|
|
|
#include "drmP.h"
|
|
|
|
#include "nouveau_drv.h"
|
|
|
|
#include <linux/pagemap.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
15 years ago
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
|
|
#define NV_CTXDMA_PAGE_SHIFT 12
|
|
|
|
#define NV_CTXDMA_PAGE_SIZE (1 << NV_CTXDMA_PAGE_SHIFT)
|
|
|
|
#define NV_CTXDMA_PAGE_MASK (NV_CTXDMA_PAGE_SIZE - 1)
|
|
|
|
|
|
|
|
struct nouveau_sgdma_be {
|
|
|
|
/* this has to be the first field so populate/unpopulated in
|
|
|
|
* nouve_bo.c works properly, otherwise have to move them here
|
|
|
|
*/
|
|
|
|
struct ttm_dma_tt ttm;
|
|
|
|
struct drm_device *dev;
|
|
|
|
u64 offset;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
nouveau_sgdma_destroy(struct ttm_tt *ttm)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
|
|
|
|
if (ttm) {
|
|
|
|
NV_DEBUG(nvbe->dev, "\n");
|
|
|
|
ttm_dma_tt_fini(&nvbe->ttm);
|
|
|
|
kfree(nvbe);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
nv04_sgdma_bind(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
struct drm_device *dev = nvbe->dev;
|
|
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
|
|
|
|
unsigned i, j, pte;
|
|
|
|
|
|
|
|
NV_DEBUG(dev, "pg=0x%lx\n", mem->start);
|
|
|
|
|
|
|
|
nvbe->offset = mem->start << PAGE_SHIFT;
|
|
|
|
pte = (nvbe->offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
|
|
|
|
for (i = 0; i < ttm->num_pages; i++) {
|
|
|
|
dma_addr_t dma_offset = nvbe->ttm.dma_address[i];
|
|
|
|
uint32_t offset_l = lower_32_bits(dma_offset);
|
|
|
|
|
|
|
|
for (j = 0; j < PAGE_SIZE / NV_CTXDMA_PAGE_SIZE; j++, pte++) {
|
|
|
|
nv_wo32(gpuobj, (pte * 4) + 0, offset_l | 3);
|
|
|
|
offset_l += NV_CTXDMA_PAGE_SIZE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
nv04_sgdma_unbind(struct ttm_tt *ttm)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
struct drm_device *dev = nvbe->dev;
|
|
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
|
|
|
|
unsigned i, j, pte;
|
|
|
|
|
|
|
|
NV_DEBUG(dev, "\n");
|
|
|
|
|
|
|
|
if (ttm->state != tt_bound)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
pte = (nvbe->offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
|
|
|
|
for (i = 0; i < ttm->num_pages; i++) {
|
|
|
|
for (j = 0; j < PAGE_SIZE / NV_CTXDMA_PAGE_SIZE; j++, pte++)
|
|
|
|
nv_wo32(gpuobj, (pte * 4) + 0, 0x00000000);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ttm_backend_func nv04_sgdma_backend = {
|
|
|
|
.bind = nv04_sgdma_bind,
|
|
|
|
.unbind = nv04_sgdma_unbind,
|
|
|
|
.destroy = nouveau_sgdma_destroy
|
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
nv41_sgdma_flush(struct nouveau_sgdma_be *nvbe)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = nvbe->dev;
|
|
|
|
|
|
|
|
nv_wr32(dev, 0x100810, 0x00000022);
|
|
|
|
if (!nv_wait(dev, 0x100810, 0x00000100, 0x00000100))
|
|
|
|
NV_ERROR(dev, "vm flush timeout: 0x%08x\n",
|
|
|
|
nv_rd32(dev, 0x100810));
|
|
|
|
nv_wr32(dev, 0x100810, 0x00000000);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
nv41_sgdma_bind(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
|
|
|
|
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
|
|
|
|
dma_addr_t *list = nvbe->ttm.dma_address;
|
|
|
|
u32 pte = mem->start << 2;
|
|
|
|
u32 cnt = ttm->num_pages;
|
|
|
|
|
|
|
|
nvbe->offset = mem->start << PAGE_SHIFT;
|
|
|
|
|
|
|
|
while (cnt--) {
|
|
|
|
nv_wo32(pgt, pte, (*list++ >> 7) | 1);
|
|
|
|
pte += 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
nv41_sgdma_flush(nvbe);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
nv41_sgdma_unbind(struct ttm_tt *ttm)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
|
|
|
|
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
|
|
|
|
u32 pte = (nvbe->offset >> 12) << 2;
|
|
|
|
u32 cnt = ttm->num_pages;
|
|
|
|
|
|
|
|
while (cnt--) {
|
|
|
|
nv_wo32(pgt, pte, 0x00000000);
|
|
|
|
pte += 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
nv41_sgdma_flush(nvbe);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ttm_backend_func nv41_sgdma_backend = {
|
|
|
|
.bind = nv41_sgdma_bind,
|
|
|
|
.unbind = nv41_sgdma_unbind,
|
|
|
|
.destroy = nouveau_sgdma_destroy
|
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
nv44_sgdma_flush(struct ttm_tt *ttm)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
struct drm_device *dev = nvbe->dev;
|
|
|
|
|
|
|
|
nv_wr32(dev, 0x100814, (ttm->num_pages - 1) << 12);
|
|
|
|
nv_wr32(dev, 0x100808, nvbe->offset | 0x20);
|
|
|
|
if (!nv_wait(dev, 0x100808, 0x00000001, 0x00000001))
|
|
|
|
NV_ERROR(dev, "gart flush timeout: 0x%08x\n",
|
|
|
|
nv_rd32(dev, 0x100808));
|
|
|
|
nv_wr32(dev, 0x100808, 0x00000000);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
nv44_sgdma_fill(struct nouveau_gpuobj *pgt, dma_addr_t *list, u32 base, u32 cnt)
|
|
|
|
{
|
|
|
|
struct drm_nouveau_private *dev_priv = pgt->dev->dev_private;
|
|
|
|
dma_addr_t dummy = dev_priv->gart_info.dummy.addr;
|
|
|
|
u32 pte, tmp[4];
|
|
|
|
|
|
|
|
pte = base >> 2;
|
|
|
|
base &= ~0x0000000f;
|
|
|
|
|
|
|
|
tmp[0] = nv_ro32(pgt, base + 0x0);
|
|
|
|
tmp[1] = nv_ro32(pgt, base + 0x4);
|
|
|
|
tmp[2] = nv_ro32(pgt, base + 0x8);
|
|
|
|
tmp[3] = nv_ro32(pgt, base + 0xc);
|
|
|
|
while (cnt--) {
|
|
|
|
u32 addr = list ? (*list++ >> 12) : (dummy >> 12);
|
|
|
|
switch (pte++ & 0x3) {
|
|
|
|
case 0:
|
|
|
|
tmp[0] &= ~0x07ffffff;
|
|
|
|
tmp[0] |= addr;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
tmp[0] &= ~0xf8000000;
|
|
|
|
tmp[0] |= addr << 27;
|
|
|
|
tmp[1] &= ~0x003fffff;
|
|
|
|
tmp[1] |= addr >> 5;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
tmp[1] &= ~0xffc00000;
|
|
|
|
tmp[1] |= addr << 22;
|
|
|
|
tmp[2] &= ~0x0001ffff;
|
|
|
|
tmp[2] |= addr >> 10;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
tmp[2] &= ~0xfffe0000;
|
|
|
|
tmp[2] |= addr << 17;
|
|
|
|
tmp[3] &= ~0x00000fff;
|
|
|
|
tmp[3] |= addr >> 15;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
tmp[3] |= 0x40000000;
|
|
|
|
|
|
|
|
nv_wo32(pgt, base + 0x0, tmp[0]);
|
|
|
|
nv_wo32(pgt, base + 0x4, tmp[1]);
|
|
|
|
nv_wo32(pgt, base + 0x8, tmp[2]);
|
|
|
|
nv_wo32(pgt, base + 0xc, tmp[3]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
nv44_sgdma_bind(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
|
|
|
|
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
|
|
|
|
dma_addr_t *list = nvbe->ttm.dma_address;
|
|
|
|
u32 pte = mem->start << 2, tmp[4];
|
|
|
|
u32 cnt = ttm->num_pages;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
nvbe->offset = mem->start << PAGE_SHIFT;
|
|
|
|
|
|
|
|
if (pte & 0x0000000c) {
|
|
|
|
u32 max = 4 - ((pte >> 2) & 0x3);
|
|
|
|
u32 part = (cnt > max) ? max : cnt;
|
|
|
|
nv44_sgdma_fill(pgt, list, pte, part);
|
|
|
|
pte += (part << 2);
|
|
|
|
list += part;
|
|
|
|
cnt -= part;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (cnt >= 4) {
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
tmp[i] = *list++ >> 12;
|
|
|
|
nv_wo32(pgt, pte + 0x0, tmp[0] >> 0 | tmp[1] << 27);
|
|
|
|
nv_wo32(pgt, pte + 0x4, tmp[1] >> 5 | tmp[2] << 22);
|
|
|
|
nv_wo32(pgt, pte + 0x8, tmp[2] >> 10 | tmp[3] << 17);
|
|
|
|
nv_wo32(pgt, pte + 0xc, tmp[3] >> 15 | 0x40000000);
|
|
|
|
pte += 0x10;
|
|
|
|
cnt -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cnt)
|
|
|
|
nv44_sgdma_fill(pgt, list, pte, cnt);
|
|
|
|
|
|
|
|
nv44_sgdma_flush(ttm);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
nv44_sgdma_unbind(struct ttm_tt *ttm)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
struct drm_nouveau_private *dev_priv = nvbe->dev->dev_private;
|
|
|
|
struct nouveau_gpuobj *pgt = dev_priv->gart_info.sg_ctxdma;
|
|
|
|
u32 pte = (nvbe->offset >> 12) << 2;
|
|
|
|
u32 cnt = ttm->num_pages;
|
|
|
|
|
|
|
|
if (pte & 0x0000000c) {
|
|
|
|
u32 max = 4 - ((pte >> 2) & 0x3);
|
|
|
|
u32 part = (cnt > max) ? max : cnt;
|
|
|
|
nv44_sgdma_fill(pgt, NULL, pte, part);
|
|
|
|
pte += (part << 2);
|
|
|
|
cnt -= part;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (cnt >= 4) {
|
|
|
|
nv_wo32(pgt, pte + 0x0, 0x00000000);
|
|
|
|
nv_wo32(pgt, pte + 0x4, 0x00000000);
|
|
|
|
nv_wo32(pgt, pte + 0x8, 0x00000000);
|
|
|
|
nv_wo32(pgt, pte + 0xc, 0x00000000);
|
|
|
|
pte += 0x10;
|
|
|
|
cnt -= 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cnt)
|
|
|
|
nv44_sgdma_fill(pgt, NULL, pte, cnt);
|
|
|
|
|
|
|
|
nv44_sgdma_flush(ttm);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ttm_backend_func nv44_sgdma_backend = {
|
|
|
|
.bind = nv44_sgdma_bind,
|
|
|
|
.unbind = nv44_sgdma_unbind,
|
|
|
|
.destroy = nouveau_sgdma_destroy
|
|
|
|
};
|
|
|
|
|
|
|
|
static int
|
|
|
|
nv50_sgdma_bind(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
|
|
|
|
{
|
|
|
|
struct nouveau_sgdma_be *nvbe = (struct nouveau_sgdma_be *)ttm;
|
|
|
|
struct nouveau_mem *node = mem->mm_node;
|
|
|
|
|
|
|
|
/* noop: bound in move_notify() */
|
|
|
|
node->pages = nvbe->ttm.dma_address;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
nv50_sgdma_unbind(struct ttm_tt *ttm)
|
|
|
|
{
|
|
|
|
/* noop: unbound in move_notify() */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ttm_backend_func nv50_sgdma_backend = {
|
|
|
|
.bind = nv50_sgdma_bind,
|
|
|
|
.unbind = nv50_sgdma_unbind,
|
|
|
|
.destroy = nouveau_sgdma_destroy
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ttm_tt *
|
|
|
|
nouveau_sgdma_create_ttm(struct ttm_bo_device *bdev,
|
|
|
|
unsigned long size, uint32_t page_flags,
|
|
|
|
struct page *dummy_read_page)
|
|
|
|
{
|
|
|
|
struct drm_nouveau_private *dev_priv = nouveau_bdev(bdev);
|
|
|
|
struct drm_device *dev = dev_priv->dev;
|
|
|
|
struct nouveau_sgdma_be *nvbe;
|
|
|
|
|
|
|
|
nvbe = kzalloc(sizeof(*nvbe), GFP_KERNEL);
|
|
|
|
if (!nvbe)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
nvbe->dev = dev;
|
|
|
|
nvbe->ttm.ttm.func = dev_priv->gart_info.func;
|
|
|
|
|
|
|
|
if (ttm_dma_tt_init(&nvbe->ttm, bdev, size, page_flags, dummy_read_page)) {
|
|
|
|
kfree(nvbe);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return &nvbe->ttm.ttm;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
nouveau_sgdma_init(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
struct nouveau_gpuobj *gpuobj = NULL;
|
|
|
|
u32 aper_size, align;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (dev_priv->card_type >= NV_40 && pci_is_pcie(dev->pdev))
|
|
|
|
aper_size = 512 * 1024 * 1024;
|
|
|
|
else
|
|
|
|
aper_size = 64 * 1024 * 1024;
|
|
|
|
|
|
|
|
/* Dear NVIDIA, NV44+ would like proper present bits in PTEs for
|
|
|
|
* christmas. The cards before it have them, the cards after
|
|
|
|
* it have them, why is NV44 so unloved?
|
|
|
|
*/
|
|
|
|
dev_priv->gart_info.dummy.page = alloc_page(GFP_DMA32 | GFP_KERNEL);
|
|
|
|
if (!dev_priv->gart_info.dummy.page)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
dev_priv->gart_info.dummy.addr =
|
|
|
|
pci_map_page(dev->pdev, dev_priv->gart_info.dummy.page,
|
|
|
|
0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
|
|
if (pci_dma_mapping_error(dev->pdev, dev_priv->gart_info.dummy.addr)) {
|
|
|
|
NV_ERROR(dev, "error mapping dummy page\n");
|
|
|
|
__free_page(dev_priv->gart_info.dummy.page);
|
|
|
|
dev_priv->gart_info.dummy.page = NULL;
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dev_priv->card_type >= NV_50) {
|
|
|
|
dev_priv->gart_info.aper_base = 0;
|
|
|
|
dev_priv->gart_info.aper_size = aper_size;
|
|
|
|
dev_priv->gart_info.type = NOUVEAU_GART_HW;
|
|
|
|
dev_priv->gart_info.func = &nv50_sgdma_backend;
|
|
|
|
} else
|
|
|
|
if (0 && pci_is_pcie(dev->pdev) &&
|
|
|
|
dev_priv->chipset > 0x40 && dev_priv->chipset != 0x45) {
|
|
|
|
if (nv44_graph_class(dev)) {
|
|
|
|
dev_priv->gart_info.func = &nv44_sgdma_backend;
|
|
|
|
align = 512 * 1024;
|
|
|
|
} else {
|
|
|
|
dev_priv->gart_info.func = &nv41_sgdma_backend;
|
|
|
|
align = 16;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = nouveau_gpuobj_new(dev, NULL, aper_size / 1024, align,
|
|
|
|
NVOBJ_FLAG_ZERO_ALLOC |
|
|
|
|
NVOBJ_FLAG_ZERO_FREE, &gpuobj);
|
|
|
|
if (ret) {
|
|
|
|
NV_ERROR(dev, "Error creating sgdma object: %d\n", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_priv->gart_info.sg_ctxdma = gpuobj;
|
|
|
|
dev_priv->gart_info.aper_base = 0;
|
|
|
|
dev_priv->gart_info.aper_size = aper_size;
|
|
|
|
dev_priv->gart_info.type = NOUVEAU_GART_HW;
|
|
|
|
} else {
|
|
|
|
ret = nouveau_gpuobj_new(dev, NULL, (aper_size / 1024) + 8, 16,
|
|
|
|
NVOBJ_FLAG_ZERO_ALLOC |
|
|
|
|
NVOBJ_FLAG_ZERO_FREE, &gpuobj);
|
|
|
|
if (ret) {
|
|
|
|
NV_ERROR(dev, "Error creating sgdma object: %d\n", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
nv_wo32(gpuobj, 0, NV_CLASS_DMA_IN_MEMORY |
|
|
|
|
(1 << 12) /* PT present */ |
|
|
|
|
(0 << 13) /* PT *not* linear */ |
|
|
|
|
(0 << 14) /* RW */ |
|
|
|
|
(2 << 16) /* PCI */);
|
|
|
|
nv_wo32(gpuobj, 4, aper_size - 1);
|
|
|
|
|
|
|
|
dev_priv->gart_info.sg_ctxdma = gpuobj;
|
|
|
|
dev_priv->gart_info.aper_base = 0;
|
|
|
|
dev_priv->gart_info.aper_size = aper_size;
|
|
|
|
dev_priv->gart_info.type = NOUVEAU_GART_PDMA;
|
|
|
|
dev_priv->gart_info.func = &nv04_sgdma_backend;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
nouveau_sgdma_takedown(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
|
|
|
|
nouveau_gpuobj_ref(NULL, &dev_priv->gart_info.sg_ctxdma);
|
|
|
|
|
|
|
|
if (dev_priv->gart_info.dummy.page) {
|
|
|
|
pci_unmap_page(dev->pdev, dev_priv->gart_info.dummy.addr,
|
|
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
|
|
__free_page(dev_priv->gart_info.dummy.page);
|
|
|
|
dev_priv->gart_info.dummy.page = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t
|
|
|
|
nouveau_sgdma_get_physical(struct drm_device *dev, uint32_t offset)
|
|
|
|
{
|
|
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
struct nouveau_gpuobj *gpuobj = dev_priv->gart_info.sg_ctxdma;
|
|
|
|
int pte = (offset >> NV_CTXDMA_PAGE_SHIFT) + 2;
|
|
|
|
|
|
|
|
BUG_ON(dev_priv->card_type >= NV_50);
|
|
|
|
|
|
|
|
return (nv_ro32(gpuobj, 4 * pte) & ~NV_CTXDMA_PAGE_MASK) |
|
|
|
|
(offset & NV_CTXDMA_PAGE_MASK);
|
|
|
|
}
|