changes.
*
* pattern - the type of the pattern
* count - the sample from the beginning of the pattern (phase)
* len - the number of bytes
*
* return - the sk_buff with the sample
*
* if tones has finished (e.g. knocking tone), dsp->tones is turned off
*/
void dsp_tone_copy(struct dsp *dsp, u8 *data, int len)
{
int index, count, start, num;
struct pattern *pat;
struct dsp_tone *tone = &dsp->tone;
/* if we have no tone, we copy silence */
if (!tone->tone) {
memset(data, dsp_silence, len);
return;
}
/* process pattern */
pat = (struct pattern *)tone->pattern;
/* points to the current pattern */
index = tone->index; /* gives current sequence index */
count = tone->count; /* gives current sample */
/* copy sample */
while (len) {
/* find sample to start with */
while (42) {
/* warp arround */
if (!pat->seq[index]) {
count = 0;
index = 0;
}
/* check if we are currently playing this tone */
if (count < pat->seq[index])
break;
if (dsp_debug & DEBUG_DSP_TONE)
printk(KERN_DEBUG "%s: reaching next sequence "
"(index=%d)\n", __func__, index);
count -= pat->seq[index];
index++;
}
/* calculate start and number of samples */
start = count % (*(pat->siz[index]));
num = len;
if (num+count > pat->seq[index])
num = pat->seq[index] - count;
if (num+start > (*(pat->siz[index])))
num = (*(pat->siz[index])) - start;
/* copy memory */
memcpy(data, pat->data[index]+start, num);
/* reduce length */
data += num;
count += num;
len -= num;
}
tone->index = index;
tone->count = count;
/* return sk_buff */
return;
}
/*******************************
* send HW message to hfc card *
*******************************/
static void
dsp_tone_hw_message(struct dsp *dsp, u8 *sample, int len)
{
struct sk_buff *nskb;
/* unlocking is not required, because we don't expect a response */
nskb = _alloc_mISDN_skb(PH_CONTROL_REQ,
(len) ? HFC_SPL_LOOP_ON : HFC_SPL_LOOP_OFF, len, sample,
GFP_ATOMIC);
if (nskb) {
if (dsp->ch.peer) {
if (dsp->ch.recv(dsp->ch.peer, nskb))
dev_kfree_skb(nskb);
} else
dev_kfree_skb(nskb);
}
}
/*****************
* timer expires *
*****************/
void
dsp_tone_timeout(void *arg)
{
struct dsp *dsp = arg;
struct dsp_tone *tone = &dsp->tone;
struct pattern *pat = (struct pattern *)tone->pattern;
int index = tone->index;
if (!tone->tone)
return;
index++;
if (!pat->seq[index])
index = 0;
tone->index = index;
/* set next tone */
if (pat->data[index] == DATA_S)
dsp_tone_hw_message(dsp, NULL, 0);
else
dsp_tone_hw_message(dsp, pat->data[index], *(pat->siz[index]));
/* set timer */
init_timer(&tone->tl);
tone->tl.expires = jiffies + (pat->seq[index] * HZ) / 8000;
add_timer(&tone->tl);
}
/********************
* set/release tone *
********************/
/*
* tones are relaized by streaming or by special loop commands if supported
* by hardware. when hardware is used, the patterns will be controlled by
* timers.
*/
int
dsp_tone(struct dsp *dsp, int tone)
{
struct pattern *pat;
int i;
struct dsp_tone *tonet = &dsp->tone;
tonet->software = 0;
tonet->hardware = 0;
/* we turn off the tone */
if (!tone) {
if (dsp->features.hfc_loops && timer_pending(&tonet->tl))
del_timer(&tonet->tl);
if (dsp->features.hfc_loops)
dsp_tone_hw_message(dsp, NULL, 0);
tonet->tone = 0;
return 0;
}
pat = NULL;
i = 0;
while (pattern[i].tone) {
if (pattern[i].tone == tone) {
pat = &pattern[i];
break;
}
i++;
}
if (!pat) {
printk(KERN_WARNING "dsp: given tone 0x%x is invalid\n", tone);
return -EINVAL;
}
if (dsp_debug & DEBUG_DSP_TONE)
printk(KERN_DEBUG "%s: now starting tone %d (index=%d)\n",
__func__, tone, 0);
tonet->tone = tone;
tonet->pattern = pat;
tonet->index = 0;
tonet->count = 0;
if (dsp->features.hfc_loops) {
tonet->hardware = 1;
/* set first tone */
dsp_tone_hw_message(dsp, pat->data[0], *(pat->siz[0]));
/* set timer */
if (timer_pending(&tonet->tl))
del_timer(&tonet->tl);
init_timer(&tonet->tl);
tonet->tl.expires = jiffies + (pat->seq[0] * HZ) / 8000;
add_timer(&tonet->tl);
} else {
tonet->software = 1;
}
return 0;
}