/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thermal_info.h" #include #include #include #include #include #include #include namespace aidl { namespace android { namespace hardware { namespace thermal { namespace implementation { constexpr std::string_view kPowerLinkDisabledProperty("vendor.disable.thermal.powerlink"); namespace { template // Return false when failed parsing bool getTypeFromString(std::string_view str, T *out) { auto types = ::ndk::enum_range(); for (const auto &type : types) { if (::aidl::android::hardware::thermal::toString(type) == str) { *out = type; return true; } } return false; } float getFloatFromValue(const Json::Value &value) { if (value.isString()) { return std::stof(value.asString()); } else { return value.asFloat(); } } int getIntFromValue(const Json::Value &value) { if (value.isString()) { return (value.asString() == "max") ? std::numeric_limits::max() : std::stoul(value.asString()); } else { return value.asInt(); } } bool getIntFromJsonValues(const Json::Value &values, CdevArray *out, bool inc_check, bool dec_check) { CdevArray ret; if (inc_check && dec_check) { LOG(ERROR) << "Cannot enable inc_check and dec_check at the same time"; return false; } if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Values size is invalid"; return false; } else { int last; for (Json::Value::ArrayIndex i = 0; i < kThrottlingSeverityCount; ++i) { ret[i] = getIntFromValue(values[i]); if (inc_check && ret[i] < last) { LOG(FATAL) << "Invalid array[" << i << "]" << ret[i] << " min=" << last; return false; } if (dec_check && ret[i] > last) { LOG(FATAL) << "Invalid array[" << i << "]" << ret[i] << " max=" << last; return false; } last = ret[i]; LOG(INFO) << "[" << i << "]: " << ret[i]; } } *out = ret; return true; } bool getFloatFromJsonValues(const Json::Value &values, ThrottlingArray *out, bool inc_check, bool dec_check) { ThrottlingArray ret; if (inc_check && dec_check) { LOG(ERROR) << "Cannot enable inc_check and dec_check at the same time"; return false; } if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Values size is invalid"; return false; } else { float last = std::nanf(""); for (Json::Value::ArrayIndex i = 0; i < kThrottlingSeverityCount; ++i) { ret[i] = getFloatFromValue(values[i]); if (inc_check && !std::isnan(last) && !std::isnan(ret[i]) && ret[i] < last) { LOG(FATAL) << "Invalid array[" << i << "]" << ret[i] << " min=" << last; return false; } if (dec_check && !std::isnan(last) && !std::isnan(ret[i]) && ret[i] > last) { LOG(FATAL) << "Invalid array[" << i << "]" << ret[i] << " max=" << last; return false; } last = std::isnan(ret[i]) ? last : ret[i]; LOG(INFO) << "[" << i << "]: " << ret[i]; } } *out = ret; return true; } } // namespace bool ParseThermalConfig(std::string_view config_path, Json::Value *config) { std::string json_doc; if (!::android::base::ReadFileToString(config_path.data(), &json_doc)) { LOG(ERROR) << "Failed to read JSON config from " << config_path; return false; } Json::CharReaderBuilder builder; std::unique_ptr reader(builder.newCharReader()); std::string errorMessage; if (!reader->parse(&*json_doc.begin(), &*json_doc.end(), config, &errorMessage)) { LOG(ERROR) << "Failed to parse JSON config: " << errorMessage; return false; } return true; } bool ParseVirtualSensorInfo(const std::string_view name, const Json::Value &sensor, std::unique_ptr *virtual_sensor_info) { if (sensor["VirtualSensor"].empty() || !sensor["VirtualSensor"].isBool()) { LOG(INFO) << "Failed to read Sensor[" << name << "]'s VirtualSensor"; return true; } bool is_virtual_sensor = sensor["VirtualSensor"].asBool(); LOG(INFO) << "Sensor[" << name << "]'s' VirtualSensor: " << is_virtual_sensor; if (!is_virtual_sensor) { return true; } float offset = 0; std::vector linked_sensors; std::vector linked_sensors_type; std::vector trigger_sensors; std::vector coefficients; FormulaOption formula = FormulaOption::COUNT_THRESHOLD; Json::Value values = sensor["Combination"]; if (values.size()) { linked_sensors.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { linked_sensors.emplace_back(values[j].asString()); LOG(INFO) << "Sensor[" << name << "]'s Combination[" << j << "]: " << linked_sensors[j]; } } else { LOG(ERROR) << "Sensor[" << name << "] has no Combination setting"; return false; } values = sensor["CombinationType"]; if (!values.size()) { linked_sensors_type.reserve(linked_sensors.size()); for (size_t j = 0; j < linked_sensors.size(); ++j) { linked_sensors_type.emplace_back(SensorFusionType::SENSOR); } } else if (values.size() != linked_sensors.size()) { LOG(ERROR) << "Sensor[" << name << "] has invalid CombinationType size"; return false; } else { for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { if (values[j].asString().compare("SENSOR") == 0) { linked_sensors_type.emplace_back(SensorFusionType::SENSOR); } else if (values[j].asString().compare("ODPM") == 0) { linked_sensors_type.emplace_back(SensorFusionType::ODPM); } else { LOG(ERROR) << "Sensor[" << name << "] has invalid CombinationType settings " << values[j].asString(); return false; } LOG(INFO) << "Sensor[" << name << "]'s CombinationType[" << j << "]: " << linked_sensors_type[j]; } } values = sensor["Coefficient"]; if (values.size()) { coefficients.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { coefficients.emplace_back(getFloatFromValue(values[j])); LOG(INFO) << "Sensor[" << name << "]'s coefficient[" << j << "]: " << coefficients[j]; } } else { LOG(ERROR) << "Sensor[" << name << "] has no Coefficient setting"; return false; } if (linked_sensors.size() != coefficients.size()) { LOG(ERROR) << "Sensor[" << name << "] has invalid Coefficient size"; return false; } if (!sensor["Offset"].empty()) { offset = sensor["Offset"].asFloat(); } values = sensor["TriggerSensor"]; if (!values.empty()) { if (values.isString()) { trigger_sensors.emplace_back(values.asString()); LOG(INFO) << "Sensor[" << name << "]'s TriggerSensor: " << values.asString(); } else if (values.size()) { trigger_sensors.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { if (!values[j].isString()) { LOG(ERROR) << name << " TriggerSensor should be an array of string"; return false; } trigger_sensors.emplace_back(values[j].asString()); LOG(INFO) << "Sensor[" << name << "]'s TriggerSensor[" << j << "]: " << trigger_sensors[j]; } } else { LOG(ERROR) << "Sensor[" << name << "]'s TriggerSensor should be a string"; return false; } } if (sensor["Formula"].asString().compare("COUNT_THRESHOLD") == 0) { formula = FormulaOption::COUNT_THRESHOLD; } else if (sensor["Formula"].asString().compare("WEIGHTED_AVG") == 0) { formula = FormulaOption::WEIGHTED_AVG; } else if (sensor["Formula"].asString().compare("MAXIMUM") == 0) { formula = FormulaOption::MAXIMUM; } else if (sensor["Formula"].asString().compare("MINIMUM") == 0) { formula = FormulaOption::MINIMUM; } else { LOG(ERROR) << "Sensor[" << name << "]'s Formula is invalid"; return false; } virtual_sensor_info->reset(new VirtualSensorInfo{ linked_sensors, linked_sensors_type, coefficients, offset, trigger_sensors, formula}); return true; } bool ParseBindedCdevInfo(const Json::Value &values, std::unordered_map *binded_cdev_info_map, const bool support_pid, bool *support_hard_limit) { for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { Json::Value sub_values; const std::string &cdev_name = values[j]["CdevRequest"].asString(); ThrottlingArray cdev_weight_for_pid; cdev_weight_for_pid.fill(NAN); CdevArray cdev_ceiling; cdev_ceiling.fill(std::numeric_limits::max()); int max_release_step = std::numeric_limits::max(); int max_throttle_step = std::numeric_limits::max(); if (support_pid) { if (!values[j]["CdevWeightForPID"].empty()) { LOG(INFO) << "Star to parse " << cdev_name << "'s CdevWeightForPID"; if (!getFloatFromJsonValues(values[j]["CdevWeightForPID"], &cdev_weight_for_pid, false, false)) { LOG(ERROR) << "Failed to parse CdevWeightForPID"; binded_cdev_info_map->clear(); return false; } } if (!values[j]["CdevCeiling"].empty()) { LOG(INFO) << "Start to parse CdevCeiling: " << cdev_name; if (!getIntFromJsonValues(values[j]["CdevCeiling"], &cdev_ceiling, false, false)) { LOG(ERROR) << "Failed to parse CdevCeiling"; binded_cdev_info_map->clear(); return false; } } if (!values[j]["MaxReleaseStep"].empty()) { max_release_step = getIntFromValue(values[j]["MaxReleaseStep"]); if (max_release_step < 0) { LOG(ERROR) << cdev_name << " MaxReleaseStep: " << max_release_step; binded_cdev_info_map->clear(); return false; } else { LOG(INFO) << cdev_name << " MaxReleaseStep: " << max_release_step; } } if (!values[j]["MaxThrottleStep"].empty()) { max_throttle_step = getIntFromValue(values[j]["MaxThrottleStep"]); if (max_throttle_step < 0) { LOG(ERROR) << cdev_name << " MaxThrottleStep: " << max_throttle_step; binded_cdev_info_map->clear(); return false; } else { LOG(INFO) << cdev_name << " MaxThrottleStep: " << max_throttle_step; } } } CdevArray limit_info; limit_info.fill(0); ThrottlingArray power_thresholds; power_thresholds.fill(NAN); ReleaseLogic release_logic = ReleaseLogic::NONE; sub_values = values[j]["LimitInfo"]; if (sub_values.size()) { LOG(INFO) << "Start to parse LimitInfo: " << cdev_name; if (!getIntFromJsonValues(sub_values, &limit_info, false, false)) { LOG(ERROR) << "Failed to parse LimitInfo"; binded_cdev_info_map->clear(); return false; } *support_hard_limit = true; } // Parse linked power info std::string power_rail; bool high_power_check = false; bool throttling_with_power_link = false; CdevArray cdev_floor_with_power_link; cdev_floor_with_power_link.fill(0); const bool power_link_disabled = ::android::base::GetBoolProperty(kPowerLinkDisabledProperty.data(), false); if (!power_link_disabled) { power_rail = values[j]["BindedPowerRail"].asString(); if (values[j]["HighPowerCheck"].asBool()) { high_power_check = true; } LOG(INFO) << "Highpowercheck: " << std::boolalpha << high_power_check; if (values[j]["ThrottlingWithPowerLink"].asBool()) { throttling_with_power_link = true; } LOG(INFO) << "ThrottlingwithPowerLink: " << std::boolalpha << throttling_with_power_link; sub_values = values[j]["CdevFloorWithPowerLink"]; if (sub_values.size()) { LOG(INFO) << "Start to parse " << cdev_name << "'s CdevFloorWithPowerLink"; if (!getIntFromJsonValues(sub_values, &cdev_floor_with_power_link, false, false)) { LOG(ERROR) << "Failed to parse CdevFloor"; binded_cdev_info_map->clear(); return false; } } sub_values = values[j]["PowerThreshold"]; if (sub_values.size()) { LOG(INFO) << "Start to parse " << cdev_name << "'s PowerThreshold"; if (!getFloatFromJsonValues(sub_values, &power_thresholds, false, false)) { LOG(ERROR) << "Failed to parse power thresholds"; binded_cdev_info_map->clear(); return false; } if (values[j]["ReleaseLogic"].asString() == "INCREASE") { release_logic = ReleaseLogic::INCREASE; LOG(INFO) << "Release logic: INCREASE"; } else if (values[j]["ReleaseLogic"].asString() == "DECREASE") { release_logic = ReleaseLogic::DECREASE; LOG(INFO) << "Release logic: DECREASE"; } else if (values[j]["ReleaseLogic"].asString() == "STEPWISE") { release_logic = ReleaseLogic::STEPWISE; LOG(INFO) << "Release logic: STEPWISE"; } else if (values[j]["ReleaseLogic"].asString() == "RELEASE_TO_FLOOR") { release_logic = ReleaseLogic::RELEASE_TO_FLOOR; LOG(INFO) << "Release logic: RELEASE_TO_FLOOR"; } else { LOG(ERROR) << "Release logic is invalid"; binded_cdev_info_map->clear(); return false; } } } (*binded_cdev_info_map)[cdev_name] = { .limit_info = limit_info, .power_thresholds = power_thresholds, .release_logic = release_logic, .high_power_check = high_power_check, .throttling_with_power_link = throttling_with_power_link, .cdev_weight_for_pid = cdev_weight_for_pid, .cdev_ceiling = cdev_ceiling, .max_release_step = max_release_step, .max_throttle_step = max_throttle_step, .cdev_floor_with_power_link = cdev_floor_with_power_link, .power_rail = power_rail, }; } return true; } bool ParseSensorThrottlingInfo(const std::string_view name, const Json::Value &sensor, bool *support_throttling, std::shared_ptr *throttling_info) { std::array k_po; k_po.fill(0.0); std::array k_pu; k_pu.fill(0.0); std::array k_i; k_i.fill(0.0); std::array k_d; k_d.fill(0.0); std::array i_max; i_max.fill(NAN); std::array max_alloc_power; max_alloc_power.fill(NAN); std::array min_alloc_power; min_alloc_power.fill(NAN); std::array s_power; s_power.fill(NAN); std::array i_cutoff; i_cutoff.fill(NAN); float i_default = 0.0; int tran_cycle = 0; bool support_pid = false; bool support_hard_limit = false; // Parse PID parameters if (!sensor["PIDInfo"].empty()) { LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s K_Po"; if (sensor["PIDInfo"]["K_Po"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["K_Po"], &k_po, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse K_Po"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s K_Pu"; if (sensor["PIDInfo"]["K_Pu"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["K_Pu"], &k_pu, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse K_Pu"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s K_I"; if (sensor["PIDInfo"]["K_I"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["K_I"], &k_i, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse K_I"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s K_D"; if (sensor["PIDInfo"]["K_D"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["K_D"], &k_d, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse K_D"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s I_Max"; if (sensor["PIDInfo"]["I_Max"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["I_Max"], &i_max, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse I_Max"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s MaxAllocPower"; if (sensor["PIDInfo"]["MaxAllocPower"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["MaxAllocPower"], &max_alloc_power, false, true)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse MaxAllocPower"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s MinAllocPower"; if (sensor["PIDInfo"]["MinAllocPower"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["MinAllocPower"], &min_alloc_power, false, true)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse MinAllocPower"; return false; } LOG(INFO) << "Start to parse Sensor[" << name << "]'s S_Power"; if (sensor["PIDInfo"]["S_Power"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["S_Power"], &s_power, false, true)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse S_Power"; return false; } LOG(INFO) << "Start to parse Sensor[" << name << "]'s I_Cutoff"; if (sensor["PIDInfo"]["I_Cutoff"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["I_Cutoff"], &i_cutoff, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse I_Cutoff"; return false; } i_default = getFloatFromValue(sensor["PIDInfo"]["I_Default"]); LOG(INFO) << "Sensor[" << name << "]'s I_Default: " << i_default; tran_cycle = getFloatFromValue(sensor["PIDInfo"]["TranCycle"]); LOG(INFO) << "Sensor[" << name << "]'s TranCycle: " << tran_cycle; // Confirm we have at least one valid PID combination bool valid_pid_combination = false; for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { if (!std::isnan(s_power[j])) { if (std::isnan(k_po[j]) || std::isnan(k_pu[j]) || std::isnan(k_i[j]) || std::isnan(k_d[j]) || std::isnan(i_max[j]) || std::isnan(max_alloc_power[j]) || std::isnan(min_alloc_power[j]) || std::isnan(i_cutoff[j])) { valid_pid_combination = false; break; } else { valid_pid_combination = true; } } } if (!valid_pid_combination) { LOG(ERROR) << "Sensor[" << name << "]: Invalid PID parameters combinations"; return false; } else { support_pid = true; } } // Parse binded cooling device std::unordered_map binded_cdev_info_map; if (!ParseBindedCdevInfo(sensor["BindedCdevInfo"], &binded_cdev_info_map, support_pid, &support_hard_limit)) { LOG(ERROR) << "Sensor[" << name << "]: failed to parse BindedCdevInfo"; return false; } std::unordered_map excluded_power_info_map; Json::Value values = sensor["ExcludedPowerInfo"]; for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { Json::Value sub_values; const std::string &power_rail = values[j]["PowerRail"].asString(); if (power_rail.empty()) { LOG(ERROR) << "Sensor[" << name << "] failed to parse excluded PowerRail"; return false; } ThrottlingArray power_weight; power_weight.fill(1); if (!values[j]["PowerWeight"].empty()) { LOG(INFO) << "Sensor[" << name << "]: Start to parse " << power_rail << "'s PowerWeight"; if (!getFloatFromJsonValues(values[j]["PowerWeight"], &power_weight, false, false)) { LOG(ERROR) << "Failed to parse PowerWeight"; return false; } } excluded_power_info_map[power_rail] = power_weight; } throttling_info->reset(new ThrottlingInfo{ k_po, k_pu, k_i, k_d, i_max, max_alloc_power, min_alloc_power, s_power, i_cutoff, i_default, tran_cycle, excluded_power_info_map, binded_cdev_info_map}); *support_throttling = support_pid | support_hard_limit; return true; } bool ParseSensorInfo(const Json::Value &config, std::unordered_map *sensors_parsed) { Json::Value sensors = config["Sensors"]; std::size_t total_parsed = 0; std::unordered_set sensors_name_parsed; for (Json::Value::ArrayIndex i = 0; i < sensors.size(); ++i) { const std::string &name = sensors[i]["Name"].asString(); LOG(INFO) << "Sensor[" << i << "]'s Name: " << name; if (name.empty()) { LOG(ERROR) << "Failed to read Sensor[" << i << "]'s Name"; sensors_parsed->clear(); return false; } auto result = sensors_name_parsed.insert(name); if (!result.second) { LOG(ERROR) << "Duplicate Sensor[" << i << "]'s Name"; sensors_parsed->clear(); return false; } std::string sensor_type_str = sensors[i]["Type"].asString(); LOG(INFO) << "Sensor[" << name << "]'s Type: " << sensor_type_str; TemperatureType sensor_type; if (!getTypeFromString(sensor_type_str, &sensor_type)) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s Type: " << sensor_type_str; sensors_parsed->clear(); return false; } bool send_cb = false; if (!sensors[i]["Monitor"].empty() && sensors[i]["Monitor"].isBool()) { send_cb = sensors[i]["Monitor"].asBool(); } else if (!sensors[i]["SendCallback"].empty() && sensors[i]["SendCallback"].isBool()) { send_cb = sensors[i]["SendCallback"].asBool(); } LOG(INFO) << "Sensor[" << name << "]'s SendCallback: " << std::boolalpha << send_cb << std::noboolalpha; bool send_powerhint = false; if (sensors[i]["SendPowerHint"].empty() || !sensors[i]["SendPowerHint"].isBool()) { LOG(INFO) << "Failed to read Sensor[" << name << "]'s SendPowerHint, set to 'false'"; } else if (sensors[i]["SendPowerHint"].asBool()) { send_powerhint = true; } LOG(INFO) << "Sensor[" << name << "]'s SendPowerHint: " << std::boolalpha << send_powerhint << std::noboolalpha; bool is_hidden = false; if (sensors[i]["Hidden"].empty() || !sensors[i]["Hidden"].isBool()) { LOG(INFO) << "Failed to read Sensor[" << name << "]'s Hidden, set to 'false'"; } else if (sensors[i]["Hidden"].asBool()) { is_hidden = true; } LOG(INFO) << "Sensor[" << name << "]'s Hidden: " << std::boolalpha << is_hidden << std::noboolalpha; std::array hot_thresholds; hot_thresholds.fill(NAN); std::array cold_thresholds; cold_thresholds.fill(NAN); std::array hot_hysteresis; hot_hysteresis.fill(0.0); std::array cold_hysteresis; cold_hysteresis.fill(0.0); Json::Value values = sensors[i]["HotThreshold"]; if (!values.size()) { LOG(INFO) << "Sensor[" << name << "]'s HotThreshold, default all to NAN"; } else if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s HotThreshold count:" << values.size(); sensors_parsed->clear(); return false; } else { float min = std::numeric_limits::min(); for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { hot_thresholds[j] = getFloatFromValue(values[j]); if (!std::isnan(hot_thresholds[j])) { if (hot_thresholds[j] < min) { LOG(ERROR) << "Invalid " << "Sensor[" << name << "]'s HotThreshold[j" << j << "]: " << hot_thresholds[j] << " < " << min; sensors_parsed->clear(); return false; } min = hot_thresholds[j]; } LOG(INFO) << "Sensor[" << name << "]'s HotThreshold[" << j << "]: " << hot_thresholds[j]; } } values = sensors[i]["HotHysteresis"]; if (!values.size()) { LOG(INFO) << "Sensor[" << name << "]'s HotHysteresis, default all to 0.0"; } else if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s HotHysteresis, count:" << values.size(); sensors_parsed->clear(); return false; } else { for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { hot_hysteresis[j] = getFloatFromValue(values[j]); if (std::isnan(hot_hysteresis[j])) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s HotHysteresis: " << hot_hysteresis[j]; sensors_parsed->clear(); return false; } LOG(INFO) << "Sensor[" << name << "]'s HotHysteresis[" << j << "]: " << hot_hysteresis[j]; } } for (Json::Value::ArrayIndex j = 0; j < (kThrottlingSeverityCount - 1); ++j) { if (std::isnan(hot_thresholds[j])) { continue; } for (auto k = j + 1; k < kThrottlingSeverityCount; ++k) { if (std::isnan(hot_thresholds[k])) { continue; } else if (hot_thresholds[j] > (hot_thresholds[k] - hot_hysteresis[k])) { LOG(ERROR) << "Sensor[" << name << "]'s hot threshold " << j << " is overlapped"; sensors_parsed->clear(); return false; } else { break; } } } values = sensors[i]["ColdThreshold"]; if (!values.size()) { LOG(INFO) << "Sensor[" << name << "]'s ColdThreshold, default all to NAN"; } else if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s ColdThreshold count:" << values.size(); sensors_parsed->clear(); return false; } else { float max = std::numeric_limits::max(); for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { cold_thresholds[j] = getFloatFromValue(values[j]); if (!std::isnan(cold_thresholds[j])) { if (cold_thresholds[j] > max) { LOG(ERROR) << "Invalid " << "Sensor[" << name << "]'s ColdThreshold[j" << j << "]: " << cold_thresholds[j] << " > " << max; sensors_parsed->clear(); return false; } max = cold_thresholds[j]; } LOG(INFO) << "Sensor[" << name << "]'s ColdThreshold[" << j << "]: " << cold_thresholds[j]; } } values = sensors[i]["ColdHysteresis"]; if (!values.size()) { LOG(INFO) << "Sensor[" << name << "]'s ColdHysteresis, default all to 0.0"; } else if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s ColdHysteresis count:" << values.size(); sensors_parsed->clear(); return false; } else { for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { cold_hysteresis[j] = getFloatFromValue(values[j]); if (std::isnan(cold_hysteresis[j])) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s ColdHysteresis: " << cold_hysteresis[j]; sensors_parsed->clear(); return false; } LOG(INFO) << "Sensor[" << name << "]'s ColdHysteresis[" << j << "]: " << cold_hysteresis[j]; } } for (Json::Value::ArrayIndex j = 0; j < (kThrottlingSeverityCount - 1); ++j) { if (std::isnan(cold_thresholds[j])) { continue; } for (auto k = j + 1; k < kThrottlingSeverityCount; ++k) { if (std::isnan(cold_thresholds[k])) { continue; } else if (cold_thresholds[j] < (cold_thresholds[k] + cold_hysteresis[k])) { LOG(ERROR) << "Sensor[" << name << "]'s cold threshold " << j << " is overlapped"; sensors_parsed->clear(); return false; } else { break; } } } std::string temp_path; if (!sensors[i]["TempPath"].empty()) { temp_path = sensors[i]["TempPath"].asString(); LOG(INFO) << "Sensor[" << name << "]'s TempPath: " << temp_path; } float vr_threshold = NAN; if (!sensors[i]["VrThreshold"].empty()) { vr_threshold = getFloatFromValue(sensors[i]["VrThreshold"]); LOG(INFO) << "Sensor[" << name << "]'s VrThreshold: " << vr_threshold; } float multiplier = sensors[i]["Multiplier"].asFloat(); LOG(INFO) << "Sensor[" << name << "]'s Multiplier: " << multiplier; std::chrono::milliseconds polling_delay = kUeventPollTimeoutMs; if (!sensors[i]["PollingDelay"].empty()) { const auto value = getIntFromValue(sensors[i]["PollingDelay"]); polling_delay = (value > 0) ? std::chrono::milliseconds(value) : std::chrono::milliseconds::max(); } LOG(INFO) << "Sensor[" << name << "]'s Polling delay: " << polling_delay.count(); std::chrono::milliseconds passive_delay = kMinPollIntervalMs; if (!sensors[i]["PassiveDelay"].empty()) { const auto value = getIntFromValue(sensors[i]["PassiveDelay"]); passive_delay = (value > 0) ? std::chrono::milliseconds(value) : std::chrono::milliseconds::max(); } LOG(INFO) << "Sensor[" << name << "]'s Passive delay: " << passive_delay.count(); std::chrono::milliseconds time_resolution; if (sensors[i]["TimeResolution"].empty()) { time_resolution = kMinPollIntervalMs; } else { time_resolution = std::chrono::milliseconds(getIntFromValue(sensors[i]["TimeResolution"])); } LOG(INFO) << "Sensor[" << name << "]'s Time resolution: " << time_resolution.count(); if (is_hidden && send_cb) { LOG(ERROR) << "is_hidden and send_cb cannot be enabled together"; sensors_parsed->clear(); return false; } std::unique_ptr virtual_sensor_info; if (!ParseVirtualSensorInfo(name, sensors[i], &virtual_sensor_info)) { LOG(ERROR) << "Sensor[" << name << "]: failed to parse virtual sensor info"; sensors_parsed->clear(); return false; } bool support_throttling = false; // support pid or hard limit std::shared_ptr throttling_info; if (!ParseSensorThrottlingInfo(name, sensors[i], &support_throttling, &throttling_info)) { LOG(ERROR) << "Sensor[" << name << "]: failed to parse throttling info"; sensors_parsed->clear(); return false; } bool is_watch = (send_cb | send_powerhint | support_throttling); LOG(INFO) << "Sensor[" << name << "]'s is_watch: " << std::boolalpha << is_watch; (*sensors_parsed)[name] = { .type = sensor_type, .hot_thresholds = hot_thresholds, .cold_thresholds = cold_thresholds, .hot_hysteresis = hot_hysteresis, .cold_hysteresis = cold_hysteresis, .temp_path = temp_path, .vr_threshold = vr_threshold, .multiplier = multiplier, .polling_delay = polling_delay, .passive_delay = passive_delay, .time_resolution = time_resolution, .send_cb = send_cb, .send_powerhint = send_powerhint, .is_watch = is_watch, .is_hidden = is_hidden, .virtual_sensor_info = std::move(virtual_sensor_info), .throttling_info = std::move(throttling_info), }; ++total_parsed; } LOG(INFO) << total_parsed << " Sensors parsed successfully"; return true; } bool ParseCoolingDevice(const Json::Value &config, std::unordered_map *cooling_devices_parsed) { Json::Value cooling_devices = config["CoolingDevices"]; std::size_t total_parsed = 0; std::unordered_set cooling_devices_name_parsed; for (Json::Value::ArrayIndex i = 0; i < cooling_devices.size(); ++i) { const std::string &name = cooling_devices[i]["Name"].asString(); LOG(INFO) << "CoolingDevice[" << i << "]'s Name: " << name; if (name.empty()) { LOG(ERROR) << "Failed to read CoolingDevice[" << i << "]'s Name"; cooling_devices_parsed->clear(); return false; } auto result = cooling_devices_name_parsed.insert(name.data()); if (!result.second) { LOG(ERROR) << "Duplicate CoolingDevice[" << i << "]'s Name"; cooling_devices_parsed->clear(); return false; } std::string cooling_device_type_str = cooling_devices[i]["Type"].asString(); LOG(INFO) << "CoolingDevice[" << name << "]'s Type: " << cooling_device_type_str; CoolingType cooling_device_type; if (!getTypeFromString(cooling_device_type_str, &cooling_device_type)) { LOG(ERROR) << "Invalid CoolingDevice[" << name << "]'s Type: " << cooling_device_type_str; cooling_devices_parsed->clear(); return false; } const std::string &read_path = cooling_devices[i]["ReadPath"].asString(); LOG(INFO) << "Cdev Read Path: " << (read_path.empty() ? "default" : read_path); const std::string &write_path = cooling_devices[i]["WritePath"].asString(); LOG(INFO) << "Cdev Write Path: " << (write_path.empty() ? "default" : write_path); std::vector state2power; Json::Value values = cooling_devices[i]["State2Power"]; if (values.size()) { state2power.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { state2power.emplace_back(getFloatFromValue(values[j])); LOG(INFO) << "Cooling device[" << name << "]'s Power2State[" << j << "]: " << state2power[j]; } } else { LOG(INFO) << "CoolingDevice[" << i << "]'s Name: " << name << " does not support State2Power"; } const std::string &power_rail = cooling_devices[i]["PowerRail"].asString(); LOG(INFO) << "Cooling device power rail : " << power_rail; (*cooling_devices_parsed)[name] = { .type = cooling_device_type, .read_path = read_path, .write_path = write_path, .state2power = state2power, }; ++total_parsed; } LOG(INFO) << total_parsed << " CoolingDevices parsed successfully"; return true; } bool ParsePowerRailInfo(const Json::Value &config, std::unordered_map *power_rails_parsed) { Json::Value power_rails = config["PowerRails"]; std::size_t total_parsed = 0; std::unordered_set power_rails_name_parsed; for (Json::Value::ArrayIndex i = 0; i < power_rails.size(); ++i) { const std::string &name = power_rails[i]["Name"].asString(); LOG(INFO) << "PowerRail[" << i << "]'s Name: " << name; if (name.empty()) { LOG(ERROR) << "Failed to read PowerRail[" << i << "]'s Name"; power_rails_parsed->clear(); return false; } std::string rail; if (power_rails[i]["Rail"].empty()) { rail = name; } else { rail = power_rails[i]["Rail"].asString(); } LOG(INFO) << "PowerRail[" << i << "]'s Rail: " << rail; std::vector linked_power_rails; std::vector coefficients; float offset = 0; FormulaOption formula = FormulaOption::COUNT_THRESHOLD; bool is_virtual_power_rail = false; Json::Value values; int power_sample_count = 0; std::chrono::milliseconds power_sample_delay; if (!power_rails[i]["VirtualRails"].empty() && power_rails[i]["VirtualRails"].isBool()) { is_virtual_power_rail = power_rails[i]["VirtualRails"].asBool(); LOG(INFO) << "PowerRails[" << name << "]'s VirtualRail, set to 'true'"; } if (is_virtual_power_rail) { values = power_rails[i]["Combination"]; if (values.size()) { linked_power_rails.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { linked_power_rails.emplace_back(values[j].asString()); LOG(INFO) << "PowerRail[" << name << "]'s combination[" << j << "]: " << linked_power_rails[j]; } } else { LOG(ERROR) << "PowerRails[" << name << "] has no combination for VirtualRail"; power_rails_parsed->clear(); return false; } values = power_rails[i]["Coefficient"]; if (values.size()) { coefficients.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { coefficients.emplace_back(getFloatFromValue(values[j])); LOG(INFO) << "PowerRail[" << name << "]'s coefficient[" << j << "]: " << coefficients[j]; } } else { LOG(ERROR) << "PowerRails[" << name << "] has no coefficient for VirtualRail"; power_rails_parsed->clear(); return false; } if (linked_power_rails.size() != coefficients.size()) { LOG(ERROR) << "PowerRails[" << name << "]'s combination size is not matched with coefficient size"; power_rails_parsed->clear(); return false; } if (!power_rails[i]["Offset"].empty()) { offset = power_rails[i]["Offset"].asFloat(); } if (linked_power_rails.size() != coefficients.size()) { LOG(ERROR) << "PowerRails[" << name << "]'s combination size is not matched with coefficient size"; power_rails_parsed->clear(); return false; } if (power_rails[i]["Formula"].asString().compare("COUNT_THRESHOLD") == 0) { formula = FormulaOption::COUNT_THRESHOLD; } else if (power_rails[i]["Formula"].asString().compare("WEIGHTED_AVG") == 0) { formula = FormulaOption::WEIGHTED_AVG; } else if (power_rails[i]["Formula"].asString().compare("MAXIMUM") == 0) { formula = FormulaOption::MAXIMUM; } else if (power_rails[i]["Formula"].asString().compare("MINIMUM") == 0) { formula = FormulaOption::MINIMUM; } else { LOG(ERROR) << "PowerRails[" << name << "]'s Formula is invalid"; power_rails_parsed->clear(); return false; } } std::unique_ptr virtual_power_rail_info; if (is_virtual_power_rail) { virtual_power_rail_info.reset( new VirtualPowerRailInfo{linked_power_rails, coefficients, offset, formula}); } power_sample_count = power_rails[i]["PowerSampleCount"].asInt(); LOG(INFO) << "Power sample Count: " << power_sample_count; if (!power_rails[i]["PowerSampleDelay"]) { power_sample_delay = std::chrono::milliseconds::max(); } else { power_sample_delay = std::chrono::milliseconds(getIntFromValue(power_rails[i]["PowerSampleDelay"])); } (*power_rails_parsed)[name] = { .rail = rail, .power_sample_count = power_sample_count, .power_sample_delay = power_sample_delay, .virtual_power_rail_info = std::move(virtual_power_rail_info), }; ++total_parsed; } LOG(INFO) << total_parsed << " PowerRails parsed successfully"; return true; } template bool ParseStatsInfo(const Json::Value &stats_config, const std::unordered_map &entity_info, StatsInfo *stats_info, T min_value) { if (stats_config.empty()) { LOG(INFO) << "No stats config"; return true; } std::variant> record_by_default_threshold_all_or_name_set_ = false; if (stats_config["DefaultThresholdEnableAll"].empty() || !stats_config["DefaultThresholdEnableAll"].isBool()) { LOG(INFO) << "Failed to read stats DefaultThresholdEnableAll, set to 'false'"; } else if (stats_config["DefaultThresholdEnableAll"].asBool()) { record_by_default_threshold_all_or_name_set_ = true; } LOG(INFO) << "DefaultThresholdEnableAll " << std::boolalpha << std::get(record_by_default_threshold_all_or_name_set_) << std::noboolalpha; Json::Value values = stats_config["RecordWithDefaultThreshold"]; if (values.size()) { if (std::get(record_by_default_threshold_all_or_name_set_)) { LOG(ERROR) << "Cannot enable record with default threshold when " "DefaultThresholdEnableAll true."; return false; } record_by_default_threshold_all_or_name_set_ = std::unordered_set(); for (Json::Value::ArrayIndex i = 0; i < values.size(); ++i) { std::string name = values[i].asString(); if (!entity_info.count(name)) { LOG(ERROR) << "Unknown name [" << name << "] not present in entity_info."; return false; } std::get>(record_by_default_threshold_all_or_name_set_) .insert(name); } } else { LOG(INFO) << "No stat by default threshold enabled."; } std::unordered_map>> record_by_threshold; values = stats_config["RecordWithThreshold"]; if (values.size()) { Json::Value threshold_values; for (Json::Value::ArrayIndex i = 0; i < values.size(); i++) { const std::string &name = values[i]["Name"].asString(); if (!entity_info.count(name)) { LOG(ERROR) << "Unknown name [" << name << "] not present in entity_info."; return false; } std::optional logging_name; if (!values[i]["LoggingName"].empty()) { logging_name = values[i]["LoggingName"].asString(); LOG(INFO) << "For [" << name << "]" << ", stats logging name is [" << logging_name.value() << "]"; } LOG(INFO) << "Start to parse stats threshold for [" << name << "]"; threshold_values = values[i]["Thresholds"]; if (threshold_values.empty()) { LOG(ERROR) << "Empty stats threshold not valid."; return false; } const auto &threshold_values_count = threshold_values.size(); if (threshold_values_count > kMaxStatsThresholdCount) { LOG(ERROR) << "Number of stats threshold " << threshold_values_count << " greater than max " << kMaxStatsThresholdCount; return false; } std::vector stats_threshold(threshold_values_count); T prev_value = min_value; LOG(INFO) << "Thresholds:"; for (Json::Value::ArrayIndex i = 0; i < threshold_values_count; ++i) { stats_threshold[i] = std::is_floating_point_v ? getFloatFromValue(threshold_values[i]) : getIntFromValue(threshold_values[i]); if (stats_threshold[i] <= prev_value) { LOG(ERROR) << "Invalid array[" << i << "]" << stats_threshold[i] << " is <=" << prev_value; return false; } prev_value = stats_threshold[i]; LOG(INFO) << "[" << i << "]: " << stats_threshold[i]; } record_by_threshold[name].emplace_back(logging_name, stats_threshold); } } else { LOG(INFO) << "No stat by threshold enabled."; } (*stats_info) = {.record_by_default_threshold_all_or_name_set_ = record_by_default_threshold_all_or_name_set_, .record_by_threshold = record_by_threshold}; return true; } bool ParseStatsConfig(const Json::Value &config, const std::unordered_map &sensor_info_map_, const std::unordered_map &cooling_device_info_map_, StatsConfig *stats_config_parsed) { Json::Value stats_config = config["Stats"]; if (stats_config.empty()) { LOG(INFO) << "No Stats Config present."; return true; } LOG(INFO) << "Parse Stats Config for Sensor Temp."; // Parse sensor stats config if (!ParseStatsInfo(stats_config["Sensors"], sensor_info_map_, &stats_config_parsed->sensor_stats_info, std::numeric_limits::lowest())) { LOG(ERROR) << "Failed to parse sensor temp stats info."; stats_config_parsed->clear(); return false; } // Parse cooling device user vote if (stats_config["CoolingDevices"].empty()) { LOG(INFO) << "No cooling device stats present."; return true; } LOG(INFO) << "Parse Stats Config for Sensor CDev Request."; if (!ParseStatsInfo(stats_config["CoolingDevices"]["RecordVotePerSensor"], cooling_device_info_map_, &stats_config_parsed->cooling_device_request_info, -1)) { LOG(ERROR) << "Failed to parse cooling device user vote stats info."; stats_config_parsed->clear(); return false; } return true; } } // namespace implementation } // namespace thermal } // namespace hardware } // namespace android } // namespace aidl