You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
device_samsung_sm7125-common/aidl/power-libperfmgr/PowerHintSession.cpp

482 lines
20 KiB

/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "powerhal-libperfmgr"
#define ATRACE_TAG (ATRACE_TAG_POWER | ATRACE_TAG_HAL)
#include <android-base/logging.h>
#include <android-base/parsedouble.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <sys/syscall.h>
#include <time.h>
#include <utils/Trace.h>
#include <atomic>
#include "PowerHintSession.h"
#include "PowerSessionManager.h"
namespace aidl {
namespace google {
namespace hardware {
namespace power {
namespace impl {
namespace pixel {
using ::android::base::StringPrintf;
using std::chrono::duration_cast;
using std::chrono::nanoseconds;
using std::literals::chrono_literals::operator""s;
constexpr char kPowerHalAdpfPidPOver[] = "vendor.powerhal.adpf.pid_p.over";
constexpr char kPowerHalAdpfPidPUnder[] = "vendor.powerhal.adpf.pid_p.under";
constexpr char kPowerHalAdpfPidI[] = "vendor.powerhal.adpf.pid_i";
constexpr char kPowerHalAdpfPidDOver[] = "vendor.powerhal.adpf.pid_d.over";
constexpr char kPowerHalAdpfPidDUnder[] = "vendor.powerhal.adpf.pid_d.under";
constexpr char kPowerHalAdpfPidIInit[] = "vendor.powerhal.adpf.pid_i.init";
constexpr char kPowerHalAdpfPidIHighLimit[] = "vendor.powerhal.adpf.pid_i.high_limit";
constexpr char kPowerHalAdpfPidILowLimit[] = "vendor.powerhal.adpf.pid_i.low_limit";
constexpr char kPowerHalAdpfUclampEnable[] = "vendor.powerhal.adpf.uclamp";
constexpr char kPowerHalAdpfUclampMinGranularity[] = "vendor.powerhal.adpf.uclamp_min.granularity";
constexpr char kPowerHalAdpfUclampMinHighLimit[] = "vendor.powerhal.adpf.uclamp_min.high_limit";
constexpr char kPowerHalAdpfUclampMinLowLimit[] = "vendor.powerhal.adpf.uclamp_min.low_limit";
constexpr char kPowerHalAdpfStaleTimeFactor[] = "vendor.powerhal.adpf.stale_timeout_factor";
constexpr char kPowerHalAdpfPSamplingWindow[] = "vendor.powerhal.adpf.p.window";
constexpr char kPowerHalAdpfISamplingWindow[] = "vendor.powerhal.adpf.i.window";
constexpr char kPowerHalAdpfDSamplingWindow[] = "vendor.powerhal.adpf.d.window";
namespace {
/* there is no glibc or bionic wrapper */
struct sched_attr {
__u32 size;
__u32 sched_policy;
__u64 sched_flags;
__s32 sched_nice;
__u32 sched_priority;
__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;
__u32 sched_util_min;
__u32 sched_util_max;
};
static int sched_setattr(int pid, struct sched_attr *attr, unsigned int flags) {
static const bool kPowerHalAdpfUclamp =
::android::base::GetBoolProperty(kPowerHalAdpfUclampEnable, true);
if (!kPowerHalAdpfUclamp) {
ALOGV("PowerHintSession:%s: skip", __func__);
return 0;
}
return syscall(__NR_sched_setattr, pid, attr, flags);
}
static inline int64_t ns_to_100us(int64_t ns) {
return ns / 100000;
}
static double getDoubleProperty(const char *prop, double value) {
std::string result = ::android::base::GetProperty(prop, std::to_string(value).c_str());
if (!::android::base::ParseDouble(result.c_str(), &value)) {
ALOGE("PowerHintSession : failed to parse double in %s", prop);
}
return value;
}
static double sPidPOver = getDoubleProperty(kPowerHalAdpfPidPOver, 2.0);
static double sPidPUnder = getDoubleProperty(kPowerHalAdpfPidPUnder, 1.0);
static double sPidI = getDoubleProperty(kPowerHalAdpfPidI, 0.001);
static double sPidDOver = getDoubleProperty(kPowerHalAdpfPidDOver, 500.0);
static double sPidDUnder = getDoubleProperty(kPowerHalAdpfPidDUnder, 0.0);
static const int64_t sPidIInit =
(sPidI == 0) ? 0
: static_cast<int64_t>(::android::base::GetIntProperty<int64_t>(
kPowerHalAdpfPidIInit, 200) /
sPidI);
static const int64_t sPidIHighLimit =
(sPidI == 0) ? 0
: static_cast<int64_t>(::android::base::GetIntProperty<int64_t>(
kPowerHalAdpfPidIHighLimit, 512) /
sPidI);
static const int64_t sPidILowLimit =
(sPidI == 0) ? 0
: static_cast<int64_t>(::android::base::GetIntProperty<int64_t>(
kPowerHalAdpfPidILowLimit, -30) /
sPidI);
static const int32_t sUclampMinHighLimit =
::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfUclampMinHighLimit, 384);
static const int32_t sUclampMinLowLimit =
::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfUclampMinLowLimit, 2);
static const uint32_t sUclampMinGranularity =
::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfUclampMinGranularity, 5);
static const int64_t sStaleTimeFactor =
::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfStaleTimeFactor, 20);
static const int64_t sPSamplingWindow =
::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfPSamplingWindow, 1);
static const int64_t sISamplingWindow =
::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfISamplingWindow, 0);
static const int64_t sDSamplingWindow =
::android::base::GetUintProperty<uint32_t>(kPowerHalAdpfDSamplingWindow, 1);
} // namespace
PowerHintSession::PowerHintSession(int32_t tgid, int32_t uid, const std::vector<int32_t> &threadIds,
int64_t durationNanos, const nanoseconds adpfRate)
: kAdpfRate(adpfRate) {
mDescriptor = new AppHintDesc(tgid, uid, threadIds);
mDescriptor->duration = std::chrono::nanoseconds(durationNanos);
mStaleHandler = sp<StaleHandler>(new StaleHandler(this));
mPowerManagerHandler = PowerSessionManager::getInstance();
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
sz = StringPrintf("adpf.%s-active", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
sz = StringPrintf("adpf.%s-stale", idstr.c_str());
ATRACE_INT(sz.c_str(), isStale());
}
PowerSessionManager::getInstance()->addPowerSession(this);
// init boost
setUclamp(sUclampMinHighLimit);
ALOGV("PowerHintSession created: %s", mDescriptor->toString().c_str());
}
PowerHintSession::~PowerHintSession() {
close();
ALOGV("PowerHintSession deleted: %s", mDescriptor->toString().c_str());
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
sz = StringPrintf("adpf.%s-actl_last", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
sz = sz = StringPrintf("adpf.%s-active", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
}
delete mDescriptor;
}
std::string PowerHintSession::getIdString() const {
std::string idstr = StringPrintf("%" PRId32 "-%" PRId32 "-%" PRIxPTR, mDescriptor->tgid,
mDescriptor->uid, reinterpret_cast<uintptr_t>(this) & 0xffff);
return idstr;
}
void PowerHintSession::updateUniveralBoostMode() {
PowerHintMonitor::getInstance()->getLooper()->sendMessage(mPowerManagerHandler, NULL);
}
int PowerHintSession::setUclamp(int32_t min, int32_t max) {
std::lock_guard<std::mutex> guard(mLock);
min = std::max(0, min);
min = std::min(min, max);
max = std::max(0, max);
max = std::max(min, max);
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-min", idstr.c_str());
ATRACE_INT(sz.c_str(), min);
}
for (const auto tid : mDescriptor->threadIds) {
sched_attr attr = {};
attr.size = sizeof(attr);
attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP);
attr.sched_util_min = min;
attr.sched_util_max = max;
int ret = sched_setattr(tid, &attr, 0);
if (ret) {
ALOGW("sched_setattr failed for thread %d, err=%d", tid, errno);
}
ALOGV("PowerHintSession tid: %d, uclamp(%d, %d)", tid, min, max);
}
mDescriptor->current_min = min;
return 0;
}
ndk::ScopedAStatus PowerHintSession::pause() {
if (!mDescriptor->is_active.load())
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
// Reset to default uclamp value.
setUclamp(0);
mDescriptor->is_active.store(false);
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-active", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
}
updateUniveralBoostMode();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PowerHintSession::resume() {
if (mDescriptor->is_active.load())
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
mDescriptor->is_active.store(true);
mDescriptor->integral_error = std::max(sPidIInit, mDescriptor->integral_error);
// resume boost
setUclamp(sUclampMinHighLimit);
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-active", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->is_active.load());
}
updateUniveralBoostMode();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PowerHintSession::close() {
bool sessionClosedExpectedToBe = false;
if (!mSessionClosed.compare_exchange_strong(sessionClosedExpectedToBe, true)) {
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
PowerHintMonitor::getInstance()->getLooper()->removeMessages(mStaleHandler);
setUclamp(0);
PowerSessionManager::getInstance()->removePowerSession(this);
updateUniveralBoostMode();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PowerHintSession::updateTargetWorkDuration(int64_t targetDurationNanos) {
if (targetDurationNanos <= 0) {
ALOGE("Error: targetDurationNanos(%" PRId64 ") should bigger than 0", targetDurationNanos);
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
ALOGV("update target duration: %" PRId64 " ns", targetDurationNanos);
double ratio =
targetDurationNanos == 0 ? 1.0 : mDescriptor->duration.count() / targetDurationNanos;
mDescriptor->integral_error =
std::max(sPidIInit, static_cast<int64_t>(mDescriptor->integral_error * ratio));
mDescriptor->duration = std::chrono::nanoseconds(targetDurationNanos);
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-target", idstr.c_str());
ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
}
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus PowerHintSession::reportActualWorkDuration(
const std::vector<WorkDuration> &actualDurations) {
if (mDescriptor->duration.count() == 0LL) {
ALOGE("Expect to call updateTargetWorkDuration() first.");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (actualDurations.size() == 0) {
ALOGE("Error: duration.size() shouldn't be %zu.", actualDurations.size());
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT);
}
if (!mDescriptor->is_active.load()) {
ALOGE("Error: shouldn't report duration during pause state.");
return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE);
}
if (PowerHintMonitor::getInstance()->isRunning() && isStale()) {
mDescriptor->integral_error = std::max(sPidIInit, mDescriptor->integral_error);
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-wakeup", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->integral_error);
ATRACE_INT(sz.c_str(), 0);
}
}
int64_t targetDurationNanos = (int64_t)mDescriptor->duration.count();
int64_t length = actualDurations.size();
int64_t p_start =
sPSamplingWindow == 0 || sPSamplingWindow > length ? 0 : length - sPSamplingWindow;
int64_t i_start =
sISamplingWindow == 0 || sISamplingWindow > length ? 0 : length - sISamplingWindow;
int64_t d_start =
sDSamplingWindow == 0 || sDSamplingWindow > length ? 0 : length - sDSamplingWindow;
int64_t dt = ns_to_100us(targetDurationNanos);
int64_t err_sum = 0;
int64_t derivative_sum = 0;
for (int64_t i = std::min({p_start, i_start, d_start}); i < length; i++) {
int64_t actualDurationNanos = actualDurations[i].durationNanos;
if (std::abs(actualDurationNanos) > targetDurationNanos * 20) {
ALOGW("The actual duration is way far from the target (%" PRId64 " >> %" PRId64 ")",
actualDurationNanos, targetDurationNanos);
}
// PID control algorithm
int64_t error = ns_to_100us(actualDurationNanos - targetDurationNanos);
if (i >= d_start) {
derivative_sum += error - mDescriptor->previous_error;
}
if (i >= p_start) {
err_sum += error;
}
if (i >= i_start) {
mDescriptor->integral_error = mDescriptor->integral_error + error * dt;
mDescriptor->integral_error = std::min(sPidIHighLimit, mDescriptor->integral_error);
mDescriptor->integral_error = std::max(sPidILowLimit, mDescriptor->integral_error);
}
mDescriptor->previous_error = error;
}
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-err", idstr.c_str());
ATRACE_INT(sz.c_str(), err_sum / (length - p_start));
sz = StringPrintf("adpf.%s-integral", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->integral_error);
sz = StringPrintf("adpf.%s-derivative", idstr.c_str());
ATRACE_INT(sz.c_str(), derivative_sum / dt / (length - d_start));
}
int64_t pOut = static_cast<int64_t>((err_sum > 0 ? sPidPOver : sPidPUnder) * err_sum /
(length - p_start));
int64_t iOut = static_cast<int64_t>(sPidI * mDescriptor->integral_error);
int64_t dOut = static_cast<int64_t>((derivative_sum > 0 ? sPidDOver : sPidDUnder) *
derivative_sum / dt / (length - d_start));
int64_t output = pOut + iOut + dOut;
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-actl_last", idstr.c_str());
ATRACE_INT(sz.c_str(), actualDurations[length - 1].durationNanos);
sz = StringPrintf("adpf.%s-target", idstr.c_str());
ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count());
sz = StringPrintf("adpf.%s-sample_size", idstr.c_str());
ATRACE_INT(sz.c_str(), length);
sz = StringPrintf("adpf.%s-pid.count", idstr.c_str());
ATRACE_INT(sz.c_str(), mDescriptor->update_count);
sz = StringPrintf("adpf.%s-pid.pOut", idstr.c_str());
ATRACE_INT(sz.c_str(), pOut);
sz = StringPrintf("adpf.%s-pid.iOut", idstr.c_str());
ATRACE_INT(sz.c_str(), iOut);
sz = StringPrintf("adpf.%s-pid.dOut", idstr.c_str());
ATRACE_INT(sz.c_str(), dOut);
sz = StringPrintf("adpf.%s-pid.output", idstr.c_str());
ATRACE_INT(sz.c_str(), output);
sz = StringPrintf("adpf.%s-stale", idstr.c_str());
ATRACE_INT(sz.c_str(), isStale());
sz = StringPrintf("adpf.%s-pid.overtime", idstr.c_str());
ATRACE_INT(sz.c_str(), err_sum > 0);
}
mDescriptor->update_count++;
mStaleHandler->updateStaleTimer();
/* apply to all the threads in the group */
if (output != 0) {
int next_min = std::min(sUclampMinHighLimit, static_cast<int>(output));
next_min = std::max(sUclampMinLowLimit, next_min);
if (std::abs(mDescriptor->current_min - next_min) > sUclampMinGranularity) {
setUclamp(next_min);
}
}
return ndk::ScopedAStatus::ok();
}
std::string AppHintDesc::toString() const {
std::string out =
StringPrintf("session %" PRIxPTR "\n", reinterpret_cast<uintptr_t>(this) & 0xffff);
const int64_t durationNanos = duration.count();
out.append(StringPrintf(" duration: %" PRId64 " ns\n", durationNanos));
out.append(StringPrintf(" uclamp.min: %d \n", current_min));
out.append(StringPrintf(" uid: %d, tgid: %d\n", uid, tgid));
out.append(" threadIds: [");
bool first = true;
for (int tid : threadIds) {
if (!first) {
out.append(", ");
}
out.append(std::to_string(tid));
first = false;
}
out.append("]\n");
return out;
}
bool PowerHintSession::isActive() {
return mDescriptor->is_active.load();
}
bool PowerHintSession::isStale() {
auto now = std::chrono::steady_clock::now();
return now >= mStaleHandler->getStaleTime();
}
const std::vector<int> &PowerHintSession::getTidList() const {
return mDescriptor->threadIds;
}
void PowerHintSession::setStale() {
if (ATRACE_ENABLED()) {
const std::string idstr = getIdString();
std::string sz = StringPrintf("adpf.%s-stale", idstr.c_str());
ATRACE_INT(sz.c_str(), 1);
}
// Reset to default uclamp value.
setUclamp(0);
// Deliver a task to check if all sessions are inactive.
updateUniveralBoostMode();
}
void PowerHintSession::StaleHandler::updateStaleTimer() {
std::lock_guard<std::mutex> guard(mStaleLock);
if (PowerHintMonitor::getInstance()->isRunning()) {
auto when = getStaleTime();
auto now = std::chrono::steady_clock::now();
mLastUpdatedTime.store(now);
if (now > when) {
mSession->updateUniveralBoostMode();
}
if (!mIsMonitoringStale.load()) {
auto next = getStaleTime();
PowerHintMonitor::getInstance()->getLooper()->sendMessageDelayed(
duration_cast<nanoseconds>(next - now).count(), this, NULL);
mIsMonitoringStale.store(true);
}
if (ATRACE_ENABLED()) {
const std::string idstr = mSession->getIdString();
std::string sz = StringPrintf("adpf.%s-stale", idstr.c_str());
ATRACE_INT(sz.c_str(), 0);
}
}
}
time_point<steady_clock> PowerHintSession::StaleHandler::getStaleTime() {
return mLastUpdatedTime.load() +
std::chrono::duration_cast<milliseconds>(mSession->kAdpfRate) * sStaleTimeFactor;
}
void PowerHintSession::StaleHandler::handleMessage(const Message &) {
std::lock_guard<std::mutex> guard(mStaleLock);
auto now = std::chrono::steady_clock::now();
auto when = getStaleTime();
// Check if the session is stale based on the last_updated_time.
if (now > when) {
mSession->setStale();
mIsMonitoringStale.store(false);
return;
}
// Schedule for the next checking time.
PowerHintMonitor::getInstance()->getLooper()->sendMessageDelayed(
duration_cast<nanoseconds>(when - now).count(), this, NULL);
}
} // namespace pixel
} // namespace impl
} // namespace power
} // namespace hardware
} // namespace google
} // namespace aidl