You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

865 lines
25 KiB

/*
* Extensible Firmware Interface
*
* Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
*
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 1999-2003 Hewlett-Packard Co.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
*
* All EFI Runtime Services are not implemented yet as EFI only
* supports physical mode addressing on SoftSDV. This is to be fixed
* in a future version. --drummond 1999-07-20
*
* Implemented EFI runtime services and virtual mode calls. --davidm
*
* Goutham Rao: <goutham.rao@intel.com>
* Skip non-WB memory and ignore empty memory ranges.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/efi.h>
#include <asm/io.h>
#include <asm/kregs.h>
#include <asm/meminit.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/mca.h>
#define EFI_DEBUG 0
extern efi_status_t efi_call_phys (void *, ...);
struct efi efi;
EXPORT_SYMBOL(efi);
static efi_runtime_services_t *runtime;
static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
#define efi_call_virt(f, args...) (*(f))(args)
#define STUB_GET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_cap_t *atc = NULL; \
efi_status_t ret; \
\
if (tc) \
atc = adjust_arg(tc); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_time (efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_t *atm = NULL; \
efi_status_t ret; \
\
if (tm) \
atm = adjust_arg(tm); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
enabled, atm); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
unsigned long *data_size, void *data) \
{ \
struct ia64_fpreg fr[6]; \
u32 *aattr = NULL; \
efi_status_t ret; \
\
if (attr) \
aattr = adjust_arg(attr); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
adjust_arg(name), adjust_arg(vendor), aattr, \
adjust_arg(data_size), adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
unsigned long data_size, void *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
adjust_arg(name), adjust_arg(vendor), attr, data_size, \
adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_high_mono_count (u32 *count) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
__va(runtime->get_next_high_mono_count), adjust_arg(count)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
static void \
prefix##_reset_system (int reset_type, efi_status_t status, \
unsigned long data_size, efi_char16_t *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_char16_t *adata = NULL; \
\
if (data) \
adata = adjust_arg(data); \
\
ia64_save_scratch_fpregs(fr); \
efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
reset_type, status, data_size, adata); \
/* should not return, but just in case... */ \
ia64_load_scratch_fpregs(fr); \
}
#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
STUB_GET_TIME(phys, phys_ptr)
STUB_SET_TIME(phys, phys_ptr)
STUB_GET_WAKEUP_TIME(phys, phys_ptr)
STUB_SET_WAKEUP_TIME(phys, phys_ptr)
STUB_GET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
STUB_SET_VARIABLE(phys, phys_ptr)
STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
STUB_RESET_SYSTEM(phys, phys_ptr)
#define id(arg) arg
STUB_GET_TIME(virt, id)
STUB_SET_TIME(virt, id)
STUB_GET_WAKEUP_TIME(virt, id)
STUB_SET_WAKEUP_TIME(virt, id)
STUB_GET_VARIABLE(virt, id)
STUB_GET_NEXT_VARIABLE(virt, id)
STUB_SET_VARIABLE(virt, id)
STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
STUB_RESET_SYSTEM(virt, id)
void
efi_gettimeofday (struct timespec *ts)
{
efi_time_t tm;
memset(ts, 0, sizeof(ts));
if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
return;
ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
ts->tv_nsec = tm.nanosecond;
}
static int
is_available_memory (efi_memory_desc_t *md)
{
if (!(md->attribute & EFI_MEMORY_WB))
return 0;
switch (md->type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
return 1;
}
return 0;
}
/*
* Trim descriptor MD so its starts at address START_ADDR. If the descriptor covers
* memory that is normally available to the kernel, issue a warning that some memory
* is being ignored.
*/
static void
trim_bottom (efi_memory_desc_t *md, u64 start_addr)
{
u64 num_skipped_pages;
if (md->phys_addr >= start_addr || !md->num_pages)
return;
num_skipped_pages = (start_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
if (num_skipped_pages > md->num_pages)
num_skipped_pages = md->num_pages;
if (is_available_memory(md))
printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
"at 0x%lx\n", __FUNCTION__,
(num_skipped_pages << EFI_PAGE_SHIFT) >> 10,
md->phys_addr, start_addr - IA64_GRANULE_SIZE);
/*
* NOTE: Don't set md->phys_addr to START_ADDR because that could cause the memory
* descriptor list to become unsorted. In such a case, md->num_pages will be
* zero, so the Right Thing will happen.
*/
md->phys_addr += num_skipped_pages << EFI_PAGE_SHIFT;
md->num_pages -= num_skipped_pages;
}
static void
trim_top (efi_memory_desc_t *md, u64 end_addr)
{
u64 num_dropped_pages, md_end_addr;
md_end_addr = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
if (md_end_addr <= end_addr || !md->num_pages)
return;
num_dropped_pages = (md_end_addr - end_addr) >> EFI_PAGE_SHIFT;
if (num_dropped_pages > md->num_pages)
num_dropped_pages = md->num_pages;
if (is_available_memory(md))
printk(KERN_NOTICE "efi.%s: ignoring %luKB of memory at 0x%lx due to granule hole "
"at 0x%lx\n", __FUNCTION__,
(num_dropped_pages << EFI_PAGE_SHIFT) >> 10,
md->phys_addr, end_addr);
md->num_pages -= num_dropped_pages;
}
/*
* Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
* has memory that is available for OS use.
*/
void
efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
{
int prev_valid = 0;
struct range {
u64 start;
u64 end;
} prev, curr;
void *efi_map_start, *efi_map_end, *p, *q;
efi_memory_desc_t *md, *check_md;
u64 efi_desc_size, start, end, granule_addr, last_granule_addr, first_non_wb_addr = 0;
unsigned long total_mem = 0;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
/* skip over non-WB memory descriptors; that's all we're interested in... */
if (!(md->attribute & EFI_MEMORY_WB))
continue;
/*
* granule_addr is the base of md's first granule.
* [granule_addr - first_non_wb_addr) is guaranteed to
* be contiguous WB memory.
*/
granule_addr = GRANULEROUNDDOWN(md->phys_addr);
first_non_wb_addr = max(first_non_wb_addr, granule_addr);
if (first_non_wb_addr < md->phys_addr) {
trim_bottom(md, granule_addr + IA64_GRANULE_SIZE);
granule_addr = GRANULEROUNDDOWN(md->phys_addr);
first_non_wb_addr = max(first_non_wb_addr, granule_addr);
}
for (q = p; q < efi_map_end; q += efi_desc_size) {
check_md = q;
if ((check_md->attribute & EFI_MEMORY_WB) &&
(check_md->phys_addr == first_non_wb_addr))
first_non_wb_addr += check_md->num_pages << EFI_PAGE_SHIFT;
else
break; /* non-WB or hole */
}
last_granule_addr = GRANULEROUNDDOWN(first_non_wb_addr);
if (last_granule_addr < md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT))
trim_top(md, last_granule_addr);
if (is_available_memory(md)) {
if (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) >= max_addr) {
if (md->phys_addr >= max_addr)
continue;
md->num_pages = (max_addr - md->phys_addr) >> EFI_PAGE_SHIFT;
first_non_wb_addr = max_addr;
}
if (total_mem >= mem_limit)
continue;
if (total_mem + (md->num_pages << EFI_PAGE_SHIFT) > mem_limit) {
unsigned long limit_addr = md->phys_addr;
limit_addr += mem_limit - total_mem;
limit_addr = GRANULEROUNDDOWN(limit_addr);
if (md->phys_addr > limit_addr)
continue;
md->num_pages = (limit_addr - md->phys_addr) >>
EFI_PAGE_SHIFT;
first_non_wb_addr = max_addr = md->phys_addr +
(md->num_pages << EFI_PAGE_SHIFT);
}
total_mem += (md->num_pages << EFI_PAGE_SHIFT);
if (md->num_pages == 0)
continue;
curr.start = PAGE_OFFSET + md->phys_addr;
curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
if (!prev_valid) {
prev = curr;
prev_valid = 1;
} else {
if (curr.start < prev.start)
printk(KERN_ERR "Oops: EFI memory table not ordered!\n");
if (prev.end == curr.start) {
/* merge two consecutive memory ranges */
prev.end = curr.end;
} else {
start = PAGE_ALIGN(prev.start);
end = prev.end & PAGE_MASK;
if ((end > start) && (*callback)(start, end, arg) < 0)
return;
prev = curr;
}
}
}
}
if (prev_valid) {
start = PAGE_ALIGN(prev.start);
end = prev.end & PAGE_MASK;
if (end > start)
(*callback)(start, end, arg);
}
}
[PATCH] ia64 uncached alloc This patch contains the ia64 uncached page allocator and the generic allocator (genalloc). The uncached allocator was formerly part of the SN2 mspec driver but there are several other users of it so it has been split off from the driver. The generic allocator can be used by device driver to manage special memory etc. The generic allocator is based on the allocator from the sym53c8xx_2 driver. Various users on ia64 needs uncached memory. The SGI SN architecture requires it for inter-partition communication between partitions within a large NUMA cluster. The specific user for this is the XPC code. Another application is large MPI style applications which use it for synchronization, on SN this can be done using special 'fetchop' operations but it also benefits non SN hardware which may use regular uncached memory for this purpose. Performance of doing this through uncached vs cached memory is pretty substantial. This is handled by the mspec driver which I will push out in a seperate patch. Rather than creating a specific allocator for just uncached memory I came up with genalloc which is a generic purpose allocator that can be used by device drivers and other subsystems as they please. For instance to handle onboard device memory. It was derived from the sym53c7xx_2 driver's allocator which is also an example of a potential user (I am refraining from modifying sym2 right now as it seems to have been under fairly heavy development recently). On ia64 memory has various properties within a granule, ie. it isn't safe to access memory as uncached within the same granule as currently has memory accessed in cached mode. The regular system therefore doesn't utilize memory in the lower granules which is mixed in with device PAL code etc. The uncached driver walks the EFI memmap and pulls out the spill uncached pages and sticks them into the uncached pool. Only after these chunks have been utilized, will it start converting regular cached memory into uncached memory. Hence the reason for the EFI related code additions. Signed-off-by: Jes Sorensen <jes@wildopensource.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
20 years ago
/*
* Walk the EFI memory map to pull out leftover pages in the lower
* memory regions which do not end up in the regular memory map and
* stick them into the uncached allocator
*
* The regular walk function is significantly more complex than the
* uncached walk which means it really doesn't make sense to try and
* marge the two.
*/
void __init
efi_memmap_walk_uc (efi_freemem_callback_t callback)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size, start, end;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->attribute == EFI_MEMORY_UC) {
start = PAGE_ALIGN(md->phys_addr);
end = PAGE_ALIGN((md->phys_addr+(md->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK);
if ((*callback)(start, end, NULL) < 0)
return;
}
}
}
/*
* Look for the PAL_CODE region reported by EFI and maps it using an
* ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
* Abstraction Layer chapter 11 in ADAG
*/
void *
efi_get_pal_addr (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
int pal_code_count = 0;
u64 vaddr, mask;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->type != EFI_PAL_CODE)
continue;
if (++pal_code_count > 1) {
printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
md->phys_addr);
continue;
}
/*
* The only ITLB entry in region 7 that is used is the one installed by
* __start(). That entry covers a 64MB range.
*/
mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
vaddr = PAGE_OFFSET + md->phys_addr;
/*
* We must check that the PAL mapping won't overlap with the kernel
* mapping.
*
* PAL code is guaranteed to be aligned on a power of 2 between 4k and
* 256KB and that only one ITR is needed to map it. This implies that the
* PAL code is always aligned on its size, i.e., the closest matching page
* size supported by the TLB. Therefore PAL code is guaranteed never to
* cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
* now the following test is enough to determine whether or not we need a
* dedicated ITR for the PAL code.
*/
if ((vaddr & mask) == (KERNEL_START & mask)) {
printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
__FUNCTION__);
continue;
}
if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
panic("Woah! PAL code size bigger than a granule!");
#if EFI_DEBUG
mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
smp_processor_id(), md->phys_addr,
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
#endif
return __va(md->phys_addr);
}
printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
__FUNCTION__);
return NULL;
}
void
efi_map_pal_code (void)
{
void *pal_vaddr = efi_get_pal_addr ();
u64 psr;
if (!pal_vaddr)
return;
/*
* Cannot write to CRx with PSR.ic=1
*/
psr = ia64_clear_ic();
ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
IA64_GRANULE_SHIFT);
ia64_set_psr(psr); /* restore psr */
ia64_srlz_i();
}
void __init
efi_init (void)
{
void *efi_map_start, *efi_map_end;
efi_config_table_t *config_tables;
efi_char16_t *c16;
u64 efi_desc_size;
char *cp, *end, vendor[100] = "unknown";
extern char saved_command_line[];
int i;
/* it's too early to be able to use the standard kernel command line support... */
for (cp = saved_command_line; *cp; ) {
if (memcmp(cp, "mem=", 4) == 0) {
cp += 4;
mem_limit = memparse(cp, &end);
if (end != cp)
break;
cp = end;
} else if (memcmp(cp, "max_addr=", 9) == 0) {
cp += 9;
max_addr = GRANULEROUNDDOWN(memparse(cp, &end));
if (end != cp)
break;
cp = end;
} else {
while (*cp != ' ' && *cp)
++cp;
while (*cp == ' ')
++cp;
}
}
if (max_addr != ~0UL)
printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
efi.systab = __va(ia64_boot_param->efi_systab);
/*
* Verify the EFI Table
*/
if (efi.systab == NULL)
panic("Woah! Can't find EFI system table.\n");
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
panic("Woah! EFI system table signature incorrect\n");
if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
"got %d.%02d, expected %d.%02d\n",
efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
config_tables = __va(efi.systab->tables);
/* Show what we know for posterity */
c16 = __va(efi.systab->fw_vendor);
if (c16) {
for (i = 0;i < (int) sizeof(vendor) && *c16; ++i)
vendor[i] = *c16++;
vendor[i] = '\0';
}
printk(KERN_INFO "EFI v%u.%.02u by %s:",
efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
for (i = 0; i < (int) efi.systab->nr_tables; i++) {
if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
efi.mps = __va(config_tables[i].table);
printk(" MPS=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
efi.acpi20 = __va(config_tables[i].table);
printk(" ACPI 2.0=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
efi.acpi = __va(config_tables[i].table);
printk(" ACPI=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
efi.smbios = __va(config_tables[i].table);
printk(" SMBIOS=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
efi.sal_systab = __va(config_tables[i].table);
printk(" SALsystab=0x%lx", config_tables[i].table);
} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
efi.hcdp = __va(config_tables[i].table);
printk(" HCDP=0x%lx", config_tables[i].table);
}
}
printk("\n");
runtime = __va(efi.systab->runtime);
efi.get_time = phys_get_time;
efi.set_time = phys_set_time;
efi.get_wakeup_time = phys_get_wakeup_time;
efi.set_wakeup_time = phys_set_wakeup_time;
efi.get_variable = phys_get_variable;
efi.get_next_variable = phys_get_next_variable;
efi.set_variable = phys_set_variable;
efi.get_next_high_mono_count = phys_get_next_high_mono_count;
efi.reset_system = phys_reset_system;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
#if EFI_DEBUG
/* print EFI memory map: */
{
efi_memory_desc_t *md;
void *p;
for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
md = p;
printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
i, md->type, md->attribute, md->phys_addr,
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
md->num_pages >> (20 - EFI_PAGE_SHIFT));
}
}
#endif
efi_map_pal_code();
efi_enter_virtual_mode();
}
void
efi_enter_virtual_mode (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
efi_status_t status;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->attribute & EFI_MEMORY_RUNTIME) {
/*
* Some descriptors have multiple bits set, so the order of
* the tests is relevant.
*/
if (md->attribute & EFI_MEMORY_WB) {
md->virt_addr = (u64) __va(md->phys_addr);
} else if (md->attribute & EFI_MEMORY_UC) {
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
} else if (md->attribute & EFI_MEMORY_WC) {
#if 0
md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
| _PAGE_D
| _PAGE_MA_WC
| _PAGE_PL_0
| _PAGE_AR_RW));
#else
printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
} else if (md->attribute & EFI_MEMORY_WT) {
#if 0
md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
| _PAGE_D | _PAGE_MA_WT
| _PAGE_PL_0
| _PAGE_AR_RW));
#else
printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
}
}
}
status = efi_call_phys(__va(runtime->set_virtual_address_map),
ia64_boot_param->efi_memmap_size,
efi_desc_size, ia64_boot_param->efi_memdesc_version,
ia64_boot_param->efi_memmap);
if (status != EFI_SUCCESS) {
printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
"(status=%lu)\n", status);
return;
}
/*
* Now that EFI is in virtual mode, we call the EFI functions more efficiently:
*/
efi.get_time = virt_get_time;
efi.set_time = virt_set_time;
efi.get_wakeup_time = virt_get_wakeup_time;
efi.set_wakeup_time = virt_set_wakeup_time;
efi.get_variable = virt_get_variable;
efi.get_next_variable = virt_get_next_variable;
efi.set_variable = virt_set_variable;
efi.get_next_high_mono_count = virt_get_next_high_mono_count;
efi.reset_system = virt_reset_system;
}
/*
* Walk the EFI memory map looking for the I/O port range. There can only be one entry of
* this type, other I/O port ranges should be described via ACPI.
*/
u64
efi_get_iobase (void)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
if (md->attribute & EFI_MEMORY_UC)
return md->phys_addr;
}
}
return 0;
}
u32
efi_mem_type (unsigned long phys_addr)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
return md->type;
}
return 0;
}
u64
efi_mem_attributes (unsigned long phys_addr)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
return md->attribute;
}
return 0;
}
EXPORT_SYMBOL(efi_mem_attributes);
int
valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
{
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) {
if (!(md->attribute & EFI_MEMORY_WB))
return 0;
if (*size > md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr)
*size = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - phys_addr;
return 1;
}
}
return 0;
}
int __init
efi_uart_console_only(void)
{
efi_status_t status;
char *s, name[] = "ConOut";
efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
efi_char16_t *utf16, name_utf16[32];
unsigned char data[1024];
unsigned long size = sizeof(data);
struct efi_generic_dev_path *hdr, *end_addr;
int uart = 0;
/* Convert to UTF-16 */
utf16 = name_utf16;
s = name;
while (*s)
*utf16++ = *s++ & 0x7f;
*utf16 = 0;
status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
if (status != EFI_SUCCESS) {
printk(KERN_ERR "No EFI %s variable?\n", name);
return 0;
}
hdr = (struct efi_generic_dev_path *) data;
end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
while (hdr < end_addr) {
if (hdr->type == EFI_DEV_MSG &&
hdr->sub_type == EFI_DEV_MSG_UART)
uart = 1;
else if (hdr->type == EFI_DEV_END_PATH ||
hdr->type == EFI_DEV_END_PATH2) {
if (!uart)
return 0;
if (hdr->sub_type == EFI_DEV_END_ENTIRE)
return 1;
uart = 0;
}
hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
}
printk(KERN_ERR "Malformed %s value\n", name);
return 0;
}