/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define VERBOSE #include "Sensors.h" #include #include "multihal.h" #include #include namespace android { namespace hardware { namespace sensors { namespace V1_0 { namespace implementation { /* * If a multi-hal configuration file exists in the proper location, * return true indicating we need to use multi-hal functionality. */ static bool UseMultiHal() { const std::string& name = MULTI_HAL_CONFIG_FILE_PATH; struct stat buffer; return (stat (name.c_str(), &buffer) == 0); } static Result ResultFromStatus(status_t err) { switch (err) { case OK: return Result::OK; case PERMISSION_DENIED: return Result::PERMISSION_DENIED; case NO_MEMORY: return Result::NO_MEMORY; case BAD_VALUE: return Result::BAD_VALUE; default: return Result::INVALID_OPERATION; } } Sensors::Sensors() : mInitCheck(NO_INIT), mSensorModule(nullptr), mSensorDevice(nullptr) { status_t err = OK; if (UseMultiHal()) { mSensorModule = ::get_multi_hal_module_info(); } else { err = hw_get_module( SENSORS_HARDWARE_MODULE_ID, (hw_module_t const **)&mSensorModule); } if (mSensorModule == NULL) { err = UNKNOWN_ERROR; } if (err != OK) { LOG(ERROR) << "Couldn't load " << SENSORS_HARDWARE_MODULE_ID << " module (" << strerror(-err) << ")"; mInitCheck = err; return; } err = sensors_open_1(&mSensorModule->common, &mSensorDevice); if (err != OK) { LOG(ERROR) << "Couldn't open device for module " << SENSORS_HARDWARE_MODULE_ID << " (" << strerror(-err) << ")"; mInitCheck = err; return; } // Require all the old HAL APIs to be present except for injection, which // is considered optional. CHECK_GE(getHalDeviceVersion(), SENSORS_DEVICE_API_VERSION_1_3); if (getHalDeviceVersion() == SENSORS_DEVICE_API_VERSION_1_4) { if (mSensorDevice->inject_sensor_data == nullptr) { LOG(ERROR) << "HAL specifies version 1.4, but does not implement inject_sensor_data()"; } if (mSensorModule->set_operation_mode == nullptr) { LOG(ERROR) << "HAL specifies version 1.4, but does not implement set_operation_mode()"; } } /* Get us all sensors */ setOperationMode(static_cast(5555)); mInitCheck = OK; } status_t Sensors::initCheck() const { return mInitCheck; } Return Sensors::getSensorsList(getSensorsList_cb _hidl_cb) { sensor_t const *list; size_t count = mSensorModule->get_sensors_list(mSensorModule, &list); hidl_vec out; out.resize(count); for (size_t i = 0; i < count; ++i) { const sensor_t *src = &list[i]; SensorInfo *dst = &out[i]; convertFromSensor(*src, dst); if (dst->requiredPermission == "com.samsung.permission.SSENSOR") { dst->requiredPermission = ""; } if (dst->typeAsString == "com.samsung.sensor.physical_proximity") { LOG(INFO) << "Fixing com.samsung.sensor.physical_proximity"; dst->type = SensorType::PROXIMITY; dst->typeAsString = SENSOR_STRING_TYPE_PROXIMITY; dst->maxRange = 1; } #ifdef VERBOSE LOG(INFO) << "SENSOR NAME: " << dst->name; LOG(INFO) << " VENDOR: " << dst->name; LOG(INFO) << " TYPE: " << (uint32_t)dst->type; LOG(INFO) << " TYPE_AS_STRING: " << dst->typeAsString; LOG(INFO) << " FLAGS: " << std::hex << dst->flags; LOG(INFO) << ""; #endif } _hidl_cb(out); return Void(); } int Sensors::getHalDeviceVersion() const { if (!mSensorDevice) { return -1; } return mSensorDevice->common.version; } Return Sensors::setOperationMode(OperationMode mode) { if (getHalDeviceVersion() < SENSORS_DEVICE_API_VERSION_1_4 || mSensorModule->set_operation_mode == nullptr) { return Result::INVALID_OPERATION; } return ResultFromStatus(mSensorModule->set_operation_mode((uint32_t)mode)); } Return Sensors::activate( int32_t sensor_handle, bool enabled) { return ResultFromStatus( mSensorDevice->activate( reinterpret_cast(mSensorDevice), sensor_handle, enabled)); } Return Sensors::poll(int32_t maxCount, poll_cb _hidl_cb) { hidl_vec out; hidl_vec dynamicSensorsAdded; std::unique_ptr data; int err = android::NO_ERROR; { // scope of reentry lock // This enforces a single client, meaning that a maximum of one client can call poll(). // If this function is re-entred, it means that we are stuck in a state that may prevent // the system from proceeding normally. // // Exit and let the system restart the sensor-hal-implementation hidl service. // // This function must not call _hidl_cb(...) or return until there is no risk of blocking. std::unique_lock lock(mPollLock, std::try_to_lock); if(!lock.owns_lock()){ // cannot get the lock, hidl service will go into deadlock if it is not restarted. // This is guaranteed to not trigger in passthrough mode. LOG(ERROR) << "ISensors::poll() re-entry. I do not know what to do except killing myself."; ::exit(-1); } if (maxCount <= 0) { err = android::BAD_VALUE; } else { int bufferSize = maxCount <= kPollMaxBufferSize ? maxCount : kPollMaxBufferSize; data.reset(new sensors_event_t[bufferSize]); err = mSensorDevice->poll( reinterpret_cast(mSensorDevice), data.get(), bufferSize); } } if (err < 0) { _hidl_cb(ResultFromStatus(err), out, dynamicSensorsAdded); return Void(); } const size_t count = (size_t)err; for (size_t i = 0; i < count; ++i) { if (data[i].type != SENSOR_TYPE_DYNAMIC_SENSOR_META) { continue; } const dynamic_sensor_meta_event_t *dyn = &data[i].dynamic_sensor_meta; if (!dyn->connected) { continue; } CHECK(dyn->sensor != nullptr); CHECK_EQ(dyn->sensor->handle, dyn->handle); SensorInfo info; convertFromSensor(*dyn->sensor, &info); size_t numDynamicSensors = dynamicSensorsAdded.size(); dynamicSensorsAdded.resize(numDynamicSensors + 1); dynamicSensorsAdded[numDynamicSensors] = info; } out.resize(count); convertFromSensorEvents(err, data.get(), &out); _hidl_cb(Result::OK, out, dynamicSensorsAdded); return Void(); } Return Sensors::batch( int32_t sensor_handle, int64_t sampling_period_ns, int64_t max_report_latency_ns) { return ResultFromStatus( mSensorDevice->batch( mSensorDevice, sensor_handle, 0, /*flags*/ sampling_period_ns, max_report_latency_ns)); } Return Sensors::flush(int32_t sensor_handle) { return ResultFromStatus(mSensorDevice->flush(mSensorDevice, sensor_handle)); } Return Sensors::injectSensorData(const Event& event) { if (getHalDeviceVersion() < SENSORS_DEVICE_API_VERSION_1_4 || mSensorDevice->inject_sensor_data == nullptr) { return Result::INVALID_OPERATION; } sensors_event_t out; convertToSensorEvent(event, &out); return ResultFromStatus( mSensorDevice->inject_sensor_data(mSensorDevice, &out)); } Return Sensors::registerDirectChannel( const SharedMemInfo& mem, registerDirectChannel_cb _hidl_cb) { if (mSensorDevice->register_direct_channel == nullptr || mSensorDevice->config_direct_report == nullptr) { // HAL does not support _hidl_cb(Result::INVALID_OPERATION, -1); return Void(); } sensors_direct_mem_t m; if (!convertFromSharedMemInfo(mem, &m)) { _hidl_cb(Result::BAD_VALUE, -1); return Void(); } int err = mSensorDevice->register_direct_channel(mSensorDevice, &m, -1); if (err < 0) { _hidl_cb(ResultFromStatus(err), -1); } else { int32_t channelHandle = static_cast(err); _hidl_cb(Result::OK, channelHandle); } return Void(); } Return Sensors::unregisterDirectChannel(int32_t channelHandle) { if (mSensorDevice->register_direct_channel == nullptr || mSensorDevice->config_direct_report == nullptr) { // HAL does not support return Result::INVALID_OPERATION; } mSensorDevice->register_direct_channel(mSensorDevice, nullptr, channelHandle); return Result::OK; } Return Sensors::configDirectReport( int32_t sensorHandle, int32_t channelHandle, RateLevel rate, configDirectReport_cb _hidl_cb) { if (mSensorDevice->register_direct_channel == nullptr || mSensorDevice->config_direct_report == nullptr) { // HAL does not support _hidl_cb(Result::INVALID_OPERATION, -1); return Void(); } sensors_direct_cfg_t cfg = { .rate_level = convertFromRateLevel(rate) }; if (cfg.rate_level < 0) { _hidl_cb(Result::BAD_VALUE, -1); return Void(); } int err = mSensorDevice->config_direct_report(mSensorDevice, sensorHandle, channelHandle, &cfg); if (rate == RateLevel::STOP) { _hidl_cb(ResultFromStatus(err), -1); } else { _hidl_cb(err > 0 ? Result::OK : ResultFromStatus(err), err); } return Void(); } // static void Sensors::convertFromSensorEvents( size_t count, const sensors_event_t *srcArray, hidl_vec *dstVec) { for (size_t i = 0; i < count; ++i) { const sensors_event_t &src = srcArray[i]; Event *dst = &(*dstVec)[i]; convertFromSensorEvent(src, dst); } } ISensors *HIDL_FETCH_ISensors(const char * /* hal */) { Sensors *sensors = new Sensors; if (sensors->initCheck() != OK) { delete sensors; sensors = nullptr; return nullptr; } return sensors; } } // namespace implementation } // namespace V1_0 } // namespace sensors } // namespace hardware } // namespace android