crypto: poly1305 - Add a four block AVX2 variant for x86_64
Extends the x86_64 Poly1305 authenticator by a function processing four
consecutive Poly1305 blocks in parallel using AVX2 instructions.
For large messages, throughput increases by ~15-45% compared to two
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
|
|
|
/*
|
|
|
|
* Poly1305 authenticator algorithm, RFC7539, x64 AVX2 functions
|
|
|
|
*
|
|
|
|
* Copyright (C) 2015 Martin Willi
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/linkage.h>
|
|
|
|
|
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
8 years ago
|
|
|
.section .rodata.cst32.ANMASK, "aM", @progbits, 32
|
crypto: poly1305 - Add a four block AVX2 variant for x86_64
Extends the x86_64 Poly1305 authenticator by a function processing four
consecutive Poly1305 blocks in parallel using AVX2 instructions.
For large messages, throughput increases by ~15-45% compared to two
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
|
|
|
.align 32
|
|
|
|
ANMASK: .octa 0x0000000003ffffff0000000003ffffff
|
|
|
|
.octa 0x0000000003ffffff0000000003ffffff
|
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
8 years ago
|
|
|
|
|
|
|
.section .rodata.cst32.ORMASK, "aM", @progbits, 32
|
|
|
|
.align 32
|
crypto: poly1305 - Add a four block AVX2 variant for x86_64
Extends the x86_64 Poly1305 authenticator by a function processing four
consecutive Poly1305 blocks in parallel using AVX2 instructions.
For large messages, throughput increases by ~15-45% compared to two
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
|
|
|
ORMASK: .octa 0x00000000010000000000000001000000
|
|
|
|
.octa 0x00000000010000000000000001000000
|
|
|
|
|
|
|
|
.text
|
|
|
|
|
|
|
|
#define h0 0x00(%rdi)
|
|
|
|
#define h1 0x04(%rdi)
|
|
|
|
#define h2 0x08(%rdi)
|
|
|
|
#define h3 0x0c(%rdi)
|
|
|
|
#define h4 0x10(%rdi)
|
|
|
|
#define r0 0x00(%rdx)
|
|
|
|
#define r1 0x04(%rdx)
|
|
|
|
#define r2 0x08(%rdx)
|
|
|
|
#define r3 0x0c(%rdx)
|
|
|
|
#define r4 0x10(%rdx)
|
|
|
|
#define u0 0x00(%r8)
|
|
|
|
#define u1 0x04(%r8)
|
|
|
|
#define u2 0x08(%r8)
|
|
|
|
#define u3 0x0c(%r8)
|
|
|
|
#define u4 0x10(%r8)
|
|
|
|
#define w0 0x14(%r8)
|
|
|
|
#define w1 0x18(%r8)
|
|
|
|
#define w2 0x1c(%r8)
|
|
|
|
#define w3 0x20(%r8)
|
|
|
|
#define w4 0x24(%r8)
|
|
|
|
#define y0 0x28(%r8)
|
|
|
|
#define y1 0x2c(%r8)
|
|
|
|
#define y2 0x30(%r8)
|
|
|
|
#define y3 0x34(%r8)
|
|
|
|
#define y4 0x38(%r8)
|
|
|
|
#define m %rsi
|
|
|
|
#define hc0 %ymm0
|
|
|
|
#define hc1 %ymm1
|
|
|
|
#define hc2 %ymm2
|
|
|
|
#define hc3 %ymm3
|
|
|
|
#define hc4 %ymm4
|
|
|
|
#define hc0x %xmm0
|
|
|
|
#define hc1x %xmm1
|
|
|
|
#define hc2x %xmm2
|
|
|
|
#define hc3x %xmm3
|
|
|
|
#define hc4x %xmm4
|
|
|
|
#define t1 %ymm5
|
|
|
|
#define t2 %ymm6
|
|
|
|
#define t1x %xmm5
|
|
|
|
#define t2x %xmm6
|
|
|
|
#define ruwy0 %ymm7
|
|
|
|
#define ruwy1 %ymm8
|
|
|
|
#define ruwy2 %ymm9
|
|
|
|
#define ruwy3 %ymm10
|
|
|
|
#define ruwy4 %ymm11
|
|
|
|
#define ruwy0x %xmm7
|
|
|
|
#define ruwy1x %xmm8
|
|
|
|
#define ruwy2x %xmm9
|
|
|
|
#define ruwy3x %xmm10
|
|
|
|
#define ruwy4x %xmm11
|
|
|
|
#define svxz1 %ymm12
|
|
|
|
#define svxz2 %ymm13
|
|
|
|
#define svxz3 %ymm14
|
|
|
|
#define svxz4 %ymm15
|
|
|
|
#define d0 %r9
|
|
|
|
#define d1 %r10
|
|
|
|
#define d2 %r11
|
|
|
|
#define d3 %r12
|
|
|
|
#define d4 %r13
|
|
|
|
|
|
|
|
ENTRY(poly1305_4block_avx2)
|
|
|
|
# %rdi: Accumulator h[5]
|
|
|
|
# %rsi: 64 byte input block m
|
|
|
|
# %rdx: Poly1305 key r[5]
|
|
|
|
# %rcx: Quadblock count
|
|
|
|
# %r8: Poly1305 derived key r^2 u[5], r^3 w[5], r^4 y[5],
|
|
|
|
|
|
|
|
# This four-block variant uses loop unrolled block processing. It
|
|
|
|
# requires 4 Poly1305 keys: r, r^2, r^3 and r^4:
|
|
|
|
# h = (h + m) * r => h = (h + m1) * r^4 + m2 * r^3 + m3 * r^2 + m4 * r
|
|
|
|
|
|
|
|
vzeroupper
|
|
|
|
push %rbx
|
|
|
|
push %r12
|
|
|
|
push %r13
|
|
|
|
|
|
|
|
# combine r0,u0,w0,y0
|
|
|
|
vmovd y0,ruwy0x
|
|
|
|
vmovd w0,t1x
|
|
|
|
vpunpcklqdq t1,ruwy0,ruwy0
|
|
|
|
vmovd u0,t1x
|
|
|
|
vmovd r0,t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,ruwy0,ruwy0
|
|
|
|
|
|
|
|
# combine r1,u1,w1,y1 and s1=r1*5,v1=u1*5,x1=w1*5,z1=y1*5
|
|
|
|
vmovd y1,ruwy1x
|
|
|
|
vmovd w1,t1x
|
|
|
|
vpunpcklqdq t1,ruwy1,ruwy1
|
|
|
|
vmovd u1,t1x
|
|
|
|
vmovd r1,t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,ruwy1,ruwy1
|
|
|
|
vpslld $2,ruwy1,svxz1
|
|
|
|
vpaddd ruwy1,svxz1,svxz1
|
|
|
|
|
|
|
|
# combine r2,u2,w2,y2 and s2=r2*5,v2=u2*5,x2=w2*5,z2=y2*5
|
|
|
|
vmovd y2,ruwy2x
|
|
|
|
vmovd w2,t1x
|
|
|
|
vpunpcklqdq t1,ruwy2,ruwy2
|
|
|
|
vmovd u2,t1x
|
|
|
|
vmovd r2,t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,ruwy2,ruwy2
|
|
|
|
vpslld $2,ruwy2,svxz2
|
|
|
|
vpaddd ruwy2,svxz2,svxz2
|
|
|
|
|
|
|
|
# combine r3,u3,w3,y3 and s3=r3*5,v3=u3*5,x3=w3*5,z3=y3*5
|
|
|
|
vmovd y3,ruwy3x
|
|
|
|
vmovd w3,t1x
|
|
|
|
vpunpcklqdq t1,ruwy3,ruwy3
|
|
|
|
vmovd u3,t1x
|
|
|
|
vmovd r3,t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,ruwy3,ruwy3
|
|
|
|
vpslld $2,ruwy3,svxz3
|
|
|
|
vpaddd ruwy3,svxz3,svxz3
|
|
|
|
|
|
|
|
# combine r4,u4,w4,y4 and s4=r4*5,v4=u4*5,x4=w4*5,z4=y4*5
|
|
|
|
vmovd y4,ruwy4x
|
|
|
|
vmovd w4,t1x
|
|
|
|
vpunpcklqdq t1,ruwy4,ruwy4
|
|
|
|
vmovd u4,t1x
|
|
|
|
vmovd r4,t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,ruwy4,ruwy4
|
|
|
|
vpslld $2,ruwy4,svxz4
|
|
|
|
vpaddd ruwy4,svxz4,svxz4
|
|
|
|
|
|
|
|
.Ldoblock4:
|
|
|
|
# hc0 = [m[48-51] & 0x3ffffff, m[32-35] & 0x3ffffff,
|
|
|
|
# m[16-19] & 0x3ffffff, m[ 0- 3] & 0x3ffffff + h0]
|
|
|
|
vmovd 0x00(m),hc0x
|
|
|
|
vmovd 0x10(m),t1x
|
|
|
|
vpunpcklqdq t1,hc0,hc0
|
|
|
|
vmovd 0x20(m),t1x
|
|
|
|
vmovd 0x30(m),t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,hc0,hc0
|
|
|
|
vpand ANMASK(%rip),hc0,hc0
|
|
|
|
vmovd h0,t1x
|
|
|
|
vpaddd t1,hc0,hc0
|
|
|
|
# hc1 = [(m[51-54] >> 2) & 0x3ffffff, (m[35-38] >> 2) & 0x3ffffff,
|
|
|
|
# (m[19-22] >> 2) & 0x3ffffff, (m[ 3- 6] >> 2) & 0x3ffffff + h1]
|
|
|
|
vmovd 0x03(m),hc1x
|
|
|
|
vmovd 0x13(m),t1x
|
|
|
|
vpunpcklqdq t1,hc1,hc1
|
|
|
|
vmovd 0x23(m),t1x
|
|
|
|
vmovd 0x33(m),t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,hc1,hc1
|
|
|
|
vpsrld $2,hc1,hc1
|
|
|
|
vpand ANMASK(%rip),hc1,hc1
|
|
|
|
vmovd h1,t1x
|
|
|
|
vpaddd t1,hc1,hc1
|
|
|
|
# hc2 = [(m[54-57] >> 4) & 0x3ffffff, (m[38-41] >> 4) & 0x3ffffff,
|
|
|
|
# (m[22-25] >> 4) & 0x3ffffff, (m[ 6- 9] >> 4) & 0x3ffffff + h2]
|
|
|
|
vmovd 0x06(m),hc2x
|
|
|
|
vmovd 0x16(m),t1x
|
|
|
|
vpunpcklqdq t1,hc2,hc2
|
|
|
|
vmovd 0x26(m),t1x
|
|
|
|
vmovd 0x36(m),t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,hc2,hc2
|
|
|
|
vpsrld $4,hc2,hc2
|
|
|
|
vpand ANMASK(%rip),hc2,hc2
|
|
|
|
vmovd h2,t1x
|
|
|
|
vpaddd t1,hc2,hc2
|
|
|
|
# hc3 = [(m[57-60] >> 6) & 0x3ffffff, (m[41-44] >> 6) & 0x3ffffff,
|
|
|
|
# (m[25-28] >> 6) & 0x3ffffff, (m[ 9-12] >> 6) & 0x3ffffff + h3]
|
|
|
|
vmovd 0x09(m),hc3x
|
|
|
|
vmovd 0x19(m),t1x
|
|
|
|
vpunpcklqdq t1,hc3,hc3
|
|
|
|
vmovd 0x29(m),t1x
|
|
|
|
vmovd 0x39(m),t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,hc3,hc3
|
|
|
|
vpsrld $6,hc3,hc3
|
|
|
|
vpand ANMASK(%rip),hc3,hc3
|
|
|
|
vmovd h3,t1x
|
|
|
|
vpaddd t1,hc3,hc3
|
|
|
|
# hc4 = [(m[60-63] >> 8) | (1<<24), (m[44-47] >> 8) | (1<<24),
|
|
|
|
# (m[28-31] >> 8) | (1<<24), (m[12-15] >> 8) | (1<<24) + h4]
|
|
|
|
vmovd 0x0c(m),hc4x
|
|
|
|
vmovd 0x1c(m),t1x
|
|
|
|
vpunpcklqdq t1,hc4,hc4
|
|
|
|
vmovd 0x2c(m),t1x
|
|
|
|
vmovd 0x3c(m),t2x
|
|
|
|
vpunpcklqdq t2,t1,t1
|
|
|
|
vperm2i128 $0x20,t1,hc4,hc4
|
|
|
|
vpsrld $8,hc4,hc4
|
|
|
|
vpor ORMASK(%rip),hc4,hc4
|
|
|
|
vmovd h4,t1x
|
|
|
|
vpaddd t1,hc4,hc4
|
|
|
|
|
|
|
|
# t1 = [ hc0[3] * r0, hc0[2] * u0, hc0[1] * w0, hc0[0] * y0 ]
|
|
|
|
vpmuludq hc0,ruwy0,t1
|
|
|
|
# t1 += [ hc1[3] * s4, hc1[2] * v4, hc1[1] * x4, hc1[0] * z4 ]
|
|
|
|
vpmuludq hc1,svxz4,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc2[3] * s3, hc2[2] * v3, hc2[1] * x3, hc2[0] * z3 ]
|
|
|
|
vpmuludq hc2,svxz3,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc3[3] * s2, hc3[2] * v2, hc3[1] * x2, hc3[0] * z2 ]
|
|
|
|
vpmuludq hc3,svxz2,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc4[3] * s1, hc4[2] * v1, hc4[1] * x1, hc4[0] * z1 ]
|
|
|
|
vpmuludq hc4,svxz1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# d0 = t1[0] + t1[1] + t[2] + t[3]
|
|
|
|
vpermq $0xee,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vpsrldq $8,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vmovq t1x,d0
|
|
|
|
|
|
|
|
# t1 = [ hc0[3] * r1, hc0[2] * u1,hc0[1] * w1, hc0[0] * y1 ]
|
|
|
|
vpmuludq hc0,ruwy1,t1
|
|
|
|
# t1 += [ hc1[3] * r0, hc1[2] * u0, hc1[1] * w0, hc1[0] * y0 ]
|
|
|
|
vpmuludq hc1,ruwy0,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc2[3] * s4, hc2[2] * v4, hc2[1] * x4, hc2[0] * z4 ]
|
|
|
|
vpmuludq hc2,svxz4,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc3[3] * s3, hc3[2] * v3, hc3[1] * x3, hc3[0] * z3 ]
|
|
|
|
vpmuludq hc3,svxz3,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc4[3] * s2, hc4[2] * v2, hc4[1] * x2, hc4[0] * z2 ]
|
|
|
|
vpmuludq hc4,svxz2,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# d1 = t1[0] + t1[1] + t1[3] + t1[4]
|
|
|
|
vpermq $0xee,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vpsrldq $8,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vmovq t1x,d1
|
|
|
|
|
|
|
|
# t1 = [ hc0[3] * r2, hc0[2] * u2, hc0[1] * w2, hc0[0] * y2 ]
|
|
|
|
vpmuludq hc0,ruwy2,t1
|
|
|
|
# t1 += [ hc1[3] * r1, hc1[2] * u1, hc1[1] * w1, hc1[0] * y1 ]
|
|
|
|
vpmuludq hc1,ruwy1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc2[3] * r0, hc2[2] * u0, hc2[1] * w0, hc2[0] * y0 ]
|
|
|
|
vpmuludq hc2,ruwy0,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc3[3] * s4, hc3[2] * v4, hc3[1] * x4, hc3[0] * z4 ]
|
|
|
|
vpmuludq hc3,svxz4,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc4[3] * s3, hc4[2] * v3, hc4[1] * x3, hc4[0] * z3 ]
|
|
|
|
vpmuludq hc4,svxz3,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# d2 = t1[0] + t1[1] + t1[2] + t1[3]
|
|
|
|
vpermq $0xee,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vpsrldq $8,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vmovq t1x,d2
|
|
|
|
|
|
|
|
# t1 = [ hc0[3] * r3, hc0[2] * u3, hc0[1] * w3, hc0[0] * y3 ]
|
|
|
|
vpmuludq hc0,ruwy3,t1
|
|
|
|
# t1 += [ hc1[3] * r2, hc1[2] * u2, hc1[1] * w2, hc1[0] * y2 ]
|
|
|
|
vpmuludq hc1,ruwy2,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc2[3] * r1, hc2[2] * u1, hc2[1] * w1, hc2[0] * y1 ]
|
|
|
|
vpmuludq hc2,ruwy1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc3[3] * r0, hc3[2] * u0, hc3[1] * w0, hc3[0] * y0 ]
|
|
|
|
vpmuludq hc3,ruwy0,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc4[3] * s4, hc4[2] * v4, hc4[1] * x4, hc4[0] * z4 ]
|
|
|
|
vpmuludq hc4,svxz4,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# d3 = t1[0] + t1[1] + t1[2] + t1[3]
|
|
|
|
vpermq $0xee,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vpsrldq $8,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vmovq t1x,d3
|
|
|
|
|
|
|
|
# t1 = [ hc0[3] * r4, hc0[2] * u4, hc0[1] * w4, hc0[0] * y4 ]
|
|
|
|
vpmuludq hc0,ruwy4,t1
|
|
|
|
# t1 += [ hc1[3] * r3, hc1[2] * u3, hc1[1] * w3, hc1[0] * y3 ]
|
|
|
|
vpmuludq hc1,ruwy3,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc2[3] * r2, hc2[2] * u2, hc2[1] * w2, hc2[0] * y2 ]
|
|
|
|
vpmuludq hc2,ruwy2,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc3[3] * r1, hc3[2] * u1, hc3[1] * w1, hc3[0] * y1 ]
|
|
|
|
vpmuludq hc3,ruwy1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# t1 += [ hc4[3] * r0, hc4[2] * u0, hc4[1] * w0, hc4[0] * y0 ]
|
|
|
|
vpmuludq hc4,ruwy0,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
# d4 = t1[0] + t1[1] + t1[2] + t1[3]
|
|
|
|
vpermq $0xee,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vpsrldq $8,t1,t2
|
|
|
|
vpaddq t2,t1,t1
|
|
|
|
vmovq t1x,d4
|
|
|
|
|
|
|
|
# Now do a partial reduction mod (2^130)-5, carrying h0 -> h1 -> h2 ->
|
|
|
|
# h3 -> h4 -> h0 -> h1 to get h0,h2,h3,h4 < 2^26 and h1 < 2^26 + a small
|
|
|
|
# amount. Careful: we must not assume the carry bits 'd0 >> 26',
|
|
|
|
# 'd1 >> 26', 'd2 >> 26', 'd3 >> 26', and '(d4 >> 26) * 5' fit in 32-bit
|
|
|
|
# integers. It's true in a single-block implementation, but not here.
|
|
|
|
|
crypto: poly1305 - Add a four block AVX2 variant for x86_64
Extends the x86_64 Poly1305 authenticator by a function processing four
consecutive Poly1305 blocks in parallel using AVX2 instructions.
For large messages, throughput increases by ~15-45% compared to two
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
|
|
|
# d1 += d0 >> 26
|
|
|
|
mov d0,%rax
|
|
|
|
shr $26,%rax
|
|
|
|
add %rax,d1
|
|
|
|
# h0 = d0 & 0x3ffffff
|
|
|
|
mov d0,%rbx
|
|
|
|
and $0x3ffffff,%ebx
|
|
|
|
|
|
|
|
# d2 += d1 >> 26
|
|
|
|
mov d1,%rax
|
|
|
|
shr $26,%rax
|
|
|
|
add %rax,d2
|
|
|
|
# h1 = d1 & 0x3ffffff
|
|
|
|
mov d1,%rax
|
|
|
|
and $0x3ffffff,%eax
|
|
|
|
mov %eax,h1
|
|
|
|
|
|
|
|
# d3 += d2 >> 26
|
|
|
|
mov d2,%rax
|
|
|
|
shr $26,%rax
|
|
|
|
add %rax,d3
|
|
|
|
# h2 = d2 & 0x3ffffff
|
|
|
|
mov d2,%rax
|
|
|
|
and $0x3ffffff,%eax
|
|
|
|
mov %eax,h2
|
|
|
|
|
|
|
|
# d4 += d3 >> 26
|
|
|
|
mov d3,%rax
|
|
|
|
shr $26,%rax
|
|
|
|
add %rax,d4
|
|
|
|
# h3 = d3 & 0x3ffffff
|
|
|
|
mov d3,%rax
|
|
|
|
and $0x3ffffff,%eax
|
|
|
|
mov %eax,h3
|
|
|
|
|
|
|
|
# h0 += (d4 >> 26) * 5
|
|
|
|
mov d4,%rax
|
|
|
|
shr $26,%rax
|
|
|
|
lea (%rax,%rax,4),%rax
|
|
|
|
add %rax,%rbx
|
crypto: poly1305 - Add a four block AVX2 variant for x86_64
Extends the x86_64 Poly1305 authenticator by a function processing four
consecutive Poly1305 blocks in parallel using AVX2 instructions.
For large messages, throughput increases by ~15-45% compared to two
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
|
|
|
# h4 = d4 & 0x3ffffff
|
|
|
|
mov d4,%rax
|
|
|
|
and $0x3ffffff,%eax
|
|
|
|
mov %eax,h4
|
|
|
|
|
|
|
|
# h1 += h0 >> 26
|
|
|
|
mov %rbx,%rax
|
|
|
|
shr $26,%rax
|
crypto: poly1305 - Add a four block AVX2 variant for x86_64
Extends the x86_64 Poly1305 authenticator by a function processing four
consecutive Poly1305 blocks in parallel using AVX2 instructions.
For large messages, throughput increases by ~15-45% compared to two
block SSE2:
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec
testing speed of poly1305 (poly1305-simd)
test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec
test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec
test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec
test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec
test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec
test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec
test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec
test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec
test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec
test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
10 years ago
|
|
|
add %eax,h1
|
|
|
|
# h0 = h0 & 0x3ffffff
|
|
|
|
andl $0x3ffffff,%ebx
|
|
|
|
mov %ebx,h0
|
|
|
|
|
|
|
|
add $0x40,m
|
|
|
|
dec %rcx
|
|
|
|
jnz .Ldoblock4
|
|
|
|
|
|
|
|
vzeroupper
|
|
|
|
pop %r13
|
|
|
|
pop %r12
|
|
|
|
pop %rbx
|
|
|
|
ret
|
|
|
|
ENDPROC(poly1305_4block_avx2)
|