You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hardware_samsung/hidl/camera/libhardware_headers/include/hardware/camera_common.h

1251 lines
51 KiB

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// FIXME: add well-defined names for cameras
#ifndef ANDROID_INCLUDE_CAMERA_COMMON_H
#define ANDROID_INCLUDE_CAMERA_COMMON_H
#include <stdint.h>
#include <stdbool.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <cutils/native_handle.h>
#include <system/camera.h>
#include <system/camera_vendor_tags.h>
#include <hardware/hardware.h>
#include <hardware/gralloc.h>
__BEGIN_DECLS
/**
* The id of this module
*/
#define CAMERA_HARDWARE_MODULE_ID "camera"
/**
* Module versioning information for the Camera hardware module, based on
* camera_module_t.common.module_api_version. The two most significant hex
* digits represent the major version, and the two least significant represent
* the minor version.
*
*******************************************************************************
* Versions: 0.X - 1.X [CAMERA_MODULE_API_VERSION_1_0]
*
* Camera modules that report these version numbers implement the initial
* camera module HAL interface. All camera devices openable through this
* module support only version 1 of the camera device HAL. The device_version
* and static_camera_characteristics fields of camera_info are not valid. Only
* the android.hardware.Camera API can be supported by this module and its
* devices.
*
*******************************************************************************
* Version: 2.0 [CAMERA_MODULE_API_VERSION_2_0]
*
* Camera modules that report this version number implement the second version
* of the camera module HAL interface. Camera devices openable through this
* module may support either version 1.0 or version 2.0 of the camera device
* HAL interface. The device_version field of camera_info is always valid; the
* static_camera_characteristics field of camera_info is valid if the
* device_version field is 2.0 or higher.
*
*******************************************************************************
* Version: 2.1 [CAMERA_MODULE_API_VERSION_2_1]
*
* This camera module version adds support for asynchronous callbacks to the
* framework from the camera HAL module, which is used to notify the framework
* about changes to the camera module state. Modules that provide a valid
* set_callbacks() method must report at least this version number.
*
*******************************************************************************
* Version: 2.2 [CAMERA_MODULE_API_VERSION_2_2]
*
* This camera module version adds vendor tag support from the module, and
* deprecates the old vendor_tag_query_ops that were previously only
* accessible with a device open.
*
*******************************************************************************
* Version: 2.3 [CAMERA_MODULE_API_VERSION_2_3]
*
* This camera module version adds open legacy camera HAL device support.
* Framework can use it to open the camera device as lower device HAL version
* HAL device if the same device can support multiple device API versions.
* The standard hardware module open call (common.methods->open) continues
* to open the camera device with the latest supported version, which is
* also the version listed in camera_info_t.device_version.
*
*******************************************************************************
* Version: 2.4 [CAMERA_MODULE_API_VERSION_2_4]
*
* This camera module version adds below API changes:
*
* 1. Torch mode support. The framework can use it to turn on torch mode for
* any camera device that has a flash unit, without opening a camera device. The
* camera device has a higher priority accessing the flash unit than the camera
* module; opening a camera device will turn off the torch if it had been enabled
* through the module interface. When there are any resource conflicts, such as
* open() is called to open a camera device, the camera HAL module must notify the
* framework through the torch mode status callback that the torch mode has been
* turned off.
*
* 2. External camera (e.g. USB hot-plug camera) support. The API updates specify that
* the camera static info is only available when camera is connected and ready to
* use for external hot-plug cameras. Calls to get static info will be invalid
* calls when camera status is not CAMERA_DEVICE_STATUS_PRESENT. The frameworks
* will only count on device status change callbacks to manage the available external
* camera list.
*
* 3. Camera arbitration hints. This module version adds support for explicitly
* indicating the number of camera devices that can be simultaneously opened and used.
* To specify valid combinations of devices, the resource_cost and conflicting_devices
* fields should always be set in the camera_info structure returned by the
* get_camera_info call.
*
* 4. Module initialization method. This will be called by the camera service
* right after the HAL module is loaded, to allow for one-time initialization
* of the HAL. It is called before any other module methods are invoked.
*
*******************************************************************************
* Version: 2.5 [CAMERA_MODULE_API_VERSION_2_5]
*
* This camera module version adds below API changes:
*
* 1. Support to query characteristics of a non-standalone physical camera, which can
* only be accessed as part of a logical camera. It also adds camera stream combination
* query.
*
* 2. Ability to query whether a particular camera stream combination is
* supported by the camera device.
*
* 3. Device state change notification. This module version also supports
* notification about the overall device state change, such as
* folding/unfolding, or covering/uncovering of shutter.
*/
/**
* Predefined macros for currently-defined version numbers
*/
/**
* All module versions <= HARDWARE_MODULE_API_VERSION(1, 0xFF) must be treated
* as CAMERA_MODULE_API_VERSION_1_0
*/
#define CAMERA_MODULE_API_VERSION_1_0 HARDWARE_MODULE_API_VERSION(1, 0)
#define CAMERA_MODULE_API_VERSION_2_0 HARDWARE_MODULE_API_VERSION(2, 0)
#define CAMERA_MODULE_API_VERSION_2_1 HARDWARE_MODULE_API_VERSION(2, 1)
#define CAMERA_MODULE_API_VERSION_2_2 HARDWARE_MODULE_API_VERSION(2, 2)
#define CAMERA_MODULE_API_VERSION_2_3 HARDWARE_MODULE_API_VERSION(2, 3)
#define CAMERA_MODULE_API_VERSION_2_4 HARDWARE_MODULE_API_VERSION(2, 4)
#define CAMERA_MODULE_API_VERSION_2_5 HARDWARE_MODULE_API_VERSION(2, 5)
#define CAMERA_MODULE_API_VERSION_CURRENT CAMERA_MODULE_API_VERSION_2_5
/**
* All device versions <= HARDWARE_DEVICE_API_VERSION(1, 0xFF) must be treated
* as CAMERA_DEVICE_API_VERSION_1_0
*/
#define CAMERA_DEVICE_API_VERSION_1_0 HARDWARE_DEVICE_API_VERSION(1, 0) // DEPRECATED
#define CAMERA_DEVICE_API_VERSION_2_0 HARDWARE_DEVICE_API_VERSION(2, 0) // NO LONGER SUPPORTED
#define CAMERA_DEVICE_API_VERSION_2_1 HARDWARE_DEVICE_API_VERSION(2, 1) // NO LONGER SUPPORTED
#define CAMERA_DEVICE_API_VERSION_3_0 HARDWARE_DEVICE_API_VERSION(3, 0) // NO LONGER SUPPORTED
#define CAMERA_DEVICE_API_VERSION_3_1 HARDWARE_DEVICE_API_VERSION(3, 1) // NO LONGER SUPPORTED
#define CAMERA_DEVICE_API_VERSION_3_2 HARDWARE_DEVICE_API_VERSION(3, 2)
#define CAMERA_DEVICE_API_VERSION_3_3 HARDWARE_DEVICE_API_VERSION(3, 3)
#define CAMERA_DEVICE_API_VERSION_3_4 HARDWARE_DEVICE_API_VERSION(3, 4)
#define CAMERA_DEVICE_API_VERSION_3_5 HARDWARE_DEVICE_API_VERSION(3, 5)
#define CAMERA_DEVICE_API_VERSION_3_6 HARDWARE_DEVICE_API_VERSION(3, 6)
// Device version 3.5 is current, older HAL camera device versions are not
// recommended for new devices.
#define CAMERA_DEVICE_API_VERSION_CURRENT CAMERA_DEVICE_API_VERSION_3_5
/**
* Defined in /system/media/camera/include/system/camera_metadata.h
*/
typedef struct camera_metadata camera_metadata_t;
typedef struct camera_info {
/**
* The direction that the camera faces to. See system/core/include/system/camera.h
* for camera facing definitions.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* It should be CAMERA_FACING_BACK or CAMERA_FACING_FRONT.
*
* CAMERA_MODULE_API_VERSION_2_4 or higher:
*
* It should be CAMERA_FACING_BACK, CAMERA_FACING_FRONT or
* CAMERA_FACING_EXTERNAL.
*/
int facing;
/**
* The orientation of the camera image. The value is the angle that the
* camera image needs to be rotated clockwise so it shows correctly on the
* display in its natural orientation. It should be 0, 90, 180, or 270.
*
* For example, suppose a device has a naturally tall screen. The
* back-facing camera sensor is mounted in landscape. You are looking at the
* screen. If the top side of the camera sensor is aligned with the right
* edge of the screen in natural orientation, the value should be 90. If the
* top side of a front-facing camera sensor is aligned with the right of the
* screen, the value should be 270.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* Valid in all camera_module versions.
*
* CAMERA_MODULE_API_VERSION_2_4 or higher:
*
* Valid if camera facing is CAMERA_FACING_BACK or CAMERA_FACING_FRONT,
* not valid if camera facing is CAMERA_FACING_EXTERNAL.
*/
int orientation;
/**
* The value of camera_device_t.common.version.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_0:
*
* Not valid. Can be assumed to be CAMERA_DEVICE_API_VERSION_1_0. Do
* not read this field.
*
* CAMERA_MODULE_API_VERSION_2_0 or higher:
*
* Always valid
*
*/
uint32_t device_version;
/**
* The camera's fixed characteristics, which include all static camera metadata
* specified in system/media/camera/docs/docs.html. This should be a sorted metadata
* buffer, and may not be modified or freed by the caller. The pointer should remain
* valid for the lifetime of the camera module, and values in it may not
* change after it is returned by get_camera_info().
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_0:
*
* Not valid. Extra characteristics are not available. Do not read this
* field.
*
* CAMERA_MODULE_API_VERSION_2_0 or higher:
*
* Valid if device_version >= CAMERA_DEVICE_API_VERSION_2_0. Do not read
* otherwise.
*
*/
const camera_metadata_t *static_camera_characteristics;
/**
* The total resource "cost" of using this camera, represented as an integer
* value in the range [0, 100] where 100 represents total usage of the shared
* resource that is the limiting bottleneck of the camera subsystem. This may
* be a very rough estimate, and is used as a hint to the camera service to
* determine when to disallow multiple applications from simultaneously
* opening different cameras advertised by the camera service.
*
* The camera service must be able to simultaneously open and use any
* combination of camera devices exposed by the HAL where the sum of
* the resource costs of these cameras is <= 100. For determining cost,
* each camera device must be assumed to be configured and operating at
* the maximally resource-consuming framerate and stream size settings
* available in the configuration settings exposed for that device through
* the camera metadata.
*
* The camera service may still attempt to simultaneously open combinations
* of camera devices with a total resource cost > 100. This may succeed or
* fail. If this succeeds, combinations of configurations that are not
* supported due to resource constraints from having multiple open devices
* should fail during the configure calls. If the total resource cost is
* <= 100, open and configure should never fail for any stream configuration
* settings or other device capabilities that would normally succeed for a
* device when it is the only open camera device.
*
* This field will be used to determine whether background applications are
* allowed to use this camera device while other applications are using other
* camera devices. Note: multiple applications will never be allowed by the
* camera service to simultaneously open the same camera device.
*
* Example use cases:
*
* Ex. 1: Camera Device 0 = Back Camera
* Camera Device 1 = Front Camera
* - Using both camera devices causes a large framerate slowdown due to
* limited ISP bandwidth.
*
* Configuration:
*
* Camera Device 0 - resource_cost = 51
* conflicting_devices = null
* Camera Device 1 - resource_cost = 51
* conflicting_devices = null
*
* Result:
*
* Since the sum of the resource costs is > 100, if a higher-priority
* application has either device open, no lower-priority applications will be
* allowed by the camera service to open either device. If a lower-priority
* application is using a device that a higher-priority subsequently attempts
* to open, the lower-priority application will be forced to disconnect the
* the device.
*
* If the highest-priority application chooses, it may still attempt to open
* both devices (since these devices are not listed as conflicting in the
* conflicting_devices fields), but usage of these devices may fail in the
* open or configure calls.
*
* Ex. 2: Camera Device 0 = Left Back Camera
* Camera Device 1 = Right Back Camera
* Camera Device 2 = Combined stereo camera using both right and left
* back camera sensors used by devices 0, and 1
* Camera Device 3 = Front Camera
* - Due to do hardware constraints, up to two cameras may be open at once. The
* combined stereo camera may never be used at the same time as either of the
* two back camera devices (device 0, 1), and typically requires too much
* bandwidth to use at the same time as the front camera (device 3).
*
* Configuration:
*
* Camera Device 0 - resource_cost = 50
* conflicting_devices = { 2 }
* Camera Device 1 - resource_cost = 50
* conflicting_devices = { 2 }
* Camera Device 2 - resource_cost = 100
* conflicting_devices = { 0, 1 }
* Camera Device 3 - resource_cost = 50
* conflicting_devices = null
*
* Result:
*
* Based on the conflicting_devices fields, the camera service guarantees that
* the following sets of open devices will never be allowed: { 1, 2 }, { 0, 2 }.
*
* Based on the resource_cost fields, if a high-priority foreground application
* is using camera device 0, a background application would be allowed to open
* camera device 1 or 3 (but would be forced to disconnect it again if the
* foreground application opened another device).
*
* The highest priority application may still attempt to simultaneously open
* devices 0, 2, and 3, but the HAL may fail in open or configure calls for
* this combination.
*
* Ex. 3: Camera Device 0 = Back Camera
* Camera Device 1 = Front Camera
* Camera Device 2 = Low-power Front Camera that uses the same
* sensor as device 1, but only exposes image stream
* resolutions that can be used in low-power mode
* - Using both front cameras (device 1, 2) at the same time is impossible due
* a shared physical sensor. Using the back and "high-power" front camera
* (device 1) may be impossible for some stream configurations due to hardware
* limitations, but the "low-power" front camera option may always be used as
* it has special dedicated hardware.
*
* Configuration:
*
* Camera Device 0 - resource_cost = 100
* conflicting_devices = null
* Camera Device 1 - resource_cost = 100
* conflicting_devices = { 2 }
* Camera Device 2 - resource_cost = 0
* conflicting_devices = { 1 }
* Result:
*
* Based on the conflicting_devices fields, the camera service guarantees that
* the following sets of open devices will never be allowed: { 1, 2 }.
*
* Based on the resource_cost fields, only the highest priority application
* may attempt to open both device 0 and 1 at the same time. If a higher-priority
* application is not using device 1 or 2, a low-priority background application
* may open device 2 (but will be forced to disconnect it if a higher-priority
* application subsequently opens device 1 or 2).
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* Not valid. Can be assumed to be 100. Do not read this field.
*
* CAMERA_MODULE_API_VERSION_2_4 or higher:
*
* Always valid.
*/
int resource_cost;
/**
* An array of camera device IDs represented as NULL-terminated strings
* indicating other devices that cannot be simultaneously opened while this
* camera device is in use.
*
* This field is intended to be used to indicate that this camera device
* is a composite of several other camera devices, or otherwise has
* hardware dependencies that prohibit simultaneous usage. If there are no
* dependencies, a NULL may be returned in this field to indicate this.
*
* The camera service will never simultaneously open any of the devices
* in this list while this camera device is open.
*
* The strings pointed to in this field will not be cleaned up by the camera
* service, and must remain while this device is plugged in.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* Not valid. Can be assumed to be NULL. Do not read this field.
*
* CAMERA_MODULE_API_VERSION_2_4 or higher:
*
* Always valid.
*/
char** conflicting_devices;
/**
* The length of the array given in the conflicting_devices field.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* Not valid. Can be assumed to be 0. Do not read this field.
*
* CAMERA_MODULE_API_VERSION_2_4 or higher:
*
* Always valid.
*/
size_t conflicting_devices_length;
} camera_info_t;
/**
* camera_device_status_t:
*
* The current status of the camera device, as provided by the HAL through the
* camera_module_callbacks.camera_device_status_change() call.
*
* At module load time, the framework will assume all camera devices are in the
* CAMERA_DEVICE_STATUS_PRESENT state. The HAL should invoke
* camera_module_callbacks::camera_device_status_change to inform the framework
* of any initially NOT_PRESENT devices.
*
* Allowed transitions:
* PRESENT -> NOT_PRESENT
* NOT_PRESENT -> ENUMERATING
* NOT_PRESENT -> PRESENT
* ENUMERATING -> PRESENT
* ENUMERATING -> NOT_PRESENT
*/
typedef enum camera_device_status {
/**
* The camera device is not currently connected, and opening it will return
* failure.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* Calls to get_camera_info must still succeed, and provide the same information
* it would if the camera were connected.
*
* CAMERA_MODULE_API_VERSION_2_4:
*
* The camera device at this status must return -EINVAL for get_camera_info call,
* as the device is not connected.
*/
CAMERA_DEVICE_STATUS_NOT_PRESENT = 0,
/**
* The camera device is connected, and opening it will succeed.
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* The information returned by get_camera_info cannot change due to this status
* change. By default, the framework will assume all devices are in this state.
*
* CAMERA_MODULE_API_VERSION_2_4:
*
* The information returned by get_camera_info will become valid after a device's
* status changes to this. By default, the framework will assume all devices are in
* this state.
*/
CAMERA_DEVICE_STATUS_PRESENT = 1,
/**
* The camera device is connected, but it is undergoing an enumeration and
* so opening the device will return -EBUSY.
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* Calls to get_camera_info must still succeed, as if the camera was in the
* PRESENT status.
*
* CAMERA_MODULE_API_VERSION_2_4:
*
* The camera device at this status must return -EINVAL for get_camera_info for call,
* as the device is not ready.
*/
CAMERA_DEVICE_STATUS_ENUMERATING = 2,
} camera_device_status_t;
/**
* torch_mode_status_t:
*
* The current status of the torch mode, as provided by the HAL through the
* camera_module_callbacks.torch_mode_status_change() call.
*
* The torch mode status of a camera device is applicable only when the camera
* device is present. The framework will not call set_torch_mode() to turn on
* torch mode of a camera device if the camera device is not present. At module
* load time, the framework will assume torch modes are in the
* TORCH_MODE_STATUS_AVAILABLE_OFF state if the camera device is present and
* android.flash.info.available is reported as true via get_camera_info() call.
*
* The behaviors of the camera HAL module that the framework expects in the
* following situations when a camera device's status changes:
* 1. A previously-disconnected camera device becomes connected.
* After camera_module_callbacks::camera_device_status_change() is invoked
* to inform the framework that the camera device is present, the framework
* will assume the camera device's torch mode is in
* TORCH_MODE_STATUS_AVAILABLE_OFF state. The camera HAL module does not need
* to invoke camera_module_callbacks::torch_mode_status_change() unless the
* flash unit is unavailable to use by set_torch_mode().
*
* 2. A previously-connected camera becomes disconnected.
* After camera_module_callbacks::camera_device_status_change() is invoked
* to inform the framework that the camera device is not present, the
* framework will not call set_torch_mode() for the disconnected camera
* device until its flash unit becomes available again. The camera HAL
* module does not need to invoke
* camera_module_callbacks::torch_mode_status_change() separately to inform
* that the flash unit has become unavailable.
*
* 3. open() is called to open a camera device.
* The camera HAL module must invoke
* camera_module_callbacks::torch_mode_status_change() for all flash units
* that have entered TORCH_MODE_STATUS_NOT_AVAILABLE state and can not be
* turned on by calling set_torch_mode() anymore due to this open() call.
* open() must not trigger TORCH_MODE_STATUS_AVAILABLE_OFF before
* TORCH_MODE_STATUS_NOT_AVAILABLE for all flash units that have become
* unavailable.
*
* 4. close() is called to close a camera device.
* The camera HAL module must invoke
* camera_module_callbacks::torch_mode_status_change() for all flash units
* that have entered TORCH_MODE_STATUS_AVAILABLE_OFF state and can be turned
* on by calling set_torch_mode() again because of enough resources freed
* up by this close() call.
*
* Note that the framework calling set_torch_mode() successfully must trigger
* TORCH_MODE_STATUS_AVAILABLE_OFF or TORCH_MODE_STATUS_AVAILABLE_ON callback
* for the given camera device. Additionally it must trigger
* TORCH_MODE_STATUS_AVAILABLE_OFF callbacks for other previously-on torch
* modes if HAL cannot keep multiple torch modes on simultaneously.
*/
typedef enum torch_mode_status {
/**
* The flash unit is no longer available and the torch mode can not be
* turned on by calling set_torch_mode(). If the torch mode is on, it
* will be turned off by HAL before HAL calls torch_mode_status_change().
*/
TORCH_MODE_STATUS_NOT_AVAILABLE = 0,
/**
* A torch mode has become off and available to be turned on via
* set_torch_mode(). This may happen in the following
* cases:
* 1. After the resources to turn on the torch mode have become available.
* 2. After set_torch_mode() is called to turn off the torch mode.
* 3. After the framework turned on the torch mode of some other camera
* device and HAL had to turn off the torch modes of any camera devices
* that were previously on.
*/
TORCH_MODE_STATUS_AVAILABLE_OFF = 1,
/**
* A torch mode has become on and available to be turned off via
* set_torch_mode(). This can happen only after set_torch_mode() is called
* to turn on the torch mode.
*/
TORCH_MODE_STATUS_AVAILABLE_ON = 2,
} torch_mode_status_t;
/**
* Callback functions for the camera HAL module to use to inform the framework
* of changes to the camera subsystem.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* Each callback is called only by HAL modules implementing the indicated
* version or higher of the HAL module API interface.
*
* CAMERA_MODULE_API_VERSION_2_1:
* camera_device_status_change()
*
* CAMERA_MODULE_API_VERSION_2_4:
* torch_mode_status_change()
*/
typedef struct camera_module_callbacks {
/**
* camera_device_status_change:
*
* Callback to the framework to indicate that the state of a specific camera
* device has changed. At module load time, the framework will assume all
* camera devices are in the CAMERA_DEVICE_STATUS_PRESENT state. The HAL
* must call this method to inform the framework of any initially
* NOT_PRESENT devices.
*
* This callback is added for CAMERA_MODULE_API_VERSION_2_1.
*
* camera_module_callbacks: The instance of camera_module_callbacks_t passed
* to the module with set_callbacks.
*
* camera_id: The ID of the camera device that has a new status.
*
* new_status: The new status code, one of the camera_device_status_t enums,
* or a platform-specific status.
*
*/
void (*camera_device_status_change)(const struct camera_module_callbacks*,
int camera_id,
int new_status);
/**
* torch_mode_status_change:
*
* Callback to the framework to indicate that the state of the torch mode
* of the flash unit associated with a specific camera device has changed.
* At module load time, the framework will assume the torch modes are in
* the TORCH_MODE_STATUS_AVAILABLE_OFF state if android.flash.info.available
* is reported as true via get_camera_info() call.
*
* This callback is added for CAMERA_MODULE_API_VERSION_2_4.
*
* camera_module_callbacks: The instance of camera_module_callbacks_t
* passed to the module with set_callbacks.
*
* camera_id: The ID of camera device whose flash unit has a new torch mode
* status.
*
* new_status: The new status code, one of the torch_mode_status_t enums.
*/
void (*torch_mode_status_change)(const struct camera_module_callbacks*,
const char* camera_id,
int new_status);
} camera_module_callbacks_t;
/**
* camera_stream_t:
*
* A handle to a single camera input or output stream. A stream is defined by
* the framework by its buffer resolution and format and gralloc usage flags.
*
* The stream structures are owned by the framework and pointers to a
* camera_stream passed into the HAL by is_stream_combination_supported() are
* only valid within the scope of the call.
*
* All camera_stream members are immutable.
*/
typedef struct camera_stream {
/**
* The type of the stream, one of the camera3_stream_type_t values.
*/
int stream_type;
/**
* The width in pixels of the buffers in this stream
*/
uint32_t width;
/**
* The height in pixels of the buffers in this stream
*/
uint32_t height;
/**
* The pixel format for the buffers in this stream. Format is a value from
* the HAL_PIXEL_FORMAT_* list in system/core/include/system/graphics.h, or
* from device-specific headers.
*
* If HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED is used, then the platform
* gralloc module will select a format based on the usage flags provided by
* the camera device and the other endpoint of the stream.
*
*/
int format;
/**
* The gralloc usage flags for this stream, as needed by the HAL. The usage
* flags are defined in gralloc.h (GRALLOC_USAGE_*), or in device-specific
* headers.
*
* For output streams, these are the HAL's producer usage flags. For input
* streams, these are the HAL's consumer usage flags. The usage flags from
* the producer and the consumer will be combined together and then passed
* to the platform gralloc HAL module for allocating the gralloc buffers for
* each stream.
*
* The usage flag for an output stream may be bitwise
* combination of usage flags for multiple consumers, for the purpose of
* sharing one camera stream between those consumers. The HAL must fail
* the stream combination query call with -EINVAL if the combined flags cannot be
* supported due to imcompatible buffer format, dataSpace, or other hardware
* limitations.
*/
uint32_t usage;
/**
* A field that describes the contents of the buffer. The format and buffer
* dimensions define the memory layout and structure of the stream buffers,
* while dataSpace defines the meaning of the data within the buffer.
*
* For most formats, dataSpace defines the color space of the image data.
* In addition, for some formats, dataSpace indicates whether image- or
* depth-based data is requested. See system/core/include/system/graphics.h
* for details of formats and valid dataSpace values for each format.
*
* Always set by the camera service. The dataspace values are set
* using the V0 dataspace definitions in graphics.h
*/
android_dataspace_t data_space;
/**
* The required output rotation of the stream, one of
* the camera3_stream_rotation_t values. This must be inspected by HAL along
* with stream width and height. For example, if the rotation is 90 degree
* and the stream width and height is 720 and 1280 respectively, camera service
* will supply buffers of size 720x1280, and HAL should capture a 1280x720 image
* and rotate the image by 90 degree counterclockwise. The rotation field is
* no-op when the stream type is input. Camera HAL must ignore the rotation
* field for an input stream.
*
* Always set by camera service. HAL must inspect this field during stream
* combination query and return -EINVAL if it cannot perform such rotation.
* HAL must always support CAMERA3_STREAM_ROTATION_0, so a
* is_stream_combination_supported() call must not fail for unsupported rotation if
* rotation field of all streams is CAMERA3_STREAM_ROTATION_0.
*
*/
int rotation;
/**
* The physical camera id this stream belongs to.
* Always set by camera service. If the camera device is not a logical
* multi camera, or if the camera is a logical multi camera but the stream
* is not a physical output stream, this field will point to a 0-length
* string.
*
* A logical multi camera is a camera device backed by multiple physical
* cameras that are also exposed to the application. And for a logical
* multi camera, a physical output stream is an output stream specifically
* requested on an underlying physical camera.
*
* For an input stream, this field is guaranteed to be a 0-length string.
*/
const char* physical_camera_id;
} camera_stream_t;
/**
* camera_stream_combination_t:
*
* A structure of stream definitions, used by is_stream_combination_supported(). This
* structure defines all the input & output streams for specific camera use case.
*/
typedef struct camera_stream_combination {
/**
* The total number of streams by the framework. This includes
* both input and output streams. The number of streams will be at least 1,
* and there will be at least one output-capable stream.
*/
uint32_t num_streams;
/**
* An array of camera streams, defining the input/output
* stream combination for the camera HAL device.
*
* At most one input-capable stream may be defined.
*
* At least one output-capable stream must be defined.
*/
camera_stream_t *streams;
/**
* The operation mode of streams in this stream combination, one of the value
* defined in camera3_stream_configuration_mode_t.
*
*/
uint32_t operation_mode;
} camera_stream_combination_t;
/**
* device_state_t:
*
* Possible physical states of the overall device, for use with
* notify_device_state_change.
*/
typedef enum device_state {
/**
* The device is in its normal physical configuration. This is the default if the
* device does not support multiple different states.
*/
NORMAL = 0,
/**
* Camera device(s) facing backward are covered.
*/
BACK_COVERED = 1 << 0,
/**
* Camera device(s) facing foward are covered.
*/
FRONT_COVERED = 1 << 1,
/**
* The device is folded. If not set, the device is unfolded or does not
* support folding.
*
* The exact point when this status change happens during the folding
* operation is device-specific.
*/
FOLDED = 1 << 2,
/**
* First vendor-specific device state. All bits above and including this one
* are for vendor state values. Values below this one must only be used
* for framework-defined states.
*/
VENDOR_STATE_START = 1LL << 32
} device_state_t;
typedef struct camera_module {
/**
* Common methods of the camera module. This *must* be the first member of
* camera_module as users of this structure will cast a hw_module_t to
* camera_module pointer in contexts where it's known the hw_module_t
* references a camera_module.
*
* The return values for common.methods->open for camera_module are:
*
* 0: On a successful open of the camera device.
*
* -ENODEV: The camera device cannot be opened due to an internal
* error.
*
* -EINVAL: The input arguments are invalid, i.e. the id is invalid,
* and/or the module is invalid.
*
* -EBUSY: The camera device was already opened for this camera id
* (by using this method or open_legacy),
* regardless of the device HAL version it was opened as.
*
* -EUSERS: The maximal number of camera devices that can be
* opened concurrently were opened already, either by
* this method or the open_legacy method.
*
* All other return values from common.methods->open will be treated as
* -ENODEV.
*/
hw_module_t common;
/**
* get_number_of_cameras:
*
* Returns the number of camera devices accessible through the camera
* module. The camera devices are numbered 0 through N-1, where N is the
* value returned by this call. The name of the camera device for open() is
* simply the number converted to a string. That is, "0" for camera ID 0,
* "1" for camera ID 1.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_2_3 or lower:
*
* The value here must be static, and cannot change after the first call
* to this method.
*
* CAMERA_MODULE_API_VERSION_2_4 or higher:
*
* The value here must be static, and must count only built-in cameras,
* which have CAMERA_FACING_BACK or CAMERA_FACING_FRONT camera facing values
* (camera_info.facing). The HAL must not include the external cameras
* (camera_info.facing == CAMERA_FACING_EXTERNAL) into the return value
* of this call. Frameworks will use camera_device_status_change callback
* to manage number of external cameras.
*/
int (*get_number_of_cameras)(void);
#ifdef CAMERA_NEEDS_SEC_GET_CAM_POS_V1
/**
* get_cam_pos:
*
* Unknown. Needed by prebuilt camera module from the Samsung GTO device.
*
* Return values found so far:
*
* 0: On a successful operation
*
* -EINVAL: The input arguments are invalid
*
*/
int (*get_cam_pos)(void);
#endif
/**
* get_camera_info:
*
* Return the static camera information for a given camera device. This
* information may not change for a camera device.
*
* Return values:
*
* 0: On a successful operation
*
* -ENODEV: The information cannot be provided due to an internal
* error.
*
* -EINVAL: The input arguments are invalid, i.e. the id is invalid,
* and/or the module is invalid.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_2_4 or higher:
*
* When a camera is disconnected, its camera id becomes invalid. Calling this
* this method with this invalid camera id will get -EINVAL and NULL camera
* static metadata (camera_info.static_camera_characteristics).
*/
int (*get_camera_info)(int camera_id, struct camera_info *info);
#ifdef CAMERA_NEEDS_SEC_GET_CAM_POS_V2
/**
* get_cam_pos:
*
* Unknown. Needed by prebuilt camera module from the Samsung GTA4L device.
*
* Return values found so far:
*
* 0: On a successful operation
*
* -EINVAL: The input arguments are invalid
*
*/
int (*get_cam_pos)(void);
#endif
/**
* set_callbacks:
*
* Provide callback function pointers to the HAL module to inform framework
* of asynchronous camera module events. The framework will call this
* function once after initial camera HAL module load, after the
* get_number_of_cameras() method is called for the first time, and before
* any other calls to the module.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_0, CAMERA_MODULE_API_VERSION_2_0:
*
* Not provided by HAL module. Framework may not call this function.
*
* CAMERA_MODULE_API_VERSION_2_1:
*
* Valid to be called by the framework.
*
* Return values:
*
* 0: On a successful operation
*
* -ENODEV: The operation cannot be completed due to an internal
* error.
*
* -EINVAL: The input arguments are invalid, i.e. the callbacks are
* null
*/
int (*set_callbacks)(const camera_module_callbacks_t *callbacks);
/**
* get_vendor_tag_ops:
*
* Get methods to query for vendor extension metadata tag information. The
* HAL should fill in all the vendor tag operation methods, or leave ops
* unchanged if no vendor tags are defined.
*
* The vendor_tag_ops structure used here is defined in:
* system/media/camera/include/system/vendor_tags.h
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_x/2_0/2_1:
* Not provided by HAL module. Framework may not call this function.
*
* CAMERA_MODULE_API_VERSION_2_2:
* Valid to be called by the framework.
*/
void (*get_vendor_tag_ops)(vendor_tag_ops_t* ops);
/**
* open_legacy:
*
* Open a specific legacy camera HAL device if multiple device HAL API
* versions are supported by this camera HAL module. For example, if the
* camera module supports both CAMERA_DEVICE_API_VERSION_1_0 and
* CAMERA_DEVICE_API_VERSION_3_2 device API for the same camera id,
* framework can call this function to open the camera device as
* CAMERA_DEVICE_API_VERSION_1_0 device.
*
* This is an optional method. A Camera HAL module does not need to support
* more than one device HAL version per device, and such modules may return
* -ENOSYS for all calls to this method. For all older HAL device API
* versions that are not supported, it may return -EOPNOTSUPP. When above
* cases occur, The normal open() method (common.methods->open) will be
* used by the framework instead.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_x/2_0/2_1/2_2:
* Not provided by HAL module. Framework will not call this function.
*
* CAMERA_MODULE_API_VERSION_2_3:
* Valid to be called by the framework.
*
* Return values:
*
* 0: On a successful open of the camera device.
*
* -ENOSYS This method is not supported.
*
* -EOPNOTSUPP: The requested HAL version is not supported by this method.
*
* -EINVAL: The input arguments are invalid, i.e. the id is invalid,
* and/or the module is invalid.
*
* -EBUSY: The camera device was already opened for this camera id
* (by using this method or common.methods->open method),
* regardless of the device HAL version it was opened as.
*
* -EUSERS: The maximal number of camera devices that can be
* opened concurrently were opened already, either by
* this method or common.methods->open method.
*/
int (*open_legacy)(const struct hw_module_t* module, const char* id,
uint32_t halVersion, struct hw_device_t** device);
/**
* set_torch_mode:
*
* Turn on or off the torch mode of the flash unit associated with a given
* camera ID. If the operation is successful, HAL must notify the framework
* torch state by invoking
* camera_module_callbacks.torch_mode_status_change() with the new state.
*
* The camera device has a higher priority accessing the flash unit. When
* there are any resource conflicts, such as open() is called to open a
* camera device, HAL module must notify the framework through
* camera_module_callbacks.torch_mode_status_change() that the
* torch mode has been turned off and the torch mode state has become
* TORCH_MODE_STATUS_NOT_AVAILABLE. When resources to turn on torch mode
* become available again, HAL module must notify the framework through
* camera_module_callbacks.torch_mode_status_change() that the torch mode
* state has become TORCH_MODE_STATUS_AVAILABLE_OFF for set_torch_mode() to
* be called.
*
* When the framework calls set_torch_mode() to turn on the torch mode of a
* flash unit, if HAL cannot keep multiple torch modes on simultaneously,
* HAL should turn off the torch mode that was turned on by
* a previous set_torch_mode() call and notify the framework that the torch
* mode state of that flash unit has become TORCH_MODE_STATUS_AVAILABLE_OFF.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_x/2_0/2_1/2_2/2_3:
* Not provided by HAL module. Framework will not call this function.
*
* CAMERA_MODULE_API_VERSION_2_4:
* Valid to be called by the framework.
*
* Return values:
*
* 0: On a successful operation.
*
* -ENOSYS: The camera device does not support this operation. It is
* returned if and only if android.flash.info.available is
* false.
*
* -EBUSY: The camera device is already in use.
*
* -EUSERS: The resources needed to turn on the torch mode are not
* available, typically because other camera devices are
* holding the resources to make using the flash unit not
* possible.
*
* -EINVAL: camera_id is invalid.
*
*/
int (*set_torch_mode)(const char* camera_id, bool enabled);
/**
* init:
*
* This method is called by the camera service before any other methods
* are invoked, right after the camera HAL library has been successfully
* loaded. It may be left as NULL by the HAL module, if no initialization
* in needed.
*
* It can be used by HAL implementations to perform initialization and
* other one-time operations.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_x/2_0/2_1/2_2/2_3:
* Not provided by HAL module. Framework will not call this function.
*
* CAMERA_MODULE_API_VERSION_2_4:
* If not NULL, will always be called by the framework once after the HAL
* module is loaded, before any other HAL module method is called.
*
* Return values:
*
* 0: On a successful operation.
*
* -ENODEV: Initialization cannot be completed due to an internal
* error. The HAL must be assumed to be in a nonfunctional
* state.
*
*/
int (*init)();
/**
* get_physical_camera_info:
*
* Return the static metadata for a physical camera as a part of a logical
* camera device. This function is only called for those physical camera
* ID(s) that are not exposed independently. In other words, camera_id will
* be greater or equal to the return value of get_number_of_cameras().
*
* Return values:
*
* 0: On a successful operation
*
* -ENODEV: The information cannot be provided due to an internal
* error.
*
* -EINVAL: The input arguments are invalid, i.e. the id is invalid,
* and/or the module is invalid.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_x/2_0/2_1/2_2/2_3/2_4:
* Not provided by HAL module. Framework will not call this function.
*
* CAMERA_MODULE_API_VERSION_2_5 or higher:
* If any of the camera devices accessible through this camera module is
* a logical multi-camera, and at least one of the physical cameras isn't
* a stand-alone camera device, this function will be called by the camera
* framework. Calling this function with invalid physical_camera_id will
* get -EINVAL, and NULL static_metadata.
*/
int (*get_physical_camera_info)(int physical_camera_id,
camera_metadata_t **static_metadata);
/**
* is_stream_combination_supported:
*
* Check for device support of specific camera stream combination.
*
* Return values:
*
* 0: In case the stream combination is supported.
*
* -EINVAL: In case the stream combination is not supported.
*
* -ENOSYS: In case stream combination query is not supported.
*
* Version information (based on camera_module_t.common.module_api_version):
*
* CAMERA_MODULE_API_VERSION_1_x/2_0/2_1/2_2/2_3/2_4:
* Not provided by HAL module. Framework will not call this function.
*
* CAMERA_MODULE_API_VERSION_2_5 or higher:
* Valid to be called by the framework.
*/
int (*is_stream_combination_supported)(int camera_id,
const camera_stream_combination_t *streams);
/**
* notify_device_state_change:
*
* Notify the camera module that the state of the overall device has
* changed in some way that the HAL may want to know about.
*
* For example, a physical shutter may have been uncovered or covered,
* or a camera may have been covered or uncovered by an add-on keyboard
* or other accessory.
*
* The state is a bitfield of potential states, and some physical configurations
* could plausibly correspond to multiple different combinations of state bits.
* The HAL must ignore any state bits it is not actively using to determine
* the appropriate camera configuration.
*
* For example, on some devices the FOLDED state could mean that
* backward-facing cameras are covered by the fold, so FOLDED by itself implies
* BACK_COVERED. But other devices may support folding but not cover any cameras
* when folded, so for those FOLDED would not imply any of the other flags.
* Since these relationships are very device-specific, it is difficult to specify
* a comprehensive policy. But as a recommendation, it is suggested that if a flag
* necessarily implies other flags are set as well, then those flags should be set.
* So even though FOLDED would be enough to infer BACK_COVERED on some devices, the
* BACK_COVERED flag should also be set for clarity.
*
* This method may be invoked by the HAL client at any time. It must not
* cause any active camera device sessions to be closed, but may dynamically
* change which physical camera a logical multi-camera is using for its
* active and future output.
*
* The method must be invoked by the HAL client at least once before the
* client calls ICameraDevice::open on any camera device interfaces listed
* by this provider, to establish the initial device state.
*
* Note that the deviceState is 64-bit bitmask, with system defined states in
* lower 32-bit and vendor defined states in upper 32-bit.
*/
void (*notify_device_state_change)(uint64_t deviceState);
/* reserved for future use */
void* reserved[2];
} camera_module_t;
__END_DECLS
#endif /* ANDROID_INCLUDE_CAMERA_COMMON_H */