|
|
|
/*
|
|
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "Sensor.h"
|
|
|
|
|
|
|
|
#include <hardware/sensors.h>
|
|
|
|
#include <utils/SystemClock.h>
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
|
|
|
|
namespace android {
|
|
|
|
namespace hardware {
|
|
|
|
namespace sensors {
|
|
|
|
namespace V2_1 {
|
|
|
|
namespace subhal {
|
|
|
|
namespace implementation {
|
|
|
|
|
|
|
|
using ::android::hardware::sensors::V1_0::MetaDataEventType;
|
|
|
|
using ::android::hardware::sensors::V1_0::OperationMode;
|
|
|
|
using ::android::hardware::sensors::V1_0::Result;
|
|
|
|
using ::android::hardware::sensors::V1_0::SensorFlagBits;
|
|
|
|
using ::android::hardware::sensors::V1_0::SensorStatus;
|
|
|
|
using ::android::hardware::sensors::V2_1::Event;
|
|
|
|
using ::android::hardware::sensors::V2_1::SensorInfo;
|
|
|
|
using ::android::hardware::sensors::V2_1::SensorType;
|
|
|
|
|
|
|
|
Sensor::Sensor(int32_t sensorHandle, ISensorsEventCallback* callback)
|
|
|
|
: mIsEnabled(false),
|
|
|
|
mSamplingPeriodNs(0),
|
|
|
|
mLastSampleTimeNs(0),
|
|
|
|
mCallback(callback),
|
|
|
|
mMode(OperationMode::NORMAL) {
|
|
|
|
mSensorInfo.sensorHandle = sensorHandle;
|
|
|
|
mSensorInfo.vendor = "The LineageOS Project";
|
|
|
|
mSensorInfo.version = 1;
|
|
|
|
constexpr float kDefaultMaxDelayUs = 1000 * 1000;
|
|
|
|
mSensorInfo.maxDelay = kDefaultMaxDelayUs;
|
|
|
|
mSensorInfo.fifoReservedEventCount = 0;
|
|
|
|
mSensorInfo.fifoMaxEventCount = 0;
|
|
|
|
mSensorInfo.requiredPermission = "";
|
|
|
|
mSensorInfo.flags = 0;
|
|
|
|
mRunThread = std::thread(startThread, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
Sensor::~Sensor() {
|
|
|
|
// Ensure that lock is unlocked before calling mRunThread.join() or a
|
|
|
|
// deadlock will occur.
|
|
|
|
{
|
|
|
|
std::unique_lock<std::mutex> lock(mRunMutex);
|
|
|
|
mStopThread = true;
|
|
|
|
mIsEnabled = false;
|
|
|
|
mWaitCV.notify_all();
|
|
|
|
}
|
|
|
|
mRunThread.join();
|
|
|
|
}
|
|
|
|
|
|
|
|
const SensorInfo& Sensor::getSensorInfo() const {
|
|
|
|
return mSensorInfo;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Sensor::batch(int32_t samplingPeriodNs) {
|
|
|
|
samplingPeriodNs =
|
|
|
|
std::clamp(samplingPeriodNs, mSensorInfo.minDelay * 1000, mSensorInfo.maxDelay * 1000);
|
|
|
|
|
|
|
|
if (mSamplingPeriodNs != samplingPeriodNs) {
|
|
|
|
mSamplingPeriodNs = samplingPeriodNs;
|
|
|
|
// Wake up the 'run' thread to check if a new event should be generated now
|
|
|
|
mWaitCV.notify_all();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Sensor::activate(bool enable) {
|
|
|
|
std::lock_guard<std::mutex> lock(mRunMutex);
|
|
|
|
if (mIsEnabled != enable) {
|
|
|
|
mIsEnabled = enable;
|
|
|
|
mWaitCV.notify_all();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Result Sensor::flush() {
|
|
|
|
// Only generate a flush complete event if the sensor is enabled and if the sensor is not a
|
|
|
|
// one-shot sensor.
|
|
|
|
if (!mIsEnabled) {
|
|
|
|
return Result::BAD_VALUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Note: If a sensor supports batching, write all of the currently batched events for the sensor
|
|
|
|
// to the Event FMQ prior to writing the flush complete event.
|
|
|
|
Event ev;
|
|
|
|
ev.sensorHandle = mSensorInfo.sensorHandle;
|
|
|
|
ev.sensorType = SensorType::META_DATA;
|
|
|
|
ev.u.meta.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE;
|
|
|
|
std::vector<Event> evs{ev};
|
|
|
|
mCallback->postEvents(evs, isWakeUpSensor());
|
|
|
|
|
|
|
|
return Result::OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Sensor::startThread(Sensor* sensor) {
|
|
|
|
sensor->run();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Sensor::run() {
|
|
|
|
std::unique_lock<std::mutex> runLock(mRunMutex);
|
|
|
|
constexpr int64_t kNanosecondsInSeconds = 1000 * 1000 * 1000;
|
|
|
|
|
|
|
|
while (!mStopThread) {
|
|
|
|
if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) {
|
|
|
|
mWaitCV.wait(runLock, [&] {
|
|
|
|
return ((mIsEnabled && mMode == OperationMode::NORMAL) || mStopThread);
|
|
|
|
});
|
|
|
|
} else {
|
|
|
|
timespec curTime;
|
|
|
|
clock_gettime(CLOCK_REALTIME, &curTime);
|
|
|
|
int64_t now = (curTime.tv_sec * kNanosecondsInSeconds) + curTime.tv_nsec;
|
|
|
|
int64_t nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
|
|
|
|
|
|
|
|
if (now >= nextSampleTime) {
|
|
|
|
mLastSampleTimeNs = now;
|
|
|
|
nextSampleTime = mLastSampleTimeNs + mSamplingPeriodNs;
|
|
|
|
mCallback->postEvents(readEvents(), isWakeUpSensor());
|
|
|
|
}
|
|
|
|
|
|
|
|
mWaitCV.wait_for(runLock, std::chrono::nanoseconds(nextSampleTime - now));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Sensor::isWakeUpSensor() {
|
|
|
|
return mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::WAKE_UP);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Event> Sensor::readEvents() {
|
|
|
|
std::vector<Event> events;
|
|
|
|
Event event;
|
|
|
|
event.sensorHandle = mSensorInfo.sensorHandle;
|
|
|
|
event.sensorType = mSensorInfo.type;
|
|
|
|
event.timestamp = ::android::elapsedRealtimeNano();
|
|
|
|
event.u.vec3.x = 0;
|
|
|
|
event.u.vec3.y = 0;
|
|
|
|
event.u.vec3.z = 0;
|
|
|
|
event.u.vec3.status = SensorStatus::ACCURACY_HIGH;
|
|
|
|
events.push_back(event);
|
|
|
|
return events;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Sensor::setOperationMode(OperationMode mode) {
|
|
|
|
std::lock_guard<std::mutex> lock(mRunMutex);
|
|
|
|
if (mMode != mode) {
|
|
|
|
mMode = mode;
|
|
|
|
mWaitCV.notify_all();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Sensor::supportsDataInjection() const {
|
|
|
|
return mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::DATA_INJECTION);
|
|
|
|
}
|
|
|
|
|
|
|
|
Result Sensor::injectEvent(const Event& event) {
|
|
|
|
Result result = Result::OK;
|
|
|
|
if (event.sensorType == SensorType::ADDITIONAL_INFO) {
|
|
|
|
// When in OperationMode::NORMAL, SensorType::ADDITIONAL_INFO is used to push operation
|
|
|
|
// environment data into the device.
|
|
|
|
} else if (!supportsDataInjection()) {
|
|
|
|
result = Result::INVALID_OPERATION;
|
|
|
|
} else if (mMode == OperationMode::DATA_INJECTION) {
|
|
|
|
mCallback->postEvents(std::vector<Event>{event}, isWakeUpSensor());
|
|
|
|
} else {
|
|
|
|
result = Result::BAD_VALUE;
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
OneShotSensor::OneShotSensor(int32_t sensorHandle, ISensorsEventCallback* callback)
|
|
|
|
: Sensor(sensorHandle, callback) {
|
|
|
|
mSensorInfo.minDelay = -1;
|
|
|
|
mSensorInfo.maxDelay = 0;
|
|
|
|
mSensorInfo.flags |= SensorFlagBits::ONE_SHOT_MODE;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace implementation
|
|
|
|
} // namespace subhal
|
|
|
|
} // namespace V2_1
|
|
|
|
} // namespace sensors
|
|
|
|
} // namespace hardware
|
|
|
|
} // namespace android
|