You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
kernel_samsung_sm7125/arch/x86/crypto/poly1305-avx2-x86_64.S

395 lines
9.6 KiB

crypto: poly1305 - Add a four block AVX2 variant for x86_64 Extends the x86_64 Poly1305 authenticator by a function processing four consecutive Poly1305 blocks in parallel using AVX2 instructions. For large messages, throughput increases by ~15-45% compared to two block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
/*
* Poly1305 authenticator algorithm, RFC7539, x64 AVX2 functions
*
* Copyright (C) 2015 Martin Willi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/linkage.h>
crypto: x86 - make constants readonly, allow linker to merge them A lot of asm-optimized routines in arch/x86/crypto/ keep its constants in .data. This is wrong, they should be on .rodata. Mnay of these constants are the same in different modules. For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F exists in at least half a dozen places. There is a way to let linker merge them and use just one copy. The rules are as follows: mergeable objects of different sizes should not share sections. You can't put them all in one .rodata section, they will lose "mergeability". GCC puts its mergeable constants in ".rodata.cstSIZE" sections, or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used. This patch does the same: .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 It is important that all data in such section consists of 16-byte elements, not larger ones, and there are no implicit use of one element from another. When this is not the case, use non-mergeable section: .section .rodata[.VAR_NAME], "a", @progbits This reduces .data by ~15 kbytes: text data bss dec hex filename 11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o 11112095 2690672 2630712 16433479 fac147 vmlinux.o Merged objects are visible in System.map: ffffffff81a28810 r POLY ffffffff81a28810 r POLY ffffffff81a28820 r TWOONE ffffffff81a28820 r TWOONE ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of ffffffff81a28830 r SHUF_MASK <------------- the name difference ffffffff81a28830 r SHUF_MASK ffffffff81a28830 r SHUF_MASK .. ffffffff81a28d00 r K512 <- merged three identical 640-byte tables ffffffff81a28d00 r K512 ffffffff81a28d00 r K512 Use of object names in section name suffixes is not strictly necessary, but might help if someday link stage will use garbage collection to eliminate unused sections (ld --gc-sections). Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Josh Poimboeuf <jpoimboe@redhat.com> CC: Xiaodong Liu <xiaodong.liu@intel.com> CC: Megha Dey <megha.dey@intel.com> CC: linux-crypto@vger.kernel.org CC: x86@kernel.org CC: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
8 years ago
.section .rodata.cst32.ANMASK, "aM", @progbits, 32
crypto: poly1305 - Add a four block AVX2 variant for x86_64 Extends the x86_64 Poly1305 authenticator by a function processing four consecutive Poly1305 blocks in parallel using AVX2 instructions. For large messages, throughput increases by ~15-45% compared to two block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
.align 32
ANMASK: .octa 0x0000000003ffffff0000000003ffffff
.octa 0x0000000003ffffff0000000003ffffff
crypto: x86 - make constants readonly, allow linker to merge them A lot of asm-optimized routines in arch/x86/crypto/ keep its constants in .data. This is wrong, they should be on .rodata. Mnay of these constants are the same in different modules. For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F exists in at least half a dozen places. There is a way to let linker merge them and use just one copy. The rules are as follows: mergeable objects of different sizes should not share sections. You can't put them all in one .rodata section, they will lose "mergeability". GCC puts its mergeable constants in ".rodata.cstSIZE" sections, or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used. This patch does the same: .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 It is important that all data in such section consists of 16-byte elements, not larger ones, and there are no implicit use of one element from another. When this is not the case, use non-mergeable section: .section .rodata[.VAR_NAME], "a", @progbits This reduces .data by ~15 kbytes: text data bss dec hex filename 11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o 11112095 2690672 2630712 16433479 fac147 vmlinux.o Merged objects are visible in System.map: ffffffff81a28810 r POLY ffffffff81a28810 r POLY ffffffff81a28820 r TWOONE ffffffff81a28820 r TWOONE ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of ffffffff81a28830 r SHUF_MASK <------------- the name difference ffffffff81a28830 r SHUF_MASK ffffffff81a28830 r SHUF_MASK .. ffffffff81a28d00 r K512 <- merged three identical 640-byte tables ffffffff81a28d00 r K512 ffffffff81a28d00 r K512 Use of object names in section name suffixes is not strictly necessary, but might help if someday link stage will use garbage collection to eliminate unused sections (ld --gc-sections). Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Josh Poimboeuf <jpoimboe@redhat.com> CC: Xiaodong Liu <xiaodong.liu@intel.com> CC: Megha Dey <megha.dey@intel.com> CC: linux-crypto@vger.kernel.org CC: x86@kernel.org CC: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
8 years ago
.section .rodata.cst32.ORMASK, "aM", @progbits, 32
.align 32
crypto: poly1305 - Add a four block AVX2 variant for x86_64 Extends the x86_64 Poly1305 authenticator by a function processing four consecutive Poly1305 blocks in parallel using AVX2 instructions. For large messages, throughput increases by ~15-45% compared to two block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
ORMASK: .octa 0x00000000010000000000000001000000
.octa 0x00000000010000000000000001000000
.text
#define h0 0x00(%rdi)
#define h1 0x04(%rdi)
#define h2 0x08(%rdi)
#define h3 0x0c(%rdi)
#define h4 0x10(%rdi)
#define r0 0x00(%rdx)
#define r1 0x04(%rdx)
#define r2 0x08(%rdx)
#define r3 0x0c(%rdx)
#define r4 0x10(%rdx)
#define u0 0x00(%r8)
#define u1 0x04(%r8)
#define u2 0x08(%r8)
#define u3 0x0c(%r8)
#define u4 0x10(%r8)
#define w0 0x14(%r8)
#define w1 0x18(%r8)
#define w2 0x1c(%r8)
#define w3 0x20(%r8)
#define w4 0x24(%r8)
#define y0 0x28(%r8)
#define y1 0x2c(%r8)
#define y2 0x30(%r8)
#define y3 0x34(%r8)
#define y4 0x38(%r8)
#define m %rsi
#define hc0 %ymm0
#define hc1 %ymm1
#define hc2 %ymm2
#define hc3 %ymm3
#define hc4 %ymm4
#define hc0x %xmm0
#define hc1x %xmm1
#define hc2x %xmm2
#define hc3x %xmm3
#define hc4x %xmm4
#define t1 %ymm5
#define t2 %ymm6
#define t1x %xmm5
#define t2x %xmm6
#define ruwy0 %ymm7
#define ruwy1 %ymm8
#define ruwy2 %ymm9
#define ruwy3 %ymm10
#define ruwy4 %ymm11
#define ruwy0x %xmm7
#define ruwy1x %xmm8
#define ruwy2x %xmm9
#define ruwy3x %xmm10
#define ruwy4x %xmm11
#define svxz1 %ymm12
#define svxz2 %ymm13
#define svxz3 %ymm14
#define svxz4 %ymm15
#define d0 %r9
#define d1 %r10
#define d2 %r11
#define d3 %r12
#define d4 %r13
ENTRY(poly1305_4block_avx2)
# %rdi: Accumulator h[5]
# %rsi: 64 byte input block m
# %rdx: Poly1305 key r[5]
# %rcx: Quadblock count
# %r8: Poly1305 derived key r^2 u[5], r^3 w[5], r^4 y[5],
# This four-block variant uses loop unrolled block processing. It
# requires 4 Poly1305 keys: r, r^2, r^3 and r^4:
# h = (h + m) * r => h = (h + m1) * r^4 + m2 * r^3 + m3 * r^2 + m4 * r
vzeroupper
push %rbx
push %r12
push %r13
# combine r0,u0,w0,y0
vmovd y0,ruwy0x
vmovd w0,t1x
vpunpcklqdq t1,ruwy0,ruwy0
vmovd u0,t1x
vmovd r0,t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,ruwy0,ruwy0
# combine r1,u1,w1,y1 and s1=r1*5,v1=u1*5,x1=w1*5,z1=y1*5
vmovd y1,ruwy1x
vmovd w1,t1x
vpunpcklqdq t1,ruwy1,ruwy1
vmovd u1,t1x
vmovd r1,t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,ruwy1,ruwy1
vpslld $2,ruwy1,svxz1
vpaddd ruwy1,svxz1,svxz1
# combine r2,u2,w2,y2 and s2=r2*5,v2=u2*5,x2=w2*5,z2=y2*5
vmovd y2,ruwy2x
vmovd w2,t1x
vpunpcklqdq t1,ruwy2,ruwy2
vmovd u2,t1x
vmovd r2,t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,ruwy2,ruwy2
vpslld $2,ruwy2,svxz2
vpaddd ruwy2,svxz2,svxz2
# combine r3,u3,w3,y3 and s3=r3*5,v3=u3*5,x3=w3*5,z3=y3*5
vmovd y3,ruwy3x
vmovd w3,t1x
vpunpcklqdq t1,ruwy3,ruwy3
vmovd u3,t1x
vmovd r3,t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,ruwy3,ruwy3
vpslld $2,ruwy3,svxz3
vpaddd ruwy3,svxz3,svxz3
# combine r4,u4,w4,y4 and s4=r4*5,v4=u4*5,x4=w4*5,z4=y4*5
vmovd y4,ruwy4x
vmovd w4,t1x
vpunpcklqdq t1,ruwy4,ruwy4
vmovd u4,t1x
vmovd r4,t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,ruwy4,ruwy4
vpslld $2,ruwy4,svxz4
vpaddd ruwy4,svxz4,svxz4
.Ldoblock4:
# hc0 = [m[48-51] & 0x3ffffff, m[32-35] & 0x3ffffff,
# m[16-19] & 0x3ffffff, m[ 0- 3] & 0x3ffffff + h0]
vmovd 0x00(m),hc0x
vmovd 0x10(m),t1x
vpunpcklqdq t1,hc0,hc0
vmovd 0x20(m),t1x
vmovd 0x30(m),t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,hc0,hc0
vpand ANMASK(%rip),hc0,hc0
vmovd h0,t1x
vpaddd t1,hc0,hc0
# hc1 = [(m[51-54] >> 2) & 0x3ffffff, (m[35-38] >> 2) & 0x3ffffff,
# (m[19-22] >> 2) & 0x3ffffff, (m[ 3- 6] >> 2) & 0x3ffffff + h1]
vmovd 0x03(m),hc1x
vmovd 0x13(m),t1x
vpunpcklqdq t1,hc1,hc1
vmovd 0x23(m),t1x
vmovd 0x33(m),t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,hc1,hc1
vpsrld $2,hc1,hc1
vpand ANMASK(%rip),hc1,hc1
vmovd h1,t1x
vpaddd t1,hc1,hc1
# hc2 = [(m[54-57] >> 4) & 0x3ffffff, (m[38-41] >> 4) & 0x3ffffff,
# (m[22-25] >> 4) & 0x3ffffff, (m[ 6- 9] >> 4) & 0x3ffffff + h2]
vmovd 0x06(m),hc2x
vmovd 0x16(m),t1x
vpunpcklqdq t1,hc2,hc2
vmovd 0x26(m),t1x
vmovd 0x36(m),t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,hc2,hc2
vpsrld $4,hc2,hc2
vpand ANMASK(%rip),hc2,hc2
vmovd h2,t1x
vpaddd t1,hc2,hc2
# hc3 = [(m[57-60] >> 6) & 0x3ffffff, (m[41-44] >> 6) & 0x3ffffff,
# (m[25-28] >> 6) & 0x3ffffff, (m[ 9-12] >> 6) & 0x3ffffff + h3]
vmovd 0x09(m),hc3x
vmovd 0x19(m),t1x
vpunpcklqdq t1,hc3,hc3
vmovd 0x29(m),t1x
vmovd 0x39(m),t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,hc3,hc3
vpsrld $6,hc3,hc3
vpand ANMASK(%rip),hc3,hc3
vmovd h3,t1x
vpaddd t1,hc3,hc3
# hc4 = [(m[60-63] >> 8) | (1<<24), (m[44-47] >> 8) | (1<<24),
# (m[28-31] >> 8) | (1<<24), (m[12-15] >> 8) | (1<<24) + h4]
vmovd 0x0c(m),hc4x
vmovd 0x1c(m),t1x
vpunpcklqdq t1,hc4,hc4
vmovd 0x2c(m),t1x
vmovd 0x3c(m),t2x
vpunpcklqdq t2,t1,t1
vperm2i128 $0x20,t1,hc4,hc4
vpsrld $8,hc4,hc4
vpor ORMASK(%rip),hc4,hc4
vmovd h4,t1x
vpaddd t1,hc4,hc4
# t1 = [ hc0[3] * r0, hc0[2] * u0, hc0[1] * w0, hc0[0] * y0 ]
vpmuludq hc0,ruwy0,t1
# t1 += [ hc1[3] * s4, hc1[2] * v4, hc1[1] * x4, hc1[0] * z4 ]
vpmuludq hc1,svxz4,t2
vpaddq t2,t1,t1
# t1 += [ hc2[3] * s3, hc2[2] * v3, hc2[1] * x3, hc2[0] * z3 ]
vpmuludq hc2,svxz3,t2
vpaddq t2,t1,t1
# t1 += [ hc3[3] * s2, hc3[2] * v2, hc3[1] * x2, hc3[0] * z2 ]
vpmuludq hc3,svxz2,t2
vpaddq t2,t1,t1
# t1 += [ hc4[3] * s1, hc4[2] * v1, hc4[1] * x1, hc4[0] * z1 ]
vpmuludq hc4,svxz1,t2
vpaddq t2,t1,t1
# d0 = t1[0] + t1[1] + t[2] + t[3]
vpermq $0xee,t1,t2
vpaddq t2,t1,t1
vpsrldq $8,t1,t2
vpaddq t2,t1,t1
vmovq t1x,d0
# t1 = [ hc0[3] * r1, hc0[2] * u1,hc0[1] * w1, hc0[0] * y1 ]
vpmuludq hc0,ruwy1,t1
# t1 += [ hc1[3] * r0, hc1[2] * u0, hc1[1] * w0, hc1[0] * y0 ]
vpmuludq hc1,ruwy0,t2
vpaddq t2,t1,t1
# t1 += [ hc2[3] * s4, hc2[2] * v4, hc2[1] * x4, hc2[0] * z4 ]
vpmuludq hc2,svxz4,t2
vpaddq t2,t1,t1
# t1 += [ hc3[3] * s3, hc3[2] * v3, hc3[1] * x3, hc3[0] * z3 ]
vpmuludq hc3,svxz3,t2
vpaddq t2,t1,t1
# t1 += [ hc4[3] * s2, hc4[2] * v2, hc4[1] * x2, hc4[0] * z2 ]
vpmuludq hc4,svxz2,t2
vpaddq t2,t1,t1
# d1 = t1[0] + t1[1] + t1[3] + t1[4]
vpermq $0xee,t1,t2
vpaddq t2,t1,t1
vpsrldq $8,t1,t2
vpaddq t2,t1,t1
vmovq t1x,d1
# t1 = [ hc0[3] * r2, hc0[2] * u2, hc0[1] * w2, hc0[0] * y2 ]
vpmuludq hc0,ruwy2,t1
# t1 += [ hc1[3] * r1, hc1[2] * u1, hc1[1] * w1, hc1[0] * y1 ]
vpmuludq hc1,ruwy1,t2
vpaddq t2,t1,t1
# t1 += [ hc2[3] * r0, hc2[2] * u0, hc2[1] * w0, hc2[0] * y0 ]
vpmuludq hc2,ruwy0,t2
vpaddq t2,t1,t1
# t1 += [ hc3[3] * s4, hc3[2] * v4, hc3[1] * x4, hc3[0] * z4 ]
vpmuludq hc3,svxz4,t2
vpaddq t2,t1,t1
# t1 += [ hc4[3] * s3, hc4[2] * v3, hc4[1] * x3, hc4[0] * z3 ]
vpmuludq hc4,svxz3,t2
vpaddq t2,t1,t1
# d2 = t1[0] + t1[1] + t1[2] + t1[3]
vpermq $0xee,t1,t2
vpaddq t2,t1,t1
vpsrldq $8,t1,t2
vpaddq t2,t1,t1
vmovq t1x,d2
# t1 = [ hc0[3] * r3, hc0[2] * u3, hc0[1] * w3, hc0[0] * y3 ]
vpmuludq hc0,ruwy3,t1
# t1 += [ hc1[3] * r2, hc1[2] * u2, hc1[1] * w2, hc1[0] * y2 ]
vpmuludq hc1,ruwy2,t2
vpaddq t2,t1,t1
# t1 += [ hc2[3] * r1, hc2[2] * u1, hc2[1] * w1, hc2[0] * y1 ]
vpmuludq hc2,ruwy1,t2
vpaddq t2,t1,t1
# t1 += [ hc3[3] * r0, hc3[2] * u0, hc3[1] * w0, hc3[0] * y0 ]
vpmuludq hc3,ruwy0,t2
vpaddq t2,t1,t1
# t1 += [ hc4[3] * s4, hc4[2] * v4, hc4[1] * x4, hc4[0] * z4 ]
vpmuludq hc4,svxz4,t2
vpaddq t2,t1,t1
# d3 = t1[0] + t1[1] + t1[2] + t1[3]
vpermq $0xee,t1,t2
vpaddq t2,t1,t1
vpsrldq $8,t1,t2
vpaddq t2,t1,t1
vmovq t1x,d3
# t1 = [ hc0[3] * r4, hc0[2] * u4, hc0[1] * w4, hc0[0] * y4 ]
vpmuludq hc0,ruwy4,t1
# t1 += [ hc1[3] * r3, hc1[2] * u3, hc1[1] * w3, hc1[0] * y3 ]
vpmuludq hc1,ruwy3,t2
vpaddq t2,t1,t1
# t1 += [ hc2[3] * r2, hc2[2] * u2, hc2[1] * w2, hc2[0] * y2 ]
vpmuludq hc2,ruwy2,t2
vpaddq t2,t1,t1
# t1 += [ hc3[3] * r1, hc3[2] * u1, hc3[1] * w1, hc3[0] * y1 ]
vpmuludq hc3,ruwy1,t2
vpaddq t2,t1,t1
# t1 += [ hc4[3] * r0, hc4[2] * u0, hc4[1] * w0, hc4[0] * y0 ]
vpmuludq hc4,ruwy0,t2
vpaddq t2,t1,t1
# d4 = t1[0] + t1[1] + t1[2] + t1[3]
vpermq $0xee,t1,t2
vpaddq t2,t1,t1
vpsrldq $8,t1,t2
vpaddq t2,t1,t1
vmovq t1x,d4
crypto: x86/poly1305 - fix overflow during partial reduction commit 678cce4019d746da6c680c48ba9e6d417803e127 upstream. The x86_64 implementation of Poly1305 produces the wrong result on some inputs because poly1305_4block_avx2() incorrectly assumes that when partially reducing the accumulator, the bits carried from limb 'd4' to limb 'h0' fit in a 32-bit integer. This is true for poly1305-generic which processes only one block at a time. However, it's not true for the AVX2 implementation, which processes 4 blocks at a time and therefore can produce intermediate limbs about 4x larger. Fix it by making the relevant calculations use 64-bit arithmetic rather than 32-bit. Note that most of the carries already used 64-bit arithmetic, but the d4 -> h0 carry was different for some reason. To be safe I also made the same change to the corresponding SSE2 code, though that only operates on 1 or 2 blocks at a time. I don't think it's really needed for poly1305_block_sse2(), but it doesn't hurt because it's already x86_64 code. It *might* be needed for poly1305_2block_sse2(), but overflows aren't easy to reproduce there. This bug was originally detected by my patches that improve testmgr to fuzz algorithms against their generic implementation. But also add a test vector which reproduces it directly (in the AVX2 case). Fixes: b1ccc8f4b631 ("crypto: poly1305 - Add a four block AVX2 variant for x86_64") Fixes: c70f4abef07a ("crypto: poly1305 - Add a SSE2 SIMD variant for x86_64") Cc: <stable@vger.kernel.org> # v4.3+ Cc: Martin Willi <martin@strongswan.org> Cc: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
6 years ago
# Now do a partial reduction mod (2^130)-5, carrying h0 -> h1 -> h2 ->
# h3 -> h4 -> h0 -> h1 to get h0,h2,h3,h4 < 2^26 and h1 < 2^26 + a small
# amount. Careful: we must not assume the carry bits 'd0 >> 26',
# 'd1 >> 26', 'd2 >> 26', 'd3 >> 26', and '(d4 >> 26) * 5' fit in 32-bit
# integers. It's true in a single-block implementation, but not here.
crypto: poly1305 - Add a four block AVX2 variant for x86_64 Extends the x86_64 Poly1305 authenticator by a function processing four consecutive Poly1305 blocks in parallel using AVX2 instructions. For large messages, throughput increases by ~15-45% compared to two block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
# d1 += d0 >> 26
mov d0,%rax
shr $26,%rax
add %rax,d1
# h0 = d0 & 0x3ffffff
mov d0,%rbx
and $0x3ffffff,%ebx
# d2 += d1 >> 26
mov d1,%rax
shr $26,%rax
add %rax,d2
# h1 = d1 & 0x3ffffff
mov d1,%rax
and $0x3ffffff,%eax
mov %eax,h1
# d3 += d2 >> 26
mov d2,%rax
shr $26,%rax
add %rax,d3
# h2 = d2 & 0x3ffffff
mov d2,%rax
and $0x3ffffff,%eax
mov %eax,h2
# d4 += d3 >> 26
mov d3,%rax
shr $26,%rax
add %rax,d4
# h3 = d3 & 0x3ffffff
mov d3,%rax
and $0x3ffffff,%eax
mov %eax,h3
# h0 += (d4 >> 26) * 5
mov d4,%rax
shr $26,%rax
crypto: x86/poly1305 - fix overflow during partial reduction commit 678cce4019d746da6c680c48ba9e6d417803e127 upstream. The x86_64 implementation of Poly1305 produces the wrong result on some inputs because poly1305_4block_avx2() incorrectly assumes that when partially reducing the accumulator, the bits carried from limb 'd4' to limb 'h0' fit in a 32-bit integer. This is true for poly1305-generic which processes only one block at a time. However, it's not true for the AVX2 implementation, which processes 4 blocks at a time and therefore can produce intermediate limbs about 4x larger. Fix it by making the relevant calculations use 64-bit arithmetic rather than 32-bit. Note that most of the carries already used 64-bit arithmetic, but the d4 -> h0 carry was different for some reason. To be safe I also made the same change to the corresponding SSE2 code, though that only operates on 1 or 2 blocks at a time. I don't think it's really needed for poly1305_block_sse2(), but it doesn't hurt because it's already x86_64 code. It *might* be needed for poly1305_2block_sse2(), but overflows aren't easy to reproduce there. This bug was originally detected by my patches that improve testmgr to fuzz algorithms against their generic implementation. But also add a test vector which reproduces it directly (in the AVX2 case). Fixes: b1ccc8f4b631 ("crypto: poly1305 - Add a four block AVX2 variant for x86_64") Fixes: c70f4abef07a ("crypto: poly1305 - Add a SSE2 SIMD variant for x86_64") Cc: <stable@vger.kernel.org> # v4.3+ Cc: Martin Willi <martin@strongswan.org> Cc: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
6 years ago
lea (%rax,%rax,4),%rax
add %rax,%rbx
crypto: poly1305 - Add a four block AVX2 variant for x86_64 Extends the x86_64 Poly1305 authenticator by a function processing four consecutive Poly1305 blocks in parallel using AVX2 instructions. For large messages, throughput increases by ~15-45% compared to two block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
# h4 = d4 & 0x3ffffff
mov d4,%rax
and $0x3ffffff,%eax
mov %eax,h4
# h1 += h0 >> 26
crypto: x86/poly1305 - fix overflow during partial reduction commit 678cce4019d746da6c680c48ba9e6d417803e127 upstream. The x86_64 implementation of Poly1305 produces the wrong result on some inputs because poly1305_4block_avx2() incorrectly assumes that when partially reducing the accumulator, the bits carried from limb 'd4' to limb 'h0' fit in a 32-bit integer. This is true for poly1305-generic which processes only one block at a time. However, it's not true for the AVX2 implementation, which processes 4 blocks at a time and therefore can produce intermediate limbs about 4x larger. Fix it by making the relevant calculations use 64-bit arithmetic rather than 32-bit. Note that most of the carries already used 64-bit arithmetic, but the d4 -> h0 carry was different for some reason. To be safe I also made the same change to the corresponding SSE2 code, though that only operates on 1 or 2 blocks at a time. I don't think it's really needed for poly1305_block_sse2(), but it doesn't hurt because it's already x86_64 code. It *might* be needed for poly1305_2block_sse2(), but overflows aren't easy to reproduce there. This bug was originally detected by my patches that improve testmgr to fuzz algorithms against their generic implementation. But also add a test vector which reproduces it directly (in the AVX2 case). Fixes: b1ccc8f4b631 ("crypto: poly1305 - Add a four block AVX2 variant for x86_64") Fixes: c70f4abef07a ("crypto: poly1305 - Add a SSE2 SIMD variant for x86_64") Cc: <stable@vger.kernel.org> # v4.3+ Cc: Martin Willi <martin@strongswan.org> Cc: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
6 years ago
mov %rbx,%rax
shr $26,%rax
crypto: poly1305 - Add a four block AVX2 variant for x86_64 Extends the x86_64 Poly1305 authenticator by a function processing four consecutive Poly1305 blocks in parallel using AVX2 instructions. For large messages, throughput increases by ~15-45% compared to two block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
add %eax,h1
# h0 = h0 & 0x3ffffff
andl $0x3ffffff,%ebx
mov %ebx,h0
add $0x40,m
dec %rcx
jnz .Ldoblock4
vzeroupper
pop %r13
pop %r12
pop %rbx
ret
ENDPROC(poly1305_4block_avx2)