/* tools/mkbootimg/mkbootimg.c ** ** Copyright 2007, The Android Open Source Project ** Copyright 2013, Sony Mobile Communications ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ** ** June 2014, Ketut Putu Kumajaya ** Modified for Samsung Exynos DTBH, based on mkqcdtbootimg from Sony */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libfdt.h" #include "mincrypt/sha.h" #include "bootimg.h" #define DTBH_MAGIC "DTBH" #define DTBH_VERSION 2 #define DTBH_PLATFORM "k3g" #define DTBH_SUBTYPE "k3g_eur_open" /* Hardcoded entry */ #define DTBH_PLATFORM_CODE 0x1e92 #define DTBH_SUBTYPE_CODE 0x7d64f612 struct dt_blob; /* DTBH_MAGIC + DTBH_VERSION + DTB counts */ #define DT_HEADER_PHYS_SIZE 12 /* Samsung K 3G EUR revision 10's dts: * model = "Samsung K 3G EUR revision 10 board based on EXYNOS5422"; * model_info-chip = <5422>; * model_info-platform = "k3g"; * model_info-subtype = "k3g_eur_open"; * model_info-hw_rev = <10>; * model_info-hw_rev_end = <255>; * compatible = "samsung,K 3G EUR,r04", "samsung,exynos5422"; */ /* * keep the eight uint32_t entries first in this struct so we can memcpy them to the file */ #define DT_ENTRY_PHYS_SIZE (sizeof(uint32_t) * 8) struct dt_entry { uint32_t chip; uint32_t platform; uint32_t subtype; uint32_t hw_rev; uint32_t hw_rev_end; uint32_t offset; uint32_t size; /* including padding */ uint32_t space; struct dt_blob *blob; }; /* * Comparator for sorting dt_entries */ static int dt_entry_cmp(const void *ap, const void *bp) { struct dt_entry *a = (struct dt_entry*)ap; struct dt_entry *b = (struct dt_entry*)bp; if (a->chip != b->chip) return a->chip - b->chip; return a->hw_rev - b->hw_rev; } /* * In memory representation of a dtb blob */ struct dt_blob { uint32_t size; uint32_t offset; void *payload; struct dt_blob *next; }; static void *load_file(const char *fn, unsigned *_sz) { char *data; int sz; int fd; data = 0; fd = open(fn, O_RDONLY); if(fd < 0) return 0; sz = lseek(fd, 0, SEEK_END); if(sz < 0) goto oops; if(lseek(fd, 0, SEEK_SET) != 0) goto oops; data = (char*) malloc(sz); if(data == 0) goto oops; if(read(fd, data, sz) != sz) goto oops; close(fd); if(_sz) *_sz = sz; return data; oops: close(fd); if(data != 0) free(data); return 0; } static void *load_dtbh_block(const char *dtb_path, unsigned pagesize, unsigned *_sz) { const unsigned pagemask = pagesize - 1; struct dt_entry *new_entries; struct dt_entry *entries = NULL; struct dt_entry *entry; struct dt_blob *blob; struct dt_blob *blob_list = NULL; struct dt_blob *last_blob = NULL; struct dirent *de; unsigned new_count; unsigned entry_count = 0; unsigned offset; unsigned dtb_sz; unsigned hdr_sz = DT_HEADER_PHYS_SIZE; uint32_t version = DTBH_VERSION; unsigned blob_sz = 0; char fname[PATH_MAX]; const unsigned *prop_chip; const unsigned *prop_platform; const unsigned *prop_subtype; const unsigned *prop_hw_rev; const unsigned *prop_hw_rev_end; int namlen; int len; void *dtb; char *dtbh; DIR *dir; unsigned c; dir = opendir(dtb_path); if (dir == NULL) err(1, "failed to open '%s'", dtb_path); while ((de = readdir(dir)) != NULL) { namlen = strlen(de->d_name); if (namlen < 4 || strcmp(&de->d_name[namlen - 4], ".dtb")) continue; snprintf(fname, sizeof(fname), "%s/%s", dtb_path, de->d_name); dtb = load_file(fname, &dtb_sz); if (dtb == NULL) err(1, "failed to read dtb '%s'", fname); if (fdt_check_header(dtb) != 0) { warnx("'%s' is not a valid dtb, skipping", fname); free(dtb); continue; } offset = fdt_path_offset(dtb, "/"); prop_chip = fdt_getprop(dtb, offset, "model_info-chip", &len); if (len % (sizeof(uint32_t)) != 0) { warnx("model_info-chip of %s is of invalid size, skipping", fname); free(dtb); continue; } prop_platform = fdt_getprop(dtb, offset, "model_info-platform", &len); if (strcmp((char *)&prop_platform[0], DTBH_PLATFORM)) { warnx("model_info-platform of %s is invalid, skipping", fname); free(dtb); continue; } prop_subtype = fdt_getprop(dtb, offset, "model_info-subtype", &len); if (strcmp((char *)&prop_subtype[0], DTBH_SUBTYPE)) { warnx("model_info-subtype of %s is invalid, skipping", fname); free(dtb); continue; } prop_hw_rev = fdt_getprop(dtb, offset, "model_info-hw_rev", &len); if (len % (sizeof(uint32_t)) != 0) { warnx("model_info-hw_rev of %s is of invalid size, skipping", fname); free(dtb); continue; } prop_hw_rev_end = fdt_getprop(dtb, offset, "model_info-hw_rev_end", &len); if (len % (sizeof(uint32_t)) != 0) { warnx("model_info-hw_rev_end of %s is of invalid size, skipping", fname); free(dtb); continue; } blob = calloc(1, sizeof(struct dt_blob)); if (blob == NULL) err(1, "failed to allocate memory"); blob->payload = dtb; blob->size = dtb_sz; if (blob_list == NULL) { blob_list = blob; last_blob = blob; } else { last_blob->next = blob; last_blob = blob; } blob_sz += (blob->size + pagemask) & ~pagemask; new_count = entry_count + 1; new_entries = realloc(entries, new_count * sizeof(struct dt_entry)); if (new_entries == NULL) err(1, "failed to allocate memory"); entries = new_entries; entry = &entries[entry_count]; memset(entry, 0, sizeof(*entry)); entry->chip = ntohl(prop_chip[0]); entry->platform = DTBH_PLATFORM_CODE; entry->subtype = DTBH_SUBTYPE_CODE; entry->hw_rev = ntohl(prop_hw_rev[0]); entry->hw_rev_end = ntohl(prop_hw_rev_end[0]); entry->space = 0x20; /* space delimiter */ entry->blob = blob; entry_count++; hdr_sz += entry_count * DT_ENTRY_PHYS_SIZE; } closedir(dir); if (entry_count == 0) { warnx("unable to locate any dtbs in the given path"); return NULL; } hdr_sz += sizeof(uint32_t); /* eot marker */ hdr_sz = (hdr_sz + pagemask) & ~pagemask; qsort(entries, entry_count, sizeof(struct dt_entry), dt_entry_cmp); /* The size of the dt header is now known, calculate the blob offsets... */ offset = hdr_sz; for (blob = blob_list; blob; blob = blob->next) { blob->offset = offset; offset += (blob->size + pagemask) & ~pagemask; } /* ...and update the entries */ for (c = 0; c < entry_count; c++) { entry = &entries[c]; entry->offset = entry->blob->offset; entry->size = (entry->blob->size + pagemask) & ~pagemask; } /* * All parts are now gathered, so build the dt block */ dtbh = calloc(hdr_sz + blob_sz, 1); if (dtbh == NULL) err(1, "failed to allocate memory"); offset = 0; memcpy(dtbh, DTBH_MAGIC, sizeof(uint32_t)); memcpy(dtbh + sizeof(uint32_t), &version, sizeof(uint32_t)); memcpy(dtbh + (sizeof(uint32_t) * 2), &entry_count, sizeof(uint32_t)); offset += DT_HEADER_PHYS_SIZE; /* add dtbh entries */ for (c = 0; c < entry_count; c++) { entry = &entries[c]; memcpy(dtbh + offset, entry, DT_ENTRY_PHYS_SIZE); offset += DT_ENTRY_PHYS_SIZE; } /* add padding after dt header */ offset += pagesize - (offset & pagemask); for (blob = blob_list; blob; blob = blob->next) { memcpy(dtbh + offset, blob->payload, blob->size); offset += (blob->size + pagemask) & ~pagemask; } *_sz = hdr_sz + blob_sz; return dtbh; } int usage(void) { fprintf(stderr,"usage: mkbootimg\n" " --kernel \n" " --ramdisk \n" " [ --second <2ndbootloader-filename> ]\n" " [ --cmdline ]\n" " [ --board ]\n" " [ --base
]\n" " [ --pagesize ]\n" " [ --ramdisk_offset
]\n" " [ --dt_dir ]\n" " [ --dt ]\n" " [ --signature ]\n" " -o|--output \n" ); return 1; } static unsigned char padding[131072] = { 0, }; int write_padding(int fd, unsigned pagesize, unsigned itemsize) { unsigned pagemask = pagesize - 1; unsigned count; if((itemsize & pagemask) == 0) { return 0; } count = pagesize - (itemsize & pagemask); if(write(fd, padding, count) != count) { return -1; } else { return 0; } } int main(int argc, char **argv) { boot_img_hdr hdr; char *kernel_fn = 0; void *kernel_data = 0; char *ramdisk_fn = 0; void *ramdisk_data = 0; char *second_fn = 0; void *second_data = 0; char *cmdline = ""; char *bootimg = 0; char *board = ""; char *dt_dir = 0; char *dt_fn = 0; void *dt_data = 0; char *sig_fn = 0; void *sig_data = 0; unsigned pagesize = 2048; int fd; SHA_CTX ctx; uint8_t* sha; unsigned base = 0x10000000; unsigned kernel_offset = 0x00008000; unsigned ramdisk_offset = 0x01000000; unsigned second_offset = 0x00f00000; unsigned tags_offset = 0x00000100; argc--; argv++; memset(&hdr, 0, sizeof(hdr)); while(argc > 0){ char *arg = argv[0]; char *val = argv[1]; if(argc < 2) { return usage(); } argc -= 2; argv += 2; if(!strcmp(arg, "--output") || !strcmp(arg, "-o")) { bootimg = val; } else if(!strcmp(arg, "--kernel")) { kernel_fn = val; } else if(!strcmp(arg, "--ramdisk")) { ramdisk_fn = val; } else if(!strcmp(arg, "--second")) { second_fn = val; } else if(!strcmp(arg, "--cmdline")) { cmdline = val; } else if(!strcmp(arg, "--base")) { base = strtoul(val, 0, 16); } else if(!strcmp(arg, "--kernel_offset")) { kernel_offset = strtoul(val, 0, 16); } else if(!strcmp(arg, "--ramdisk_offset")) { ramdisk_offset = strtoul(val, 0, 16); } else if(!strcmp(arg, "--second_offset")) { second_offset = strtoul(val, 0, 16); } else if(!strcmp(arg, "--tags_offset")) { tags_offset = strtoul(val, 0, 16); } else if(!strcmp(arg, "--board")) { board = val; } else if(!strcmp(arg,"--pagesize")) { pagesize = strtoul(val, 0, 10); if ((pagesize != 2048) && (pagesize != 4096) && (pagesize != 8192) && (pagesize != 16384) && (pagesize != 32768) && (pagesize != 65536) && (pagesize != 131072)) { fprintf(stderr,"error: unsupported page size %d\n", pagesize); return -1; } } else if (!strcmp(arg, "--dt_dir")) { dt_dir = val; } else if(!strcmp(arg, "--dt")) { dt_fn = val; } else if(!strcmp(arg, "--signature")) { sig_fn = val; } else { return usage(); } } hdr.page_size = pagesize; hdr.kernel_addr = base + kernel_offset; hdr.ramdisk_addr = base + ramdisk_offset; hdr.second_addr = base + second_offset; hdr.tags_addr = base + tags_offset; if (dt_dir && dt_fn) { fprintf(stderr,"error: don't use both --dt_dir and --dt option\n"); return usage(); } if(bootimg == 0) { fprintf(stderr,"error: no output filename specified\n"); return usage(); } if(kernel_fn == 0) { fprintf(stderr,"error: no kernel image specified\n"); return usage(); } if(ramdisk_fn == 0) { fprintf(stderr,"error: no ramdisk image specified\n"); return usage(); } if(strlen(board) >= BOOT_NAME_SIZE) { fprintf(stderr,"error: board name too large\n"); return usage(); } strcpy(hdr.name, board); memcpy(hdr.magic, BOOT_MAGIC, BOOT_MAGIC_SIZE); if(strlen(cmdline) > (BOOT_ARGS_SIZE - 1)) { fprintf(stderr,"error: kernel commandline too large\n"); return 1; } strcpy((char*)hdr.cmdline, cmdline); kernel_data = load_file(kernel_fn, &hdr.kernel_size); if(kernel_data == 0) { fprintf(stderr,"error: could not load kernel '%s'\n", kernel_fn); return 1; } if(!strcmp(ramdisk_fn,"NONE")) { ramdisk_data = 0; hdr.ramdisk_size = 0; } else { ramdisk_data = load_file(ramdisk_fn, &hdr.ramdisk_size); if(ramdisk_data == 0) { fprintf(stderr,"error: could not load ramdisk '%s'\n", ramdisk_fn); return 1; } } if(second_fn) { second_data = load_file(second_fn, &hdr.second_size); if(second_data == 0) { fprintf(stderr,"error: could not load secondstage '%s'\n", second_fn); return 1; } } if (dt_dir) { dt_data = load_dtbh_block(dt_dir, pagesize, &hdr.dt_size); if (dt_data == 0) { fprintf(stderr, "error: could not load device tree blobs '%s'\n", dt_dir); return 1; } } if(dt_fn) { dt_data = load_file(dt_fn, &hdr.dt_size); if (dt_data == 0) { fprintf(stderr,"error: could not load device tree image '%s'\n", dt_fn); return 1; } } if(sig_fn) { sig_data = load_file(sig_fn, 0); if (sig_data == 0) { fprintf(stderr,"error: could not load signature '%s'\n", sig_fn); return 1; } } /* put a hash of the contents in the header so boot images can be * differentiated based on their first 2k. */ SHA_init(&ctx); SHA_update(&ctx, kernel_data, hdr.kernel_size); SHA_update(&ctx, &hdr.kernel_size, sizeof(hdr.kernel_size)); SHA_update(&ctx, ramdisk_data, hdr.ramdisk_size); SHA_update(&ctx, &hdr.ramdisk_size, sizeof(hdr.ramdisk_size)); SHA_update(&ctx, second_data, hdr.second_size); SHA_update(&ctx, &hdr.second_size, sizeof(hdr.second_size)); if(dt_data) { SHA_update(&ctx, dt_data, hdr.dt_size); SHA_update(&ctx, &hdr.dt_size, sizeof(hdr.dt_size)); } sha = SHA_final(&ctx); memcpy(hdr.id, sha, SHA_DIGEST_SIZE > sizeof(hdr.id) ? sizeof(hdr.id) : SHA_DIGEST_SIZE); fd = open(bootimg, O_CREAT | O_TRUNC | O_WRONLY, 0644); if(fd < 0) { fprintf(stderr,"error: could not create '%s'\n", bootimg); return 1; } if(write(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) goto fail; if(write_padding(fd, pagesize, sizeof(hdr))) goto fail; if(write(fd, kernel_data, hdr.kernel_size) != hdr.kernel_size) goto fail; if(write_padding(fd, pagesize, hdr.kernel_size)) goto fail; if(write(fd, ramdisk_data, hdr.ramdisk_size) != hdr.ramdisk_size) goto fail; if(write_padding(fd, pagesize, hdr.ramdisk_size)) goto fail; if(second_data) { if(write(fd, second_data, hdr.second_size) != hdr.second_size) goto fail; if(write_padding(fd, pagesize, hdr.ramdisk_size)) goto fail; } if(dt_data) { if(write(fd, dt_data, hdr.dt_size) != hdr.dt_size) goto fail; if(write_padding(fd, pagesize, hdr.dt_size)) goto fail; } if(sig_data) { if(write(fd, sig_data, 256) != 256) goto fail; } return 0; fail: unlink(bootimg); close(fd); fprintf(stderr,"error: failed writing '%s': %s\n", bootimg, strerror(errno)); return 1; }