You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
device_samsung_sm7125-common/sensors/Sensor.cpp

379 lines
11 KiB

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Sensor.h"
#include <hardware/sensors.h>
#include <log/log.h>
#include <utils/SystemClock.h>
#include <fstream>
#include <cmath>
#define TSP_ENABLED_PATH "/sys/class/sec/tsp/input/enabled"
template <typename T>
static void set(const std::string& path, const T& value) {
std::ofstream file(path);
file << value;
}
template <typename T>
static T get(const std::string& path, const T& def) {
std::ifstream file(path);
T result;
file >> result;
return file.fail() ? def : result;
}
static bool readBool(int fd, bool seek) {
char c;
int rc;
if (seek) {
rc = lseek(fd, 0, SEEK_SET);
if (rc) {
ALOGE("failed to seek: %d", rc);
return false;
}
}
rc = read(fd, &c, sizeof(c));
if (rc != 1) {
ALOGE("failed to read bool: %d", rc);
return false;
}
return c != '0';
}
namespace android {
namespace hardware {
namespace sensors {
namespace V2_1 {
namespace subhal {
namespace implementation {
using ::android::hardware::sensors::V1_0::MetaDataEventType;
using ::android::hardware::sensors::V1_0::OperationMode;
using ::android::hardware::sensors::V1_0::Result;
using ::android::hardware::sensors::V1_0::SensorFlagBits;
using ::android::hardware::sensors::V1_0::SensorStatus;
using ::android::hardware::sensors::V2_1::Event;
using ::android::hardware::sensors::V2_1::SensorInfo;
using ::android::hardware::sensors::V2_1::SensorType;
Sensor::Sensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: mIsEnabled(false),
mSamplingPeriodNs(0),
mLastSampleTimeNs(0),
mCallback(callback),
mMode(OperationMode::NORMAL) {
mSensorInfo.sensorHandle = sensorHandle;
mSensorInfo.vendor = "The LineageOS Project";
mSensorInfo.version = 1;
constexpr float kDefaultMaxDelayUs = 1000 * 1000;
mSensorInfo.maxDelay = kDefaultMaxDelayUs;
mSensorInfo.fifoReservedEventCount = 0;
mSensorInfo.fifoMaxEventCount = 0;
mSensorInfo.requiredPermission = "";
mSensorInfo.flags = 0;
mRunThread = std::thread(startThread, this);
}
Sensor::~Sensor() {
// Ensure that lock is unlocked before calling mRunThread.join() or a
// deadlock will occur.
{
std::unique_lock<std::mutex> lock(mRunMutex);
mStopThread = true;
mIsEnabled = false;
mWaitCV.notify_all();
}
mRunThread.join();
}
const SensorInfo& Sensor::getSensorInfo() const {
return mSensorInfo;
}
void Sensor::batch(int32_t samplingPeriodNs) {
samplingPeriodNs =
std::clamp(samplingPeriodNs, mSensorInfo.minDelay * 1000, mSensorInfo.maxDelay * 1000);
if (mSamplingPeriodNs != samplingPeriodNs) {
mSamplingPeriodNs = samplingPeriodNs;
// Wake up the 'run' thread to check if a new event should be generated now
mWaitCV.notify_all();
}
}
void Sensor::activate(bool enable) {
std::lock_guard<std::mutex> lock(mRunMutex);
if (mIsEnabled != enable) {
mIsEnabled = enable;
mWaitCV.notify_all();
}
}
Result Sensor::flush() {
// Only generate a flush complete event if the sensor is enabled and if the sensor is not a
// one-shot sensor.
if (!mIsEnabled) {
return Result::BAD_VALUE;
}
// Note: If a sensor supports batching, write all of the currently batched events for the sensor
// to the Event FMQ prior to writing the flush complete event.
Event ev;
ev.sensorHandle = mSensorInfo.sensorHandle;
ev.sensorType = SensorType::META_DATA;
ev.u.meta.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE;
std::vector<Event> evs{ev};
mCallback->postEvents(evs, isWakeUpSensor());
return Result::OK;
}
void Sensor::startThread(Sensor* sensor) {
sensor->run();
}
void Sensor::run() {
std::unique_lock<std::mutex> runLock(mRunMutex);
constexpr int64_t kNanosecondsInSeconds = 1000 * 1000 * 1000;
while (!mStopThread) {
if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) {
mWaitCV.wait(runLock, [&] {
return ((mIsEnabled && mMode == OperationMode::NORMAL) || mStopThread);
});
} else {
timespec curTime;
clock_gettime(CLOCK_REALTIME, &curTime);
int64_t now = (curTime.tv_sec * kNanosecondsInSeconds) + curTime.tv_nsec;
int64_t nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
if (now >= nextSampleTime) {
mLastSampleTimeNs = now;
nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
mCallback->postEvents(readEvents(), isWakeUpSensor());
}
mWaitCV.wait_for(runLock, std::chrono::nanoseconds(nextSampleTime - now));
}
}
}
bool Sensor::isWakeUpSensor() {
return mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::WAKE_UP);
}
std::vector<Event> Sensor::readEvents() {
std::vector<Event> events;
Event event;
event.sensorHandle = mSensorInfo.sensorHandle;
event.sensorType = mSensorInfo.type;
event.timestamp = ::android::elapsedRealtimeNano();
event.u.vec3.x = 0;
event.u.vec3.y = 0;
event.u.vec3.z = 0;
event.u.vec3.status = SensorStatus::ACCURACY_HIGH;
events.push_back(event);
return events;
}
void Sensor::setOperationMode(OperationMode mode) {
std::lock_guard<std::mutex> lock(mRunMutex);
if (mMode != mode) {
mMode = mode;
mWaitCV.notify_all();
}
}
bool Sensor::supportsDataInjection() const {
return mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::DATA_INJECTION);
}
Result Sensor::injectEvent(const Event& event) {
Result result = Result::OK;
if (event.sensorType == SensorType::ADDITIONAL_INFO) {
// When in OperationMode::NORMAL, SensorType::ADDITIONAL_INFO is used to push operation
// environment data into the device.
} else if (!supportsDataInjection()) {
result = Result::INVALID_OPERATION;
} else if (mMode == OperationMode::DATA_INJECTION) {
mCallback->postEvents(std::vector<Event>{event}, isWakeUpSensor());
} else {
result = Result::BAD_VALUE;
}
return result;
}
OneShotSensor::OneShotSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
: Sensor(sensorHandle, callback) {
mSensorInfo.minDelay = -1;
mSensorInfo.maxDelay = 0;
mSensorInfo.flags |= SensorFlagBits::ONE_SHOT_MODE;
}
SysfsPollingOneShotSensor::SysfsPollingOneShotSensor(
int32_t sensorHandle, ISensorsEventCallback* callback, const std::string& pollPath,
const std::string& name, const std::string& typeAsString, SensorType type)
: OneShotSensor(sensorHandle, callback) {
mSensorInfo.name = name;
mSensorInfo.type = type;
mSensorInfo.typeAsString = typeAsString;
mSensorInfo.maxRange = 2048.0f;
mSensorInfo.resolution = 1.0f;
mSensorInfo.power = 0;
mSensorInfo.flags |= SensorFlagBits::WAKE_UP;
int rc;
rc = pipe(mWaitPipeFd);
if (rc < 0) {
mWaitPipeFd[0] = -1;
mWaitPipeFd[1] = -1;
ALOGE("failed to open wait pipe: %d", rc);
}
mPollFd = open(pollPath.c_str(), O_RDONLY);
if (mPollFd < 0) {
ALOGE("failed to open poll fd: %d", mPollFd);
}
if (mWaitPipeFd[0] < 0 || mWaitPipeFd[1] < 0 || mPollFd < 0) {
mStopThread = true;
return;
}
mPolls[0] = {
.fd = mWaitPipeFd[0],
.events = POLLIN,
};
mPolls[1] = {
.fd = mPollFd,
.events = POLLERR | POLLPRI,
};
}
SysfsPollingOneShotSensor::~SysfsPollingOneShotSensor() {
interruptPoll();
}
void SysfsPollingOneShotSensor::activate(bool enable, bool notify, bool lock) {
std::unique_lock<std::mutex> runLock(mRunMutex, std::defer_lock);
if (!enable && strcmp(get<std::string>(TSP_ENABLED_PATH, "0").c_str(), "0") == 0) {
set(TSP_ENABLED_PATH, "1");
}
if (lock) {
runLock.lock();
}
if (mIsEnabled != enable) {
mIsEnabled = enable;
if (notify) {
interruptPoll();
mWaitCV.notify_all();
}
}
if (lock) {
runLock.unlock();
}
if (enable && strcmp(get<std::string>(TSP_ENABLED_PATH, "0").c_str(), "1") == 0) {
set(TSP_ENABLED_PATH, "0");
}
}
void SysfsPollingOneShotSensor::activate(bool enable) {
activate(enable, true, true);
}
void SysfsPollingOneShotSensor::setOperationMode(OperationMode mode) {
Sensor::setOperationMode(mode);
interruptPoll();
}
void SysfsPollingOneShotSensor::run() {
std::unique_lock<std::mutex> runLock(mRunMutex);
while (!mStopThread) {
if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) {
mWaitCV.wait(runLock, [&] {
return ((mIsEnabled && mMode == OperationMode::NORMAL) || mStopThread);
});
} else {
// Cannot hold lock while polling.
runLock.unlock();
int rc = poll(mPolls, 2, -1);
runLock.lock();
if (rc < 0) {
ALOGE("failed to poll: %d", rc);
mStopThread = true;
continue;
}
if (mPolls[1].revents == mPolls[1].events && readBool(mPollFd, true /* seek */)) {
if (strcmp(get<std::string>(TSP_ENABLED_PATH, "0").c_str(), "0") == 0) {
set(TSP_ENABLED_PATH, "1");
}
activate(false, false, false);
mCallback->postEvents(readEvents(), isWakeUpSensor());
} else if (mPolls[0].revents == mPolls[0].events) {
readBool(mWaitPipeFd[0], false /* seek */);
}
}
}
}
void SysfsPollingOneShotSensor::interruptPoll() {
if (mWaitPipeFd[1] < 0) return;
char c = '1';
write(mWaitPipeFd[1], &c, sizeof(c));
}
std::vector<Event> SysfsPollingOneShotSensor::readEvents() {
std::vector<Event> events;
Event event;
event.sensorHandle = mSensorInfo.sensorHandle;
event.sensorType = mSensorInfo.type;
event.timestamp = ::android::elapsedRealtimeNano();
fillEventData(event);
events.push_back(event);
return events;
}
void SysfsPollingOneShotSensor::fillEventData(Event& event) {
event.u.data[0] = 0;
event.u.data[1] = 0;
}
} // namespace implementation
} // namespace subhal
} // namespace V2_1
} // namespace sensors
} // namespace hardware
} // namespace android