You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hardware_samsung/dtbhtool/mkbootimg.c

587 lines
16 KiB

/* tools/mkbootimg/mkbootimg.c
**
** Copyright 2007, The Android Open Source Project
** Copyright 2013, Sony Mobile Communications
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
**
** June 2014, Ketut Putu Kumajaya
** Modified for Samsung Exynos DTBH, based on mkqcdtbootimg from Sony
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <assert.h>
#include <dirent.h>
#include <err.h>
#include <stdint.h>
#include "libfdt.h"
#include "mincrypt/sha.h"
#include "bootimg.h"
#define DTBH_MAGIC "DTBH"
#define DTBH_VERSION 2
#define DTBH_PLATFORM "k3g"
#define DTBH_SUBTYPE "k3g_eur_open"
/* Hardcoded entry */
#define DTBH_PLATFORM_CODE 0x1e92
#define DTBH_SUBTYPE_CODE 0x7d64f612
struct dt_blob;
/* DTBH_MAGIC + DTBH_VERSION + DTB counts */
#define DT_HEADER_PHYS_SIZE 12
/* Samsung K 3G EUR revision 10's dts:
* model = "Samsung K 3G EUR revision 10 board based on EXYNOS5422";
* model_info-chip = <5422>;
* model_info-platform = "k3g";
* model_info-subtype = "k3g_eur_open";
* model_info-hw_rev = <10>;
* model_info-hw_rev_end = <255>;
* compatible = "samsung,K 3G EUR,r04", "samsung,exynos5422";
*/
/*
* keep the eight uint32_t entries first in this struct so we can memcpy them to the file
*/
#define DT_ENTRY_PHYS_SIZE (sizeof(uint32_t) * 8)
struct dt_entry {
uint32_t chip;
uint32_t platform;
uint32_t subtype;
uint32_t hw_rev;
uint32_t hw_rev_end;
uint32_t offset;
uint32_t size; /* including padding */
uint32_t space;
struct dt_blob *blob;
};
/*
* Comparator for sorting dt_entries
*/
static int dt_entry_cmp(const void *ap, const void *bp)
{
struct dt_entry *a = (struct dt_entry*)ap;
struct dt_entry *b = (struct dt_entry*)bp;
if (a->chip != b->chip)
return a->chip - b->chip;
return a->hw_rev - b->hw_rev;
}
/*
* In memory representation of a dtb blob
*/
struct dt_blob {
uint32_t size;
uint32_t offset;
void *payload;
struct dt_blob *next;
};
static void *load_file(const char *fn, unsigned *_sz)
{
char *data;
int sz;
int fd;
data = 0;
fd = open(fn, O_RDONLY);
if(fd < 0) return 0;
sz = lseek(fd, 0, SEEK_END);
if(sz < 0) goto oops;
if(lseek(fd, 0, SEEK_SET) != 0) goto oops;
data = (char*) malloc(sz);
if(data == 0) goto oops;
if(read(fd, data, sz) != sz) goto oops;
close(fd);
if(_sz) *_sz = sz;
return data;
oops:
close(fd);
if(data != 0) free(data);
return 0;
}
static void *load_dtbh_block(const char *dtb_path, unsigned pagesize, unsigned *_sz)
{
const unsigned pagemask = pagesize - 1;
struct dt_entry *new_entries;
struct dt_entry *entries = NULL;
struct dt_entry *entry;
struct dt_blob *blob;
struct dt_blob *blob_list = NULL;
struct dt_blob *last_blob = NULL;
struct dirent *de;
unsigned new_count;
unsigned entry_count = 0;
unsigned offset;
unsigned dtb_sz;
unsigned hdr_sz = DT_HEADER_PHYS_SIZE;
uint32_t version = DTBH_VERSION;
unsigned blob_sz = 0;
char fname[PATH_MAX];
const unsigned *prop_chip;
const unsigned *prop_platform;
const unsigned *prop_subtype;
const unsigned *prop_hw_rev;
const unsigned *prop_hw_rev_end;
int namlen;
int len;
void *dtb;
char *dtbh;
DIR *dir;
unsigned c;
dir = opendir(dtb_path);
if (dir == NULL)
err(1, "failed to open '%s'", dtb_path);
while ((de = readdir(dir)) != NULL) {
namlen = strlen(de->d_name);
if (namlen < 4 || strcmp(&de->d_name[namlen - 4], ".dtb"))
continue;
snprintf(fname, sizeof(fname), "%s/%s", dtb_path, de->d_name);
dtb = load_file(fname, &dtb_sz);
if (dtb == NULL)
err(1, "failed to read dtb '%s'", fname);
if (fdt_check_header(dtb) != 0) {
warnx("'%s' is not a valid dtb, skipping", fname);
free(dtb);
continue;
}
offset = fdt_path_offset(dtb, "/");
prop_chip = fdt_getprop(dtb, offset, "model_info-chip", &len);
if (len % (sizeof(uint32_t)) != 0) {
warnx("model_info-chip of %s is of invalid size, skipping", fname);
free(dtb);
continue;
}
prop_platform = fdt_getprop(dtb, offset, "model_info-platform", &len);
if (strcmp((char *)&prop_platform[0], DTBH_PLATFORM)) {
warnx("model_info-platform of %s is invalid, skipping", fname);
free(dtb);
continue;
}
prop_subtype = fdt_getprop(dtb, offset, "model_info-subtype", &len);
if (strcmp((char *)&prop_subtype[0], DTBH_SUBTYPE)) {
warnx("model_info-subtype of %s is invalid, skipping", fname);
free(dtb);
continue;
}
prop_hw_rev = fdt_getprop(dtb, offset, "model_info-hw_rev", &len);
if (len % (sizeof(uint32_t)) != 0) {
warnx("model_info-hw_rev of %s is of invalid size, skipping", fname);
free(dtb);
continue;
}
prop_hw_rev_end = fdt_getprop(dtb, offset, "model_info-hw_rev_end", &len);
if (len % (sizeof(uint32_t)) != 0) {
warnx("model_info-hw_rev_end of %s is of invalid size, skipping", fname);
free(dtb);
continue;
}
blob = calloc(1, sizeof(struct dt_blob));
if (blob == NULL)
err(1, "failed to allocate memory");
blob->payload = dtb;
blob->size = dtb_sz;
if (blob_list == NULL) {
blob_list = blob;
last_blob = blob;
} else {
last_blob->next = blob;
last_blob = blob;
}
blob_sz += (blob->size + pagemask) & ~pagemask;
new_count = entry_count + 1;
new_entries = realloc(entries, new_count * sizeof(struct dt_entry));
if (new_entries == NULL)
err(1, "failed to allocate memory");
entries = new_entries;
entry = &entries[entry_count];
memset(entry, 0, sizeof(*entry));
entry->chip = ntohl(prop_chip[0]);
entry->platform = DTBH_PLATFORM_CODE;
entry->subtype = DTBH_SUBTYPE_CODE;
entry->hw_rev = ntohl(prop_hw_rev[0]);
entry->hw_rev_end = ntohl(prop_hw_rev_end[0]);
entry->space = 0x20; /* space delimiter */
entry->blob = blob;
entry_count++;
hdr_sz += entry_count * DT_ENTRY_PHYS_SIZE;
}
closedir(dir);
if (entry_count == 0) {
warnx("unable to locate any dtbs in the given path");
return NULL;
}
hdr_sz += sizeof(uint32_t); /* eot marker */
hdr_sz = (hdr_sz + pagemask) & ~pagemask;
qsort(entries, entry_count, sizeof(struct dt_entry), dt_entry_cmp);
/* The size of the dt header is now known, calculate the blob offsets... */
offset = hdr_sz;
for (blob = blob_list; blob; blob = blob->next) {
blob->offset = offset;
offset += (blob->size + pagemask) & ~pagemask;
}
/* ...and update the entries */
for (c = 0; c < entry_count; c++) {
entry = &entries[c];
entry->offset = entry->blob->offset;
entry->size = (entry->blob->size + pagemask) & ~pagemask;
}
/*
* All parts are now gathered, so build the dt block
*/
dtbh = calloc(hdr_sz + blob_sz, 1);
if (dtbh == NULL)
err(1, "failed to allocate memory");
offset = 0;
memcpy(dtbh, DTBH_MAGIC, sizeof(uint32_t));
memcpy(dtbh + sizeof(uint32_t), &version, sizeof(uint32_t));
memcpy(dtbh + (sizeof(uint32_t) * 2), &entry_count, sizeof(uint32_t));
offset += DT_HEADER_PHYS_SIZE;
/* add dtbh entries */
for (c = 0; c < entry_count; c++) {
entry = &entries[c];
memcpy(dtbh + offset, entry, DT_ENTRY_PHYS_SIZE);
offset += DT_ENTRY_PHYS_SIZE;
}
/* add padding after dt header */
offset += pagesize - (offset & pagemask);
for (blob = blob_list; blob; blob = blob->next) {
memcpy(dtbh + offset, blob->payload, blob->size);
offset += (blob->size + pagemask) & ~pagemask;
}
*_sz = hdr_sz + blob_sz;
return dtbh;
}
int usage(void)
{
fprintf(stderr,"usage: mkbootimg\n"
" --kernel <filename>\n"
" --ramdisk <filename>\n"
" [ --second <2ndbootloader-filename> ]\n"
" [ --cmdline <kernel-commandline> ]\n"
" [ --board <boardname> ]\n"
" [ --base <address> ]\n"
" [ --pagesize <pagesize> ]\n"
" [ --ramdisk_offset <address> ]\n"
" [ --dt_dir <dtb path> ]\n"
" [ --dt <filename> ]\n"
" [ --signature <filename> ]\n"
" -o|--output <filename>\n"
);
return 1;
}
static unsigned char padding[131072] = { 0, };
int write_padding(int fd, unsigned pagesize, unsigned itemsize)
{
unsigned pagemask = pagesize - 1;
unsigned count;
if((itemsize & pagemask) == 0) {
return 0;
}
count = pagesize - (itemsize & pagemask);
if(write(fd, padding, count) != count) {
return -1;
} else {
return 0;
}
}
int main(int argc, char **argv)
{
boot_img_hdr hdr;
char *kernel_fn = 0;
void *kernel_data = 0;
char *ramdisk_fn = 0;
void *ramdisk_data = 0;
char *second_fn = 0;
void *second_data = 0;
char *cmdline = "";
char *bootimg = 0;
char *board = "";
char *dt_dir = 0;
char *dt_fn = 0;
void *dt_data = 0;
char *sig_fn = 0;
void *sig_data = 0;
unsigned pagesize = 2048;
int fd;
SHA_CTX ctx;
uint8_t* sha;
unsigned base = 0x10000000;
unsigned kernel_offset = 0x00008000;
unsigned ramdisk_offset = 0x01000000;
unsigned second_offset = 0x00f00000;
unsigned tags_offset = 0x00000100;
argc--;
argv++;
memset(&hdr, 0, sizeof(hdr));
while(argc > 0){
char *arg = argv[0];
char *val = argv[1];
if(argc < 2) {
return usage();
}
argc -= 2;
argv += 2;
if(!strcmp(arg, "--output") || !strcmp(arg, "-o")) {
bootimg = val;
} else if(!strcmp(arg, "--kernel")) {
kernel_fn = val;
} else if(!strcmp(arg, "--ramdisk")) {
ramdisk_fn = val;
} else if(!strcmp(arg, "--second")) {
second_fn = val;
} else if(!strcmp(arg, "--cmdline")) {
cmdline = val;
} else if(!strcmp(arg, "--base")) {
base = strtoul(val, 0, 16);
} else if(!strcmp(arg, "--kernel_offset")) {
kernel_offset = strtoul(val, 0, 16);
} else if(!strcmp(arg, "--ramdisk_offset")) {
ramdisk_offset = strtoul(val, 0, 16);
} else if(!strcmp(arg, "--second_offset")) {
second_offset = strtoul(val, 0, 16);
} else if(!strcmp(arg, "--tags_offset")) {
tags_offset = strtoul(val, 0, 16);
} else if(!strcmp(arg, "--board")) {
board = val;
} else if(!strcmp(arg,"--pagesize")) {
pagesize = strtoul(val, 0, 10);
if ((pagesize != 2048) && (pagesize != 4096) && (pagesize != 8192) && (pagesize != 16384) && (pagesize != 32768) && (pagesize != 65536) && (pagesize != 131072)) {
fprintf(stderr,"error: unsupported page size %d\n", pagesize);
return -1;
}
} else if (!strcmp(arg, "--dt_dir")) {
dt_dir = val;
} else if(!strcmp(arg, "--dt")) {
dt_fn = val;
} else if(!strcmp(arg, "--signature")) {
sig_fn = val;
} else {
return usage();
}
}
hdr.page_size = pagesize;
hdr.kernel_addr = base + kernel_offset;
hdr.ramdisk_addr = base + ramdisk_offset;
hdr.second_addr = base + second_offset;
hdr.tags_addr = base + tags_offset;
if (dt_dir && dt_fn) {
fprintf(stderr,"error: don't use both --dt_dir and --dt option\n");
return usage();
}
if(bootimg == 0) {
fprintf(stderr,"error: no output filename specified\n");
return usage();
}
if(kernel_fn == 0) {
fprintf(stderr,"error: no kernel image specified\n");
return usage();
}
if(ramdisk_fn == 0) {
fprintf(stderr,"error: no ramdisk image specified\n");
return usage();
}
if(strlen(board) >= BOOT_NAME_SIZE) {
fprintf(stderr,"error: board name too large\n");
return usage();
}
strcpy(hdr.name, board);
memcpy(hdr.magic, BOOT_MAGIC, BOOT_MAGIC_SIZE);
if(strlen(cmdline) > (BOOT_ARGS_SIZE - 1)) {
fprintf(stderr,"error: kernel commandline too large\n");
return 1;
}
strcpy((char*)hdr.cmdline, cmdline);
kernel_data = load_file(kernel_fn, &hdr.kernel_size);
if(kernel_data == 0) {
fprintf(stderr,"error: could not load kernel '%s'\n", kernel_fn);
return 1;
}
if(!strcmp(ramdisk_fn,"NONE")) {
ramdisk_data = 0;
hdr.ramdisk_size = 0;
} else {
ramdisk_data = load_file(ramdisk_fn, &hdr.ramdisk_size);
if(ramdisk_data == 0) {
fprintf(stderr,"error: could not load ramdisk '%s'\n", ramdisk_fn);
return 1;
}
}
if(second_fn) {
second_data = load_file(second_fn, &hdr.second_size);
if(second_data == 0) {
fprintf(stderr,"error: could not load secondstage '%s'\n", second_fn);
return 1;
}
}
if (dt_dir) {
dt_data = load_dtbh_block(dt_dir, pagesize, &hdr.dt_size);
if (dt_data == 0) {
fprintf(stderr, "error: could not load device tree blobs '%s'\n", dt_dir);
return 1;
}
}
if(dt_fn) {
dt_data = load_file(dt_fn, &hdr.dt_size);
if (dt_data == 0) {
fprintf(stderr,"error: could not load device tree image '%s'\n", dt_fn);
return 1;
}
}
if(sig_fn) {
sig_data = load_file(sig_fn, 0);
if (sig_data == 0) {
fprintf(stderr,"error: could not load signature '%s'\n", sig_fn);
return 1;
}
}
/* put a hash of the contents in the header so boot images can be
* differentiated based on their first 2k.
*/
SHA_init(&ctx);
SHA_update(&ctx, kernel_data, hdr.kernel_size);
SHA_update(&ctx, &hdr.kernel_size, sizeof(hdr.kernel_size));
SHA_update(&ctx, ramdisk_data, hdr.ramdisk_size);
SHA_update(&ctx, &hdr.ramdisk_size, sizeof(hdr.ramdisk_size));
SHA_update(&ctx, second_data, hdr.second_size);
SHA_update(&ctx, &hdr.second_size, sizeof(hdr.second_size));
if(dt_data) {
SHA_update(&ctx, dt_data, hdr.dt_size);
SHA_update(&ctx, &hdr.dt_size, sizeof(hdr.dt_size));
}
sha = SHA_final(&ctx);
memcpy(hdr.id, sha,
SHA_DIGEST_SIZE > sizeof(hdr.id) ? sizeof(hdr.id) : SHA_DIGEST_SIZE);
fd = open(bootimg, O_CREAT | O_TRUNC | O_WRONLY, 0644);
if(fd < 0) {
fprintf(stderr,"error: could not create '%s'\n", bootimg);
return 1;
}
if(write(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) goto fail;
if(write_padding(fd, pagesize, sizeof(hdr))) goto fail;
if(write(fd, kernel_data, hdr.kernel_size) != hdr.kernel_size) goto fail;
if(write_padding(fd, pagesize, hdr.kernel_size)) goto fail;
if(write(fd, ramdisk_data, hdr.ramdisk_size) != hdr.ramdisk_size) goto fail;
if(write_padding(fd, pagesize, hdr.ramdisk_size)) goto fail;
if(second_data) {
if(write(fd, second_data, hdr.second_size) != hdr.second_size) goto fail;
if(write_padding(fd, pagesize, hdr.ramdisk_size)) goto fail;
}
if(dt_data) {
if(write(fd, dt_data, hdr.dt_size) != hdr.dt_size) goto fail;
if(write_padding(fd, pagesize, hdr.dt_size)) goto fail;
}
if(sig_data) {
if(write(fd, sig_data, 256) != 256) goto fail;
}
return 0;
fail:
unlink(bootimg);
close(fd);
fprintf(stderr,"error: failed writing '%s': %s\n", bootimg,
strerror(errno));
return 1;
}